Compare commits

...

50 Commits

Author SHA1 Message Date
Lance Release
f3cf986777 [python] Bump version: 0.3.1 → 0.3.2 2023-10-24 19:06:38 +00:00
Bert
c73fcc8898 update lance to 0.8.7 (#598) 2023-10-24 14:49:36 -04:00
Chang She
cd9debc3b7 fix(python): fix multiple embedding functions bug (#597)
Closes #594

The embedding functions are pydantic models so multiple instances with
the same parameters are considered ==, which means that if you have
multiple embedding columns it's possible for the embeddings to get
overwritten. Instead we use `is` instead of == to avoid this problem.

testing: modified unit test to include this case
2023-10-24 13:05:05 -04:00
Rob Meng
26a97ba997 feat: add checkout method to table to reuse existing store and connections (#593)
Prior to this PR, to get a new version of a table, we need to re-open
the table. This has a few downsides w.r.t. performance:
* Object store is recreated, which takes time and throws away existing
warm connections
* Commit handler is thrown aways as well, which also may contain warm
connections
2023-10-23 12:06:13 -04:00
Rob Meng
ce19fedb08 feat: include manifest files in mirrow store (#589) 2023-10-21 12:21:41 -04:00
Will Jones
14e8e48de2 Revert "[python] Bump version: 0.3.2 → 0.3.3"
This reverts commit c30faf6083.
2023-10-20 17:52:49 -07:00
Will Jones
c30faf6083 [python] Bump version: 0.3.2 → 0.3.3 2023-10-20 17:30:00 -07:00
Ayush Chaurasia
64a4f025bb [Docs]: Minor Fixes (#587)
* Filename typo
* Remove rick_morty csv as users won't really be able to use it.. We can
create a an executable colab and download it from a bucket or smth.
2023-10-20 16:14:35 +02:00
Ayush Chaurasia
6dc968e7d3 [Docs] Embeddings API: Add multi-lingual semantic search example (#582) 2023-10-20 18:40:49 +05:30
Ayush Chaurasia
06b5b69f1e [Docs]Versioning docs (#586)
closes #564

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-20 18:40:16 +05:30
Lance Release
6bd3a838fc Updating package-lock.json 2023-10-19 20:45:39 +00:00
Lance Release
f36fea8f20 Updating package-lock.json 2023-10-19 20:06:10 +00:00
Lance Release
0a30591729 Bump version: 0.3.2 → 0.3.3 2023-10-19 20:05:57 +00:00
Chang She
0ed39b6146 chore: bump lance version in python/rust lancedb (#584)
To include latest v0.8.6

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-19 13:05:12 -07:00
Ayush Chaurasia
a8c7f80073 [Docs] Update embedding function docs (#581) 2023-10-18 13:04:42 +05:30
Ayush Chaurasia
0293bbe142 [Python]Embeddings API refactor (#580)
Sets things up for this -> https://github.com/lancedb/lancedb/issues/579
- Just separates out the registry/ingestion code from the function
implementation code
- adds a `get_registry` util
- package name "open-clip" -> "open-clip-torch"
2023-10-17 22:32:19 -07:00
Ayush Chaurasia
7372656369 [Docs] Add posthog telemetry to docs (#577)
Allows creation of funnels and user journeys
2023-10-17 21:11:59 -07:00
QianZhu
d46bc5dd6e list table pagination draft (#574) 2023-10-16 21:09:20 -07:00
Prashanth Rao
86efb11572 Add pyarrow date and timestamp type conversion from pydantic (#576) 2023-10-16 19:42:24 -07:00
Chang She
bb01ad5290 doc: fix broken link and add README (#573)
Fix broken link to embedding functions

testing: broken link was verified after local docs build to have been
repaired

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-16 16:13:07 -07:00
Lance Release
1b8cda0941 Updating package-lock.json 2023-10-16 16:10:07 +00:00
Lance Release
bc85a749a3 Updating package-lock.json 2023-10-16 15:12:15 +00:00
Lance Release
02c35d3457 Bump version: 0.3.1 → 0.3.2 2023-10-16 15:11:57 +00:00
Rob Meng
345c136cfb implement remote api calls for table mutation (#567)
Add more APIs to remote table for Node SDK
* `add` rows
* `overwrite` table with rows
* `create` table

This has been tested against dev stack
2023-10-16 11:07:58 -04:00
Rok Mihevc
043e388254 docs: show source of documented functions (#569) 2023-10-15 09:05:36 -07:00
Lei Xu
fe64fc4671 feat(python,js): deletion operation on remote tables (#568) 2023-10-14 15:47:19 -07:00
Rok Mihevc
6d66404506 docs: switch python examples to be row based (#554) 2023-10-14 14:07:43 -07:00
Lei Xu
eff94ecea8 chore: bump lance to 0.8.5 (#561)
Bump lance to 0.5.8
2023-10-14 12:38:43 -07:00
Ayush Chaurasia
7dfb555fea [DOCS][PYTHON] Update embeddings API docs & Example (#516)
This PR adds an overview of embeddings docs:
- 2 ways to vectorize your data using lancedb - explicit & implicit
- explicit - manually vectorize your data using `wit_embedding` function
- Implicit - automatically vectorize your data as it comes by ingesting
your embedding function details as table metadata
- Multi-modal example w/ disappearing embedding function
2023-10-14 07:56:07 +05:30
Lance Release
f762a669e7 Updating package-lock.json 2023-10-13 22:27:48 +00:00
Lance Release
0bdc7140dd Updating package-lock.json 2023-10-13 21:24:05 +00:00
Lance Release
8f6e955b24 Bump version: 0.3.0 → 0.3.1 2023-10-13 21:23:54 +00:00
Lance Release
1096da09da [python] Bump version: 0.3.0 → 0.3.1 2023-10-13 21:23:47 +00:00
Ayush Chaurasia
683824f1e9 Add cohere embedding function (#550) 2023-10-13 16:27:34 +05:30
Will Jones
db7bdefe77 feat: cleanup and compaction (#518)
#488
2023-10-11 12:49:12 -07:00
Ayush Chaurasia
e41894b071 [Docs] Improve visibility of table ops (#553)
A little verbose, but better than being non-discoverable 
![Screenshot from 2023-10-11
16-26-02](https://github.com/lancedb/lancedb/assets/15766192/9ba539a7-0cf8-4d9e-94e7-ce5d37c35df0)
2023-10-11 12:20:46 -07:00
Chang She
e1ae2bcbd8 feat: add to_list and to_pandas api's (#556)
Add `to_list` to return query results as list of python dict (so we're
not too pandas-centric). Closes #555

Add `to_pandas` API and add deprecation warning on `to_df`. Closes #545

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-11 12:18:55 -07:00
Ankur Goyal
ababc3f8ec Use query.limit(..) in README (#543)
If you run the README javascript example in typescript, it complains
that the type of limit is a function and cannot be set to a number.
2023-10-11 11:54:14 -07:00
Ayush Chaurasia
a1377afcaa feat: telemetry, error tracking, CLI & config manager (#538)
Co-authored-by: Lance Release <lance-dev@lancedb.com>
Co-authored-by: Rob Meng <rob.xu.meng@gmail.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: rmeng <rob@lancedb.com>
Co-authored-by: Chang She <chang@lancedb.com>
Co-authored-by: Rok Mihevc <rok@mihevc.org>
2023-10-08 23:11:39 +05:30
Lei Xu
a26c8f3316 feat: use GPU for index creation. (#540)
Bump lance to 0.8.3 to include GPU training

---------

Co-authored-by: Rob Meng <rob.xu.meng@gmail.com>
2023-10-05 20:49:00 -07:00
Josh Wein
88d8d7249e Typo cleanup (#539) 2023-10-05 23:07:28 -04:00
Rob Meng
0eb7c9ea0c fix stackoverflow (#542)
closes #541 

two functions was calling itself instead of routing to primary
2023-10-05 20:05:04 -04:00
Rob Meng
1db66c6980 implement mirroring object store (#537)
This PR implements a mirroring object store and allows and table to be
mirrored to a local path when param `mirroredStore` is set in the url
2023-10-04 21:23:34 -04:00
Lance Release
c58da8fc8a Updating package-lock.json 2023-10-03 22:59:02 +00:00
Lance Release
448c4a835d Updating package-lock.json 2023-10-03 22:09:00 +00:00
Lance Release
850f80de99 Bump version: 0.2.6 → 0.3.0 2023-10-03 22:08:44 +00:00
Lance Release
a022368426 [python] Bump version: 0.2.6 → 0.3.0 2023-10-03 21:48:22 +00:00
Lei Xu
8b815ef5a8 chore: upgrade lance to 0.8.1 (#536)
Bump to lance 0.8.1 for both javascript and python sdk
2023-10-03 14:29:18 -07:00
Tan Li
e4c3a9346c [doc] make the tensor width differnt from height (#533) 2023-10-03 00:55:16 -07:00
Prashanth Rao
1d1f8964d2 [DOCS][PYTHON] Update docs for clarity (#531)
I only modified those docs pages that are untouched in existing unmerged
PRs, so hopefully there are no merge conflicts!

1. The `tantivy-py` version specified in the docs doesn't work (pip
install fails), but with the latest version of pip and wheel installed
on my Mac, I was able to just `pip install tantivy` and FTS works great
for me. I updated the docs page to include this in
7ca4b757ce but can always modify to
another specific version in case this breaks any tests.
2. The `.add()` method for Python should take in a list of dicts as the
first option (to also align with the JS API), and additionally, users
can pass an existing pandas DataFrame to add to a table. Hope this makes
sense.
3. I've had multiple conversations with users who are unclear that the
terms "exhaustive", "flat" and "KNN" are all the same kind of search, so
I've updated the verbiage of this section to clarify this.
4. Fixed typos and improved clarity in the ANN indexes page.
2023-10-03 09:46:53 +05:30
96 changed files with 6661 additions and 983 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.2.6 current_version = 0.3.3
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -5,21 +5,23 @@ exclude = ["python"]
resolver = "2" resolver = "2"
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.7.5", "features" = ["dynamodb"] } lance = { "version" = "=0.8.7", "features" = ["dynamodb"] }
lance-linalg = { "version" = "=0.7.5" } lance-linalg = { "version" = "=0.8.7" }
lance-testing = { "version" = "=0.8.7" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "43.0.0", optional = false } arrow = { version = "47.0.0", optional = false }
arrow-array = "43.0" arrow-array = "47.0"
arrow-data = "43.0" arrow-data = "47.0"
arrow-ipc = "43.0" arrow-ipc = "47.0"
arrow-ord = "43.0" arrow-ord = "47.0"
arrow-schema = "43.0" arrow-schema = "47.0"
arrow-arith = "43.0" arrow-arith = "47.0"
arrow-cast = "43.0" arrow-cast = "47.0"
half = { "version" = "=2.2.1", default-features = false, features = [ chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits" "num-traits"
] } ] }
log = "0.4" log = "0.4"
object_store = "0.6.1" object_store = "0.7.1"
snafu = "0.7.4" snafu = "0.7.4"
url = "2" url = "2"

View File

@@ -33,6 +33,8 @@ The key features of LanceDB include:
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. * Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* GPU support in building vector index(*).
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way. * Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads. LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
@@ -52,8 +54,7 @@ const table = await db.createTable('vectors',
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 }, [{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }]) { id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
const query = table.search([0.1, 0.3]); const query = table.search([0.1, 0.3]).limit(2);
query.limit = 20;
const results = await query.execute(); const results = await query.execute();
``` ```
@@ -70,7 +71,7 @@ db = lancedb.connect(uri)
table = db.create_table("my_table", table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df() result = table.search([100, 100]).limit(2).to_pandas()
``` ```
## Blogs, Tutorials & Videos ## Blogs, Tutorials & Videos

26
docs/README.md Normal file
View File

@@ -0,0 +1,26 @@
# LanceDB Documentation
LanceDB docs are deployed to https://lancedb.github.io/lancedb/.
Docs is built and deployed automatically by [Github Actions](.github/workflows/docs.yml)
whenever a commit is pushed to the `main` branch. So it is possible for the docs to show
unreleased features.
## Building the docs
### Setup
1. Install LanceDB. From LanceDB repo root: `pip install -e python`
2. Install dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
3. Make sure you have node and npm setup
4. Make sure protobuf and libssl are installed
### Building node module and create markdown files
See [Javascript docs README](docs/src/javascript/README.md)
### Build docs
From LanceDB repo root:
Run: `PYTHONPATH=. mkdocs build -f docs/mkdocs.yml`
If successful, you should see a `docs/site` directory that you can verify locally.

View File

@@ -21,6 +21,7 @@ theme:
- navigation.tracking - navigation.tracking
- navigation.instant - navigation.instant
- navigation.indexes - navigation.indexes
- navigation.expand
icon: icon:
repo: fontawesome/brands/github repo: fontawesome/brands/github
custom_dir: overrides custom_dir: overrides
@@ -36,7 +37,7 @@ plugins:
docstring_style: numpy docstring_style: numpy
rendering: rendering:
heading_level: 4 heading_level: 4
show_source: false show_source: true
show_symbol_type_in_heading: true show_symbol_type_in_heading: true
show_signature_annotations: true show_signature_annotations: true
show_root_heading: true show_root_heading: true
@@ -68,11 +69,18 @@ nav:
- 🏢 Home: index.md - 🏢 Home: index.md
- 💡 Basics: basic.md - 💡 Basics: basic.md
- 📚 Guides: - 📚 Guides:
- Tables: guides/tables.md - Create Ingest Update Delete: guides/tables.md
- Vector Search: search.md - Vector Search: search.md
- SQL filters: sql.md - SQL filters: sql.md
- Indexing: ann_indexes.md - Indexing: ann_indexes.md
- 🧬 Embeddings: embedding.md - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- 🧬 Embeddings:
- embeddings/index.md
- Ingest Embedding Functions: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Create Custom Embedding Functions: embeddings/api.md
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb
- 🔍 Python full-text search: fts.md - 🔍 Python full-text search: fts.md
- 🔌 Integrations: - 🔌 Integrations:
- integrations/index.md - integrations/index.md
@@ -96,13 +104,22 @@ nav:
- Serverless Website Chatbot: examples/serverless_website_chatbot.md - Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md - YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- ⚙️ CLI & Config: cli_config.md
- Basics: basic.md - Basics: basic.md
- Guides: - Guides:
- Tables: guides/tables.md - Create Ingest Update Delete: guides/tables.md
- Vector Search: search.md - Vector Search: search.md
- SQL filters: sql.md - SQL filters: sql.md
- Indexing: ann_indexes.md - Indexing: ann_indexes.md
- Embeddings: embedding.md - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Embeddings:
- embeddings/index.md
- Ingest Embedding Functions: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Create Custom Embedding Functions: embeddings/api.md
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb
- Python full-text search: fts.md - Python full-text search: fts.md
- Integrations: - Integrations:
- integrations/index.md - integrations/index.md
@@ -133,6 +150,8 @@ nav:
extra_css: extra_css:
- styles/global.css - styles/global.css
extra_javascript:
- scripts/posthog.js
extra: extra:
analytics: analytics:

View File

@@ -6,7 +6,7 @@ LanceDB provides many parameters to fine-tune the index's size, the speed of que
Currently, LanceDB does *not* automatically create the ANN index. Currently, LanceDB does *not* automatically create the ANN index.
LanceDB has optimized code for KNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all. LanceDB has optimized code for KNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall. If you can live with < 100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
In the future we will look to automatically create and configure the ANN index. In the future we will look to automatically create and configure the ANN index.
@@ -68,6 +68,12 @@ a single PQ code.
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption> <figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
</figure> </figure>
### Use GPU to build vector index
Lance Python SDK has experimental GPU support for creating IVF index.
You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to `"cuda"`` to enable GPU training.
## Querying an ANN Index ## Querying an ANN Index
@@ -91,7 +97,7 @@ There are a couple of parameters that can be used to fine-tune the search:
.limit(2) \ .limit(2) \
.nprobes(20) \ .nprobes(20) \
.refine_factor(10) \ .refine_factor(10) \
.to_df() .to_pandas()
``` ```
``` ```
vector item _distance vector item _distance
@@ -118,7 +124,7 @@ You can further filter the elements returned by a search using a where clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_df() tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
``` ```
=== "Javascript" === "Javascript"
@@ -135,7 +141,7 @@ You can select the columns returned by the query using a select clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))).select(["vector"]).to_df() tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
``` ```
``` ```
vector _distance vector _distance
@@ -154,28 +160,28 @@ You can select the columns returned by the query using a select clause.
## FAQ ## FAQ
### When is it necessary to create an ANN vector index. ### When is it necessary to create an ANN vector index?
`LanceDB` has manually tuned SIMD code for computing vector distances. `LanceDB` has manually-tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors only take less than 20ms. In our benchmarks, computing 100K pairs of 1K dimension vectors takes **less than 20ms**.
For small dataset (<100K rows) or the applications which can accept 100ms latency, vector indices are usually not necessary. For small datasets (< 100K rows) or applications that can accept 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index. For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how many memory will it take. ### How big is my index, and how many memory will it take?
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code. In LanceDB, all vector indices are **disk-based**, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers. For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction. Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index. ### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index?
`num_partitions` is used to decide how many partitions the first level `IVF` index uses. `num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train. Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall. On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` decides how many Product Quantization code to generate on each vector. Because `num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
Product Quantization is a lossy compression of the original vector, the more `num_sub_vectors` usually results to PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yield better accuracy. However, similarly, more `num_sub_vectors` causes heavier I/O and less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, thus, higher latency. `dimension / num_sub_vectors` should be aligned with 8 for better SIMD efficiency. more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.

Binary file not shown.

After

Width:  |  Height:  |  Size: 342 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 245 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 83 KiB

View File

@@ -123,9 +123,15 @@ After a table has been created, you can always add more data to it using
=== "Python" === "Python"
```python ```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]) # Option 1: Add a list of dicts to a table
tbl.add(df) data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
``` ```
=== "Javascript" === "Javascript"
@@ -140,7 +146,7 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
=== "Python" === "Python"
```python ```python
tbl.search([100, 100]).limit(2).to_df() tbl.search([100, 100]).limit(2).to_pandas()
``` ```
This returns a pandas DataFrame with the results. This returns a pandas DataFrame with the results.

37
docs/src/cli_config.md Normal file
View File

@@ -0,0 +1,37 @@
## LanceDB CLI
Once lanceDB is installed, you can access the CLI using `lancedb` command on the console
```
lancedb
```
This lists out all the various command-line options available. You can get the usage or help for a particular command
```
lancedb {command} --help
```
## LanceDB config
LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli.
To view your config settings, you can use:
```
lancedb config
```
These config parameters can be tuned using the cli.
```
lancedb {config_name} --{argument}
```
## LanceDB Opt-in Diagnostics
When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests.
These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default.
Get usage help.
```
lancedb diagnostics --help
```
Disable diagnostics
```
lancedb diagnostics --disabled
```
Enable diagnostics
```
lancedb diagnostics --enabled
```

213
docs/src/embeddings/api.md Normal file
View File

@@ -0,0 +1,213 @@
To use your own custom embedding function, you need to follow these 2 simple steps.
1. Create your embedding function by implementing the `EmbeddingFunction` interface
2. Register your embedding function in the global `EmbeddingFunctionRegistry`.
Let us see how this looks like in action.
![](../assets/embeddings_api.png)
`EmbeddingFunction` & `EmbeddingFunctionRegistry` handle low-level details for serializing schema and model information as metadata. To build a custom embdding function, you don't need to worry about those details and simply focus on setting up the model.
## `TextEmbeddingFunction` Interface
There is another optional layer of abstraction provided in form of `TextEmbeddingFunction`. You can use this if your model isn't multi-modal in nature and only operates on text. In such case both source and vector fields will have the same pathway for vectorization, so you simply just need to setup the model and rest is handled by `TextEmbeddingFunction`. You can read more about the class and its attributes in the class reference.
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
```python
from lancedb.embeddings import register
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name: str = "all-MiniLM-L6-v2"
# set more default instance vars like device, etc.
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
def generate_embeddings(self, texts):
return self._embedding_model().encode(list(texts), ...).tolist()
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
@cached(cache={})
def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name)
```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings.
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
```python
from lancedb.pydantic import LanceModel, Vector
registry = EmbeddingFunctionRegistry.get_instance()
stransformer = registry.get("sentence-transformers").create()
class TextModelSchema(LanceModel):
vector: Vector(stransformer.ndims) = stransformer.VectorField()
text: str = stransformer.SourceField()
tbl = db.create_table("table", schema=TextModelSchema)
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
result = tbl.search("world").limit(5)
```
NOTE:
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
## Multi-modal embedding function example
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support. LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
```python
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in futures]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor)
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
```

View File

@@ -0,0 +1,156 @@
There are various Embedding functions available out of the box with lancedb. We're working on supporting other popular embedding APIs.
## Text Embedding Functions
Here are the text embedding functions registered by default
### Sentence Transformers
Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"all-MiniLM-L6-v2"` | The name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model. |
```python
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("sentence-transformers").create(device="cpu")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### OpenAIEmbeddings
LanceDB has OpenAI embeddings function in the registry by default. It is registered as `openai` and here are the parameters that you can customize when creating the instances
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
```python
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("openai").create()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
## Multi-modal embedding functions
Multi-modal embedding functions allow you query your table using both images and text.
### OpenClipEmbeddings
We support CLIP model embeddings using the open souce alternbative, open-clip which support various customizations. It is registered as `open-clip` and supports following customizations.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
NOTE:
LanceDB supports ingesting images directly from accessible links.
```python
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
[{"label": labels, "image_uri": uris, "image_bytes": image_bytes}]
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue.

View File

@@ -0,0 +1,82 @@
Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions themselves be thought of as a part of the processing pipeline that each request(input) has to be passed through. After initial setup these components are not expected to change for a particular project.
This is main motivation behind our new embedding functions API, that allow you simply set it up once and the table remembers it, effectively making the **embedding functions disappear in the background** so you don't have to worry about modelling and simply focus on the DB aspects of VectorDB.
You can simply follow these steps and forget about the details of your embedding functions as long as you don't intend to change it.
### Step 1 - Define the embedding function
We have some pre-defined embedding functions in the global registry with more coming soon. Here's let's an implementation of CLIP as example.
```
registry = EmbeddingFunctionRegistry.get_instance()
clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction` abstract base interface. It subclasses PyDantic Model which can be utilized to write complex schemas simply as we'll see next!
### Step 2 - Define the Data Model or Schema
Our embedding function from the previous section abstracts away all the details about the models and dimensions required to define the schema. You can simply set a feild as **source** or **vector** column. Here's how
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for `vector` column & `SourceField` tells that when adding data, automatically use the embedding function to encode `image_uri`.
### Step 3 - Create LanceDB Table
Now that we have chosen/defined our embedding function and the schema, we can create the table
```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
```
That's it! We have ingested all the information needed to embed source and query inputs. We can now forget about the model and dimension details and start to build or VectorDB
### Step 4 - Ingest lots of data and run vector search!
Now you can just add the data and it'll be vectorized automatically
```python
table.add([{"image_uri": u} for u in uris])
```
Our OpenCLIP query embedding function support querying via both text and images.
```python
result = table.search("dog")
```
Let's query an image
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
table.search(query_image)
```
### A little fun with PyDantic
LanceDB is integrated with PyDantic. Infact we've used the integration in the above example to define the schema. It is also being used behing the scene by the embdding function API to ingest useful information as table metadata.
You can also use it for adding utility operations in the schema. For example, in our multi-modal example, you can search images using text or another image. Let us define a utility function to plot the image.
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
@property
def image(self):
return Image.open(self.image_uri)
```
Now, you can covert your search results to pydantic model and use this property.
```python
rs = table.search(query_image).limit(3).to_pydantic(Pets)
rs[2].image
```
![](../assets/dog_clip_output.png)
Now that you've the basic idea about LanceDB embedding function, let us now dive deeper into the API that you can use to implement your own embedding functions!

View File

@@ -1,13 +1,20 @@
# Embedding Functions # Embedding
Embeddings are high dimensional floating-point vector representations of your data or query. Embeddings are high dimensional floating-point vector representations of your data or query. Anything can be embedded using some embedding model or function. Position of embedding in a high dimensional vector space has semantic significance to a degree that depends on the type of modal and training. These embeddings when projected in a 2-D space generally group similar entities close-by forming groups.
Anything can be embedded using some embedding model or function.
For a given embedding function, the output will always have the same number of dimensions.
## Creating an embedding function ![](../assets/embedding_intro.png)
Any function that takes as input a batch (list) of data and outputs a batch (list) of embeddings # Creating an embedding function
can be used by LanceDB as an embedding function. The input and output batch sizes should be the same.
LanceDB supports 2 major ways of vectorizing your data, explicit and implicit.
1. By manually embedding the data before ingesting in the table
2. By automatically embedding the data and query as they come, by ingesting embedding function information in the table itself! Covered in [Next Section](embedding_functions.md)
Whatever workflow you prefer, we have the tools to support you.
## Explicit Vectorization
In this workflow, you can create your embedding function and vectorize your data using lancedb's `with_embedding` function. Let's look at some examples.
### HuggingFace example ### HuggingFace example
@@ -118,7 +125,7 @@ belong in the same latent space and your results will be nonsensical.
```python ```python
query = "What's the best pizza topping?" query = "What's the best pizza topping?"
query_vector = embed_func([query])[0] query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_df() tbl.search(query_vector).limit(10).to_pandas()
``` ```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query. The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
@@ -134,9 +141,9 @@ belong in the same latent space and your results will be nonsensical.
The above snippet returns an array of records with the 10 closest vectors to the query. The above snippet returns an array of records with the 10 closest vectors to the query.
## Roadmap ## Implicit vectorization / Ingesting embedding functions
Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions themselves be thought of as a part of the processing pipeline that each request(input) has to be passed through. After initial setup these components are not expected to change for a particular project.
In the near future, we'll be integrating the embedding functions deeper into LanceDB<br/>. This is main motivation behind our new embedding functions API, that allow you simply set it up once and the table remembers it, effectively making the **embedding functions disappear in the background** so you don't have to worry about modelling and simply focus on the DB aspects of VectorDB.
The goal is that you just have to configure the function once when you create the table,
and then you'll never have to deal with embeddings / vectors after that unless you want to. Learn more in the Next Section
We'll also integrate more popular models and APIs.

View File

@@ -80,14 +80,14 @@ def handler(event, context):
# Shape of SIFT is (128,1M), d=float32 # Shape of SIFT is (128,1M), d=float32
query_vector = np.array(event['query_vector'], dtype=np.float32) query_vector = np.array(event['query_vector'], dtype=np.float32)
rs = table.search(query_vector).limit(2).to_df() rs = table.search(query_vector).limit(2).to_list()
return { return {
"statusCode": status_code, "statusCode": status_code,
"headers": { "headers": {
"Content-Type": "application/json" "Content-Type": "application/json"
}, },
"body": rs.to_json() "body": json.dumps(rs)
} }
``` ```

View File

@@ -6,17 +6,19 @@ to make this available for JS as well.
## Installation ## Installation
To use full text search, you must install optional dependency tantivy-py: To use full text search, you must install the dependency `tantivy-py`:
# tantivy 0.19.2 # tantivy 0.20.1
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 ```sh
pip install tantivy==0.20.1
```
## Quickstart ## Quickstart
Assume: Assume:
1. `table` is a LanceDB Table 1. `table` is a LanceDB Table
2. `text` is the name of the Table column that we want to index 2. `text` is the name of the `Table` column that we want to index
For example, For example,
@@ -41,7 +43,13 @@ table.create_fts_index("text")
To search: To search:
```python ```python
df = table.search("puppy").limit(10).select(["text"]).to_df() table.search("puppy").limit(10).select(["text"]).to_list()
```
Which returns a list of dictionaries:
```python
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
``` ```
LanceDB automatically looks for an FTS index if the input is str. LanceDB automatically looks for an FTS index if the input is str.

View File

@@ -42,7 +42,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
import pandas as pd import pandas as pd
data = pd.DataFrame({ data = pd.DataFrame({
"vector": [[1.1, 1.2], [0.2, 1.8]], "vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1], "lat": [45.5, 40.1],
"long": [-122.7, -74.1] "long": [-122.7, -74.1]
}) })
@@ -56,7 +56,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```python ```python
custom_schema = pa.schema([ custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 2)), pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()), pa.field("lat", pa.float32()),
pa.field("long", pa.float32()) pa.field("long", pa.float32())
]) ])
@@ -70,8 +70,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```python ```python
table = pa.Table.from_arrays( table = pa.Table.from_arrays(
[ [
pa.array([[3.1, 4.1], [5.9, 26.5]], pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 2)), pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]), pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]), pa.array([10.0, 20.0]),
], ],
@@ -131,8 +131,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
for i in range(5): for i in range(5):
yield pa.RecordBatch.from_arrays( yield pa.RecordBatch.from_arrays(
[ [
pa.array([[3.1, 4.1], [5.9, 26.5]], pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 2)), pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]), pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]), pa.array([10.0, 20.0]),
], ],
@@ -140,7 +140,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
) )
schema = pa.schema([ schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 2)), pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()), pa.field("item", pa.utf8()),
pa.field("price", pa.float32()), pa.field("price", pa.float32()),
]) ])
@@ -251,8 +251,9 @@ After a table has been created, you can always add more data to it using
### Adding Pandas DataFrame ### Adding Pandas DataFrame
```python ```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0}, df = pd.DataFrame({
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]) "vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["fizz", "buzz"], "price": [100.0, 200.0]
})
tbl.add(df) tbl.add(df)
``` ```
@@ -261,17 +262,12 @@ After a table has been created, you can always add more data to it using
### Adding to table using Iterator ### Adding to table using Iterator
```python ```python
import pandas as pd
def make_batches(): def make_batches():
for i in range(5): for i in range(5):
yield pd.DataFrame( yield [
{ {"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
"vector": [[3.1, 4.1], [1, 1]], {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
"item": ["foo", "bar"], ]
"price": [10.0, 20.0],
})
tbl.add(make_batches()) tbl.add(make_batches())
``` ```
@@ -306,9 +302,10 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
```python ```python
import lancedb import lancedb
import pandas as pd
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]}) data = [{"x": 1, "vector": [1, 2]},
{"x": 2, "vector": [3, 4]},
{"x": 3, "vector": [5, 6]}]
db = lancedb.connect("./.lancedb") db = lancedb.connect("./.lancedb")
table = db.create_table("my_table", data) table = db.create_table("my_table", data)
table.to_pandas() table.to_pandas()
@@ -364,6 +361,48 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
await tbl.countRows() // Returns 1 await tbl.countRows() // Returns 1
``` ```
### Updating a Table [Experimental]
EXPERIMENTAL: Update rows in the table (not threadsafe).
This can be used to update zero to all rows depending on how many rows match the where clause.
| Parameter | Type | Description |
|---|---|---|
| `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. |
| `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. |
=== "Python"
```python
import lancedb
import pandas as pd
# Create a lancedb connection
db = lancedb.connect("./.lancedb")
# Create a table from a pandas DataFrame
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
table = db.create_table("my_table", data)
# Update the table where x = 2
table.update(where="x = 2", values={"vector": [10, 10]})
# Get the updated table as a pandas DataFrame
df = table.to_pandas()
# Print the DataFrame
print(df)
```
Output
```shell
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
2 2 [10.0, 10.0]
```
## What's Next? ## What's Next?
Learn how to Query your tables and create indices Learn how to Query your tables and create indices

View File

@@ -36,7 +36,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
table = db.create_table("my_table", table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df() result = table.search([100, 100]).limit(2).to_list()
``` ```
=== "Javascript" === "Javascript"
@@ -67,7 +67,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
## Documentation Quick Links ## Documentation Quick Links
* [`Basic Operations`](basic.md) - basic functionality of LanceDB. * [`Basic Operations`](basic.md) - basic functionality of LanceDB.
* [`Embedding Functions`](embedding.md) - functions for working with embeddings. * [`Embedding Functions`](embeddings/index.md) - functions for working with embeddings.
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries. * [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API * [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
* [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem. * [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.

File diff suppressed because one or more lines are too long

View File

@@ -144,7 +144,7 @@
"source": [ "source": [
"# Pre-processing and loading the documentation\n", "# Pre-processing and loading the documentation\n",
"\n", "\n",
"Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time yyou do it). We'll also add some more metadata to the docs here such as the title and version of the code:" "Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time you do it). We'll also add some more metadata to the docs here such as the title and version of the code:"
] ]
}, },
{ {
@@ -255,7 +255,7 @@
"id": "28d93b85", "id": "28d93b85",
"metadata": {}, "metadata": {},
"source": [ "source": [
"And thats it! We're all setup. The next step is to run some queries, let's try a few:" "And that's it! We're all set up. The next step is to run some queries, let's try a few:"
] ]
}, },
{ {

File diff suppressed because one or more lines are too long

View File

@@ -19,11 +19,11 @@
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"\n", "\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n", "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
"\n", "\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n", "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
] ]
} }
], ],
@@ -39,6 +39,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"import io\n", "import io\n",
"\n",
"import PIL\n", "import PIL\n",
"import duckdb\n", "import duckdb\n",
"import lancedb" "import lancedb"
@@ -158,18 +159,18 @@
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n", " \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n", " \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"embedding = embed_func('{query}')\\n\"\n", " f\"embedding = embed_func('{query}')\\n\"\n",
" \"tbl.search(embedding).limit(9).to_df()\"\n", " \"tbl.search(embedding).limit(9).to_pandas()\"\n",
" )\n", " )\n",
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n", " return (_extract(tbl.search(emb).limit(9).to_pandas()), code)\n",
"\n", "\n",
"def find_image_keywords(query):\n", "def find_image_keywords(query):\n",
" code = (\n", " code = (\n",
" \"import lancedb\\n\"\n", " \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n", " \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n", " \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"tbl.search('{query}').limit(9).to_df()\"\n", " f\"tbl.search('{query}').limit(9).to_pandas()\"\n",
" )\n", " )\n",
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n", " return (_extract(tbl.search(query).limit(9).to_pandas()), code)\n",
"\n", "\n",
"def find_image_sql(query):\n", "def find_image_sql(query):\n",
" code = (\n", " code = (\n",

File diff suppressed because it is too large Load Diff

View File

@@ -114,13 +114,10 @@
} }
], ],
"source": [ "source": [
"import pandas as pd\n", "data = [\n",
"\n", " {\"vector\": [1.1, 1.2], \"lat\": 45.5, \"long\": -122.7},\n",
"data = pd.DataFrame({\n", " {\"vector\": [0.2, 1.8], \"lat\": 40.1, \"long\": -74.1},\n",
" \"vector\": [[1.1, 1.2], [0.2, 1.8]],\n", "]\n",
" \"lat\": [45.5, 40.1],\n",
" \"long\": [-122.7, -74.1]\n",
"})\n",
"\n", "\n",
"db.create_table(\"table2\", data)\n", "db.create_table(\"table2\", data)\n",
"\n", "\n",
@@ -572,9 +569,11 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"df = pd.DataFrame([{\"vector\": [1.3, 1.4], \"item\": \"fizz\", \"price\": 100.0},\n", "data = [\n",
" {\"vector\": [9.5, 56.2], \"item\": \"buzz\", \"price\": 200.0}])\n", " {\"vector\": [1.3, 1.4], \"item\": \"fizz\", \"price\": 100.0},\n",
"tbl.add(df)" " {\"vector\": [9.5, 56.2], \"item\": \"buzz\", \"price\": 200.0}\n",
"]\n",
"tbl.add(data)"
] ]
}, },
{ {
@@ -596,17 +595,12 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"\n",
"import pandas as pd\n",
"\n",
"def make_batches():\n", "def make_batches():\n",
" for i in range(5):\n", " for i in range(5):\n",
" yield pd.DataFrame(\n", " yield [\n",
" {\n", " {\"vector\": [3.1, 4.1], \"item\": \"foo\", \"price\": 10.0},\n",
" \"vector\": [[3.1, 4.1], [1, 1]],\n", " {\"vector\": [1, 1], \"item\": \"bar\", \"price\": 20.0},\n",
" \"item\": [\"foo\", \"bar\"],\n", " ]\n",
" \"price\": [10.0, 20.0],\n",
" })\n",
"tbl.add(make_batches())" "tbl.add(make_batches())"
] ]
}, },

View File

@@ -27,11 +27,11 @@
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"\n", "\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n", "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
"\n", "\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n", "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
] ]
} }
], ],
@@ -184,7 +184,7 @@
"df = (contextualize(data.to_pandas())\n", "df = (contextualize(data.to_pandas())\n",
" .groupby(\"title\").text_col(\"text\")\n", " .groupby(\"title\").text_col(\"text\")\n",
" .window(20).stride(4)\n", " .window(20).stride(4)\n",
" .to_df())\n", " .to_pandas())\n",
"df.head(1)" "df.head(1)"
] ]
}, },
@@ -603,7 +603,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"# Use LanceDB to get top 3 most relevant context\n", "# Use LanceDB to get top 3 most relevant context\n",
"context = tbl.search(emb).limit(3).to_df()" "context = tbl.search(emb).limit(3).to_pandas()"
] ]
}, },
{ {

View File

@@ -39,7 +39,6 @@ to lazily generate data:
from typing import Iterable from typing import Iterable
import pyarrow as pa import pyarrow as pa
import lancedb
def make_batches() -> Iterable[pa.RecordBatch]: def make_batches() -> Iterable[pa.RecordBatch]:
for i in range(5): for i in range(5):
@@ -74,7 +73,7 @@ table = db.open_table("pd_table")
query_vector = [100, 100] query_vector = [100, 100]
# Pandas DataFrame # Pandas DataFrame
df = table.search(query_vector).limit(1).to_df() df = table.search(query_vector).limit(1).to_pandas()
print(df) print(df)
``` ```
@@ -89,12 +88,12 @@ If you have more complex criteria, you can always apply the filter to the result
```python ```python
# Apply the filter via LanceDB # Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df() results = table.search([100, 100]).where("price < 15").to_pandas()
assert len(results) == 1 assert len(results) == 1
assert results["item"].iloc[0] == "foo" assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas # Apply the filter via Pandas
df = results = table.search([100, 100]).to_df() df = results = table.search([100, 100]).to_pandas()
results = df[df.price < 15] results = df[df.price < 15]
assert len(results) == 1 assert len(results) == 1
assert results["item"].iloc[0] == "foo" assert results["item"].iloc[0] == "foo"

View File

@@ -11,15 +11,13 @@ pip install duckdb lancedb
We will re-use [the dataset created previously](./arrow.md): We will re-use [the dataset created previously](./arrow.md):
```python ```python
import pandas as pd
import lancedb import lancedb
db = lancedb.connect("data/sample-lancedb") db = lancedb.connect("data/sample-lancedb")
data = pd.DataFrame({ data = [
"vector": [[3.1, 4.1], [5.9, 26.5]], {"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
"item": ["foo", "bar"], {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
"price": [10.0, 20.0] ]
})
table = db.create_table("pd_table", data=data) table = db.create_table("pd_table", data=data)
arrow_table = table.to_arrow() arrow_table = table.to_arrow()
``` ```

View File

@@ -26,17 +26,17 @@ pip install lancedb
## Embeddings ## Embeddings
::: lancedb.embeddings.functions.EmbeddingFunctionRegistry ::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
::: lancedb.embeddings.functions.EmbeddingFunction ::: lancedb.embeddings.base.EmbeddingFunction
::: lancedb.embeddings.functions.TextEmbeddingFunction ::: lancedb.embeddings.base.TextEmbeddingFunction
::: lancedb.embeddings.functions.SentenceTransformerEmbeddings ::: lancedb.embeddings.sentence_transformers.SentenceTransformerEmbeddings
::: lancedb.embeddings.functions.OpenAIEmbeddings ::: lancedb.embeddings.openai.OpenAIEmbeddings
::: lancedb.embeddings.functions.OpenClipEmbeddings ::: lancedb.embeddings.open_clip.OpenClipEmbeddings
::: lancedb.embeddings.with_embeddings ::: lancedb.embeddings.with_embeddings

View File

@@ -0,0 +1,4 @@
window.addEventListener("DOMContentLoaded", (event) => {
!function(t,e){var o,n,p,r;e.__SV||(window.posthog=e,e._i=[],e.init=function(i,s,a){function g(t,e){var o=e.split(".");2==o.length&&(t=t[o[0]],e=o[1]),t[e]=function(){t.push([e].concat(Array.prototype.slice.call(arguments,0)))}}(p=t.createElement("script")).type="text/javascript",p.async=!0,p.src=s.api_host+"/static/array.js",(r=t.getElementsByTagName("script")[0]).parentNode.insertBefore(p,r);var u=e;for(void 0!==a?u=e[a]=[]:a="posthog",u.people=u.people||[],u.toString=function(t){var e="posthog";return"posthog"!==a&&(e+="."+a),t||(e+=" (stub)"),e},u.people.toString=function(){return u.toString(1)+".people (stub)"},o="capture identify alias people.set people.set_once set_config register register_once unregister opt_out_capturing has_opted_out_capturing opt_in_capturing reset isFeatureEnabled onFeatureFlags getFeatureFlag getFeatureFlagPayload reloadFeatureFlags group updateEarlyAccessFeatureEnrollment getEarlyAccessFeatures getActiveMatchingSurveys getSurveys".split(" "),n=0;n<o.length;n++)g(u,o[n]);e._i.push([i,s,a])},e.__SV=1)}(document,window.posthog||[]);
posthog.init('phc_oENDjGgHtmIDrV6puUiFem2RB4JA8gGWulfdulmMdZP',{api_host:'https://app.posthog.com'})
});

View File

@@ -4,7 +4,7 @@
In a recommendation system or search engine, you can find similar products from In a recommendation system or search engine, you can find similar products from
the one you searched. the one you searched.
In LLM and other AI applications, In LLM and other AI applications,
each data point can be [presented by the embeddings generated from some models](embedding.md), each data point can be [presented by the embeddings generated from some models](embeddings/index.md),
it returns the most relevant features. it returns the most relevant features.
A search in high-dimensional vector space, is to find `K-Nearest-Neighbors (KNN)` of the query vector. A search in high-dimensional vector space, is to find `K-Nearest-Neighbors (KNN)` of the query vector.
@@ -25,8 +25,8 @@ Currently, we support the following metrics:
### Flat Search ### Flat Search
If LanceDB does not create a vector index, LanceDB would need to scan (`Flat Search`) the entire vector column If you do not create a vector index, LanceDB would need to exhaustively scan the entire vector column (via `Flat Search`)
and compute the distance for each vector in order to find the closest matches. and compute the distance for *every* vector in order to find the closest matches. This is effectively a KNN search.
<!-- Setup Code <!-- Setup Code
@@ -67,7 +67,7 @@ await db_setup.createTable('my_vectors', data)
df = tbl.search(np.random.random((1536))) \ df = tbl.search(np.random.random((1536))) \
.limit(10) \ .limit(10) \
.to_df() .to_list()
``` ```
=== "JavaScript" === "JavaScript"
@@ -92,7 +92,7 @@ as well.
df = tbl.search(np.random.random((1536))) \ df = tbl.search(np.random.random((1536))) \
.metric("cosine") \ .metric("cosine") \
.limit(10) \ .limit(10) \
.to_df() .to_list()
``` ```
@@ -110,7 +110,7 @@ as well.
To accelerate vector retrievals, it is common to build vector indices. To accelerate vector retrievals, it is common to build vector indices.
A vector index is a data structure specifically designed to efficiently organize and A vector index is a data structure specifically designed to efficiently organize and
search vector data based on their similarity or distance metrics. search vector data based on their similarity via the chosen distance metric.
By constructing a vector index, you can reduce the search space and avoid the need By constructing a vector index, you can reduce the search space and avoid the need
for brute-force scanning of the entire vector column. for brute-force scanning of the entire vector column.

View File

@@ -8,6 +8,7 @@ const excludedGlobs = [
"../src/embedding.md", "../src/embedding.md",
"../src/examples/*.md", "../src/examples/*.md",
"../src/guides/tables.md", "../src/guides/tables.md",
"../src/embeddings/*.md",
]; ];
const nodePrefix = "javascript"; const nodePrefix = "javascript";

View File

@@ -10,6 +10,7 @@ excluded_globs = [
"../src/integrations/voxel51.md", "../src/integrations/voxel51.md",
"../src/guides/tables.md", "../src/guides/tables.md",
"../src/python/duckdb.md", "../src/python/duckdb.md",
"../src/embeddings/*.md",
] ]
python_prefix = "py" python_prefix = "py"

View File

@@ -1,5 +1,8 @@
lancedb @ git+https://github.com/lancedb/lancedb.git#egg=subdir&subdirectory=python -e ../../python
numpy numpy
pandas pandas
pylance pylance
duckdb duckdb
--extra-index-url https://download.pytorch.org/whl/cpu
torch

74
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.2.6", "version": "0.3.3",
"lockfileVersion": 2, "lockfileVersion": 2,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.2.6", "version": "0.3.3",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.2.6", "@lancedb/vectordb-darwin-arm64": "0.3.3",
"@lancedb/vectordb-darwin-x64": "0.2.6", "@lancedb/vectordb-darwin-x64": "0.3.3",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.6", "@lancedb/vectordb-linux-arm64-gnu": "0.3.3",
"@lancedb/vectordb-linux-x64-gnu": "0.2.6", "@lancedb/vectordb-linux-x64-gnu": "0.3.3",
"@lancedb/vectordb-win32-x64-msvc": "0.2.6" "@lancedb/vectordb-win32-x64-msvc": "0.3.3"
} }
}, },
"node_modules/@apache-arrow/ts": { "node_modules/@apache-arrow/ts": {
@@ -317,9 +317,9 @@
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": { "node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.2.6", "version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.3.tgz",
"integrity": "sha512-9KCUvDmhVMuGIhleib/Gq43QhrRXjy2QJz21S85HDwL3DTH4J9n00A0V6eyLTBUyctnvMTcp3XZijosYUy1A8Q==", "integrity": "sha512-nvyj7xNX2/wb/PH5TjyhLR/NQ1jVuoBw2B5UaSg7qf8Tnm5SSXWQ7F25RVKcKwh72fz1qB+CWW24ftZnRzbT/Q==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -329,9 +329,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-darwin-x64": { "node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.2.6", "version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.3.tgz",
"integrity": "sha512-WCYRFV9w13STgVYn4WSYne39mp+g8ET6TgMLvSSQBYJKp3xEggpSCtACetaDfmNpkml9DK/b5R95Jc7PBbmYgA==", "integrity": "sha512-7CW+nILyPHp6cua0Rl0xaTDWw/vajEn/jCsEjFYgDmE+rtf5Z5Fum41FxR9C2TtIAvUK+nWb5mkYeOLqU6vRvg==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -341,9 +341,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-arm64-gnu": { "node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.2.6", "version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.3.tgz",
"integrity": "sha512-SE9OUgsOT6dG1q9v3nFr9ew+kwPTA4ktvNiHiyQstNz9BniuLNldF/Wtxzk/Z7DhbkPci4MfkR6RdsPTHBatHg==", "integrity": "sha512-MmhwbacKxZPkLwwOqysVY8mUb8lFoyFIPlYhSLV4xS1C8X4HWALljIul1qMl1RYudp9Uc3PsOzRexl+OvCGfUw==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -353,9 +353,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-x64-gnu": { "node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.2.6", "version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.3.tgz",
"integrity": "sha512-hvUsRQbaJiQnSjjKHIRhJM/eObJOqDJUXcpzz1fWw/MMSoy/CFaQwf9Uen2IWTgcngGkJAkeEKG7N5GxQxVbBQ==", "integrity": "sha512-OrNlsKi/QPw59Po040oRKn8IuqFEk4upc/4FaFKqVkcmQjjZrMg5Kgy9ZfWIhHdAnWXXggZZIPArpt0X1B0ceA==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -365,9 +365,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-win32-x64-msvc": { "node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.2.6", "version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.3.tgz",
"integrity": "sha512-XPIzbBPt28nsAa7INuyvYMZyJ78bgLfxjSyazlydzO10orIBHvR+sjcrdnCK4l48YmvPXcSYnKxlKMa1oUeIWQ==", "integrity": "sha512-lIT0A7a6eqX51IfGyhECtpXXgsr//kgbd+HZbcCdPy2GMmNezSch/7V22zExDSpF32hX8WfgcTLYCVWVilggDQ==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -4869,33 +4869,33 @@
} }
}, },
"@lancedb/vectordb-darwin-arm64": { "@lancedb/vectordb-darwin-arm64": {
"version": "0.2.6", "version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.3.tgz",
"integrity": "sha512-9KCUvDmhVMuGIhleib/Gq43QhrRXjy2QJz21S85HDwL3DTH4J9n00A0V6eyLTBUyctnvMTcp3XZijosYUy1A8Q==", "integrity": "sha512-nvyj7xNX2/wb/PH5TjyhLR/NQ1jVuoBw2B5UaSg7qf8Tnm5SSXWQ7F25RVKcKwh72fz1qB+CWW24ftZnRzbT/Q==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-darwin-x64": { "@lancedb/vectordb-darwin-x64": {
"version": "0.2.6", "version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.3.tgz",
"integrity": "sha512-WCYRFV9w13STgVYn4WSYne39mp+g8ET6TgMLvSSQBYJKp3xEggpSCtACetaDfmNpkml9DK/b5R95Jc7PBbmYgA==", "integrity": "sha512-7CW+nILyPHp6cua0Rl0xaTDWw/vajEn/jCsEjFYgDmE+rtf5Z5Fum41FxR9C2TtIAvUK+nWb5mkYeOLqU6vRvg==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-linux-arm64-gnu": { "@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.2.6", "version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.3.tgz",
"integrity": "sha512-SE9OUgsOT6dG1q9v3nFr9ew+kwPTA4ktvNiHiyQstNz9BniuLNldF/Wtxzk/Z7DhbkPci4MfkR6RdsPTHBatHg==", "integrity": "sha512-MmhwbacKxZPkLwwOqysVY8mUb8lFoyFIPlYhSLV4xS1C8X4HWALljIul1qMl1RYudp9Uc3PsOzRexl+OvCGfUw==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-linux-x64-gnu": { "@lancedb/vectordb-linux-x64-gnu": {
"version": "0.2.6", "version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.3.tgz",
"integrity": "sha512-hvUsRQbaJiQnSjjKHIRhJM/eObJOqDJUXcpzz1fWw/MMSoy/CFaQwf9Uen2IWTgcngGkJAkeEKG7N5GxQxVbBQ==", "integrity": "sha512-OrNlsKi/QPw59Po040oRKn8IuqFEk4upc/4FaFKqVkcmQjjZrMg5Kgy9ZfWIhHdAnWXXggZZIPArpt0X1B0ceA==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-win32-x64-msvc": { "@lancedb/vectordb-win32-x64-msvc": {
"version": "0.2.6", "version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.3.tgz",
"integrity": "sha512-XPIzbBPt28nsAa7INuyvYMZyJ78bgLfxjSyazlydzO10orIBHvR+sjcrdnCK4l48YmvPXcSYnKxlKMa1oUeIWQ==", "integrity": "sha512-lIT0A7a6eqX51IfGyhECtpXXgsr//kgbd+HZbcCdPy2GMmNezSch/7V22zExDSpF32hX8WfgcTLYCVWVilggDQ==",
"optional": true "optional": true
}, },
"@neon-rs/cli": { "@neon-rs/cli": {

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.2.6", "version": "0.3.3",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
@@ -81,10 +81,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.2.6", "@lancedb/vectordb-darwin-arm64": "0.3.3",
"@lancedb/vectordb-darwin-x64": "0.2.6", "@lancedb/vectordb-darwin-x64": "0.3.3",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.6", "@lancedb/vectordb-linux-arm64-gnu": "0.3.3",
"@lancedb/vectordb-linux-x64-gnu": "0.2.6", "@lancedb/vectordb-linux-x64-gnu": "0.3.3",
"@lancedb/vectordb-win32-x64-msvc": "0.2.6" "@lancedb/vectordb-win32-x64-msvc": "0.3.3"
} }
} }

View File

@@ -20,7 +20,7 @@ import {
Utf8, Utf8,
type Vector, type Vector,
FixedSizeList, FixedSizeList,
vectorFromArray, type Schema, Table as ArrowTable vectorFromArray, type Schema, Table as ArrowTable, RecordBatchStreamWriter
} from 'apache-arrow' } from 'apache-arrow'
import { type EmbeddingFunction } from './index' import { type EmbeddingFunction } from './index'
@@ -77,7 +77,9 @@ function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
// Creates the Arrow Type for a Vector column with dimension `dim` // Creates the Arrow Type for a Vector column with dimension `dim`
function newVectorType (dim: number): FixedSizeList<Float32> { function newVectorType (dim: number): FixedSizeList<Float32> {
const children = new Field<Float32>('item', new Float32()) // Somewhere we always default to have the elements nullable, so we need to set it to true
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
const children = new Field<Float32>('item', new Float32(), true)
return new FixedSizeList(dim, children) return new FixedSizeList(dim, children)
} }
@@ -88,6 +90,13 @@ export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
} }
// Converts an Array of records into Arrow IPC stream format
export async function fromRecordsToStreamBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
const table = await convertToTable(data, embeddings)
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC format // Converts an Arrow Table into Arrow IPC format
export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> { export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
if (embeddings !== undefined) { if (embeddings !== undefined) {
@@ -105,6 +114,23 @@ export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: Embe
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
} }
// Converts an Arrow Table into Arrow IPC stream format
export async function fromTableToStreamBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Creates an empty Arrow Table // Creates an empty Arrow Table
export function createEmptyTable (schema: Schema): ArrowTable { export function createEmptyTable (schema: Schema): ArrowTable {
return new ArrowTable(schema) return new ArrowTable(schema)

View File

@@ -23,7 +23,7 @@ import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function' import { isEmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires // eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js') const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles } = require('../native.js')
export { Query } export { Query }
export type { EmbeddingFunction } export type { EmbeddingFunction }
@@ -459,6 +459,111 @@ export class LocalTable<T = number[]> implements Table<T> {
async delete (filter: string): Promise<void> { async delete (filter: string): Promise<void> {
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable }) return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
} }
/**
* Clean up old versions of the table, freeing disk space.
*
* @param olderThan The minimum age in minutes of the versions to delete. If not
* provided, defaults to two weeks.
* @param deleteUnverified Because they may be part of an in-progress
* transaction, uncommitted files newer than 7 days old are
* not deleted by default. This means that failed transactions
* can leave around data that takes up disk space for up to
* 7 days. You can override this safety mechanism by setting
* this option to `true`, only if you promise there are no
* in progress writes while you run this operation. Failure to
* uphold this promise can lead to corrupted tables.
* @returns
*/
async cleanupOldVersions (olderThan?: number, deleteUnverified?: boolean): Promise<CleanupStats> {
return tableCleanupOldVersions.call(this._tbl, olderThan, deleteUnverified)
.then((res: { newTable: any, metrics: CleanupStats }) => {
this._tbl = res.newTable
return res.metrics
})
}
/**
* Run the compaction process on the table.
*
* This can be run after making several small appends to optimize the table
* for faster reads.
*
* @param options Advanced options configuring compaction. In most cases, you
* can omit this arguments, as the default options are sensible
* for most tables.
* @returns Metrics about the compaction operation.
*/
async compactFiles (options?: CompactionOptions): Promise<CompactionMetrics> {
const optionsArg = options ?? {}
return tableCompactFiles.call(this._tbl, optionsArg)
.then((res: { newTable: any, metrics: CompactionMetrics }) => {
this._tbl = res.newTable
return res.metrics
})
}
}
export interface CleanupStats {
/**
* The number of bytes removed from disk.
*/
bytesRemoved: number
/**
* The number of old table versions removed.
*/
oldVersions: number
}
export interface CompactionOptions {
/**
* The number of rows per fragment to target. Fragments that have fewer rows
* will be compacted into adjacent fragments to produce larger fragments.
* Defaults to 1024 * 1024.
*/
targetRowsPerFragment?: number
/**
* The maximum number of rows per group. Defaults to 1024.
*/
maxRowsPerGroup?: number
/**
* If true, fragments that have rows that are deleted may be compacted to
* remove the deleted rows. This can improve the performance of queries.
* Default is true.
*/
materializeDeletions?: boolean
/**
* A number between 0 and 1, representing the proportion of rows that must be
* marked deleted before a fragment is a candidate for compaction to remove
* the deleted rows. Default is 10%.
*/
materializeDeletionsThreshold?: number
/**
* The number of threads to use for compaction. If not provided, defaults to
* the number of cores on the machine.
*/
numThreads?: number
}
export interface CompactionMetrics {
/**
* The number of fragments that were removed.
*/
fragmentsRemoved: number
/**
* The number of new fragments that were created.
*/
fragmentsAdded: number
/**
* The number of files that were removed. Each fragment may have more than one
* file.
*/
filesRemoved: number
/**
* The number of files added. This is typically equal to the number of
* fragments added.
*/
filesAdded: number
} }
/// Config to build IVF_PQ index. /// Config to build IVF_PQ index.

View File

@@ -18,6 +18,9 @@ import * as chaiAsPromised from 'chai-as-promised'
import { v4 as uuidv4 } from 'uuid' import { v4 as uuidv4 } from 'uuid'
import * as lancedb from '../index' import * as lancedb from '../index'
import { tmpdir } from 'os'
import * as fs from 'fs'
import * as path from 'path'
const assert = chai.assert const assert = chai.assert
chai.use(chaiAsPromised) chai.use(chaiAsPromised)
@@ -41,3 +44,137 @@ describe('LanceDB AWS Integration test', function () {
assert.equal(await table.countRows(), 6) assert.equal(await table.countRows(), 6)
}) })
}) })
describe('LanceDB Mirrored Store Integration test', function () {
it('s3://...?mirroredStore=... param is processed correctly', async function () {
this.timeout(600000)
const dir = tmpdir()
console.log(dir)
const conn = await lancedb.connect(`s3://lancedb-integtest?mirroredStore=${dir}`)
const data = Array(200).fill({ vector: Array(128).fill(1.0), id: 0 })
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 1 }))
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 2 }))
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 3 }))
const tableName = uuidv4()
// try create table and check if it's mirrored
const t = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
const mirroredPath = path.join(dir, `${tableName}.lance`)
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be three dirs
assert.equal(files.length, 3)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, '_versions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.manifest'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
})
// try create index and check if it's mirrored
await t.createIndex({ column: 'vector', type: 'ivf_pq' })
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be four dirs
assert.equal(files.length, 4)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
assert.isTrue(files[2].isDirectory())
// Two TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 2)
assert.isTrue(files[0].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isFile())
assert.isTrue(files[0].name.endsWith('.idx'))
})
})
})
// try delete and check if it's mirrored
await t.delete('id = 0')
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be five dirs
assert.equal(files.length, 5)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
assert.isTrue(files[2].isDirectory())
assert.isTrue(files[3].isDirectory())
assert.isTrue(files[4].isDirectory())
// Three TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 3)
assert.isTrue(files[0].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isFile())
assert.isTrue(files[0].name.endsWith('.idx'))
})
})
fs.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.arrow'))
})
})
})
})

View File

@@ -108,13 +108,18 @@ export class HttpLancedbClient {
/** /**
* Sent POST request. * Sent POST request.
*/ */
public async post (path: string, data?: any, params?: Record<string, string | number>): Promise<AxiosResponse> { public async post (
path: string,
data?: any,
params?: Record<string, string | number>,
content?: string | undefined
): Promise<AxiosResponse> {
const response = await axios.post( const response = await axios.post(
`${this._url}${path}`, `${this._url}${path}`,
data, data,
{ {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': content ?? 'application/json',
'x-api-key': this._apiKey(), 'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {}) ...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
}, },

View File

@@ -18,8 +18,10 @@ import {
} from '../index' } from '../index'
import { Query } from '../query' import { Query } from '../query'
import { Vector } from 'apache-arrow' import { Vector, Table as ArrowTable } from 'apache-arrow'
import { HttpLancedbClient } from './client' import { HttpLancedbClient } from './client'
import { isEmbeddingFunction } from '../embedding/embedding_function'
import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow'
/** /**
* Remote connection. * Remote connection.
@@ -66,8 +68,60 @@ export class RemoteConnection implements Connection {
} }
} }
async createTable<T> (name: string | CreateTableOptions<T>, data?: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> { async createTable<T> (nameOrOpts: string | CreateTableOptions<T>, data?: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> {
throw new Error('Not implemented') // Logic copied from LocatlConnection, refactor these to a base class + connectionImpl pattern
let schema
let embeddings: undefined | EmbeddingFunction<T>
let tableName: string
if (typeof nameOrOpts === 'string') {
if (optsOrEmbedding !== undefined && isEmbeddingFunction(optsOrEmbedding)) {
embeddings = optsOrEmbedding
}
tableName = nameOrOpts
} else {
schema = nameOrOpts.schema
embeddings = nameOrOpts.embeddingFunction
tableName = nameOrOpts.name
}
let buffer: Buffer
function isEmpty (data: Array<Record<string, unknown>> | ArrowTable<any>): boolean {
if (data instanceof ArrowTable) {
return data.data.length === 0
}
return data.length === 0
}
if ((data === undefined) || isEmpty(data)) {
if (schema === undefined) {
throw new Error('Either data or schema needs to defined')
}
buffer = await fromTableToStreamBuffer(createEmptyTable(schema))
} else if (data instanceof ArrowTable) {
buffer = await fromTableToStreamBuffer(data, embeddings)
} else {
// data is Array<Record<...>>
buffer = await fromRecordsToStreamBuffer(data, embeddings)
}
const res = await this._client.post(
`/v1/table/${tableName}/create/`,
buffer,
undefined,
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
if (embeddings === undefined) {
return new RemoteTable(this._client, tableName)
} else {
return new RemoteTable(this._client, tableName, embeddings)
}
} }
async dropTable (name: string): Promise<void> { async dropTable (name: string): Promise<void> {
@@ -141,11 +195,39 @@ export class RemoteTable<T = number[]> implements Table<T> {
} }
async add (data: Array<Record<string, unknown>>): Promise<number> { async add (data: Array<Record<string, unknown>>): Promise<number> {
throw new Error('Not implemented') const buffer = await fromRecordsToStreamBuffer(data, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/insert/`,
buffer,
{
mode: 'append'
},
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
return data.length
} }
async overwrite (data: Array<Record<string, unknown>>): Promise<number> { async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
throw new Error('Not implemented') const buffer = await fromRecordsToStreamBuffer(data, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/insert/`,
buffer,
{
mode: 'overwrite'
},
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
return data.length
} }
async createIndex (indexParams: VectorIndexParams): Promise<any> { async createIndex (indexParams: VectorIndexParams): Promise<any> {
@@ -157,6 +239,6 @@ export class RemoteTable<T = number[]> implements Table<T> {
} }
async delete (filter: string): Promise<void> { async delete (filter: string): Promise<void> {
throw new Error('Not implemented') await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
} }
} }

View File

@@ -18,7 +18,7 @@ import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised' import * as chaiAsPromised from 'chai-as-promised'
import * as lancedb from '../index' import * as lancedb from '../index'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions } from '../index' import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions, type LocalTable } from '../index'
import { FixedSizeList, Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray, Float32 } from 'apache-arrow' import { FixedSizeList, Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray, Float32 } from 'apache-arrow'
const expect = chai.expect const expect = chai.expect
@@ -446,3 +446,45 @@ describe('WriteOptions', function () {
}) })
}) })
}) })
describe('Compact and cleanup', function () {
it('can cleanup after compaction', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ price: 10, name: 'foo', vector: [1, 2, 3] },
{ price: 50, name: 'bar', vector: [4, 5, 6] }
]
const table = await con.createTable('t1', data) as LocalTable
const newData = [
{ price: 30, name: 'baz', vector: [7, 8, 9] }
]
await table.add(newData)
const compactionMetrics = await table.compactFiles({
numThreads: 2
})
assert.equal(compactionMetrics.fragmentsRemoved, 2)
assert.equal(compactionMetrics.fragmentsAdded, 1)
assert.equal(await table.countRows(), 3)
await table.cleanupOldVersions()
assert.equal(await table.countRows(), 3)
// should have no effect, but this validates the arguments are parsed.
await table.compactFiles({
targetRowsPerFragment: 1024 * 10,
maxRowsPerGroup: 1024,
materializeDeletions: true,
materializeDeletionsThreshold: 0.5,
numThreads: 2
})
const cleanupMetrics = await table.cleanupOldVersions(0, true)
assert.isAtLeast(cleanupMetrics.bytesRemoved, 1)
assert.isAtLeast(cleanupMetrics.oldVersions, 1)
assert.equal(await table.countRows(), 3)
})
})

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.2.6 current_version = 0.3.2
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

1
python/LICENSE Symbolic link
View File

@@ -0,0 +1 @@
../LICENSE

View File

@@ -16,7 +16,7 @@ pip install lancedb
import lancedb import lancedb
db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>') db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>')
table = db.open_table('my_table') table = db.open_table('my_table')
results = table.search([0.1, 0.3]).limit(20).to_df() results = table.search([0.1, 0.3]).limit(20).to_list()
print(results) print(results)
``` ```

View File

@@ -14,11 +14,12 @@
import importlib.metadata import importlib.metadata
from typing import Optional from typing import Optional
__version__ = importlib.metadata.version("lancedb")
from .db import URI, DBConnection, LanceDBConnection from .db import URI, DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection from .remote.db import RemoteDBConnection
from .schema import vector from .schema import vector
from .utils import sentry_log
__version__ = importlib.metadata.version("lancedb")
def connect( def connect(

View File

@@ -0,0 +1,12 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

46
python/lancedb/cli/cli.py Normal file
View File

@@ -0,0 +1,46 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import click
from lancedb.utils import CONFIG
@click.group()
@click.version_option(help="LanceDB command line interface entry point")
def cli():
"LanceDB command line interface"
diagnostics_help = """
Enable or disable LanceDB diagnostics. When enabled, LanceDB will send anonymous events to help us improve LanceDB.
These diagnostics are used only for error reporting and no data is collected. You can find more about diagnosis on
our docs: https://lancedb.github.io/lancedb/cli_config/
"""
@cli.command(help=diagnostics_help)
@click.option("--enabled/--disabled", default=True)
def diagnostics(enabled):
CONFIG.update({"diagnostics": True if enabled else False})
click.echo("LanceDB diagnostics is %s" % ("enabled" if enabled else "disabled"))
@cli.command(help="Show current LanceDB configuration")
def config():
# TODO: pretty print as table with colors and formatting
click.echo("Current LanceDB configuration:")
cfg = CONFIG.copy()
cfg.pop("uuid") # Don't show uuid as it is not configurable
for item, amount in cfg.items():
click.echo("{} ({})".format(item, amount))

View File

@@ -12,6 +12,9 @@
# limitations under the License. # limitations under the License.
from __future__ import annotations from __future__ import annotations
import deprecation
from . import __version__
from .exceptions import MissingColumnError, MissingValueError from .exceptions import MissingColumnError, MissingValueError
from .util import safe_import_pandas from .util import safe_import_pandas
@@ -43,7 +46,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
this how many tokens, but depending on the input data, it could be sentences, this how many tokens, but depending on the input data, it could be sentences,
paragraphs, messages, etc. paragraphs, messages, etc.
>>> contextualize(data).window(3).stride(1).text_col('token').to_df() >>> contextualize(data).window(3).stride(1).text_col('token').to_pandas()
token document_id token document_id
0 The quick brown 1 0 The quick brown 1
1 quick brown fox 1 1 quick brown fox 1
@@ -56,7 +59,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
8 dog I love 1 8 dog I love 1
9 I love sandwiches 2 9 I love sandwiches 2
10 love sandwiches 2 10 love sandwiches 2
>>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_df() >>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_pandas()
token document_id token document_id
0 The quick brown fox jumped over the 1 0 The quick brown fox jumped over the 1
1 quick brown fox jumped over the lazy 1 1 quick brown fox jumped over the lazy 1
@@ -68,7 +71,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
``stride`` determines how many rows to skip between each window start. This can ``stride`` determines how many rows to skip between each window start. This can
be used to reduce the total number of windows generated. be used to reduce the total number of windows generated.
>>> contextualize(data).window(4).stride(2).text_col('token').to_df() >>> contextualize(data).window(4).stride(2).text_col('token').to_pandas()
token document_id token document_id
0 The quick brown fox 1 0 The quick brown fox 1
2 brown fox jumped over 1 2 brown fox jumped over 1
@@ -81,7 +84,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
context windows that don't cross document boundaries. In this case, we can context windows that don't cross document boundaries. In this case, we can
pass ``document_id`` as the group by. pass ``document_id`` as the group by.
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_df() >>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_pandas()
token document_id token document_id
0 The quick brown fox 1 0 The quick brown fox 1
2 brown fox jumped over 1 2 brown fox jumped over 1
@@ -93,14 +96,14 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
This can be used to trim the last few context windows which have size less than This can be used to trim the last few context windows which have size less than
``min_window_size``. By default context windows of size 1 are skipped. ``min_window_size``. By default context windows of size 1 are skipped.
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_df() >>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_pandas()
token document_id token document_id
0 The quick brown fox jumped over 1 0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1 3 fox jumped over the lazy dog 1
6 the lazy dog 1 6 the lazy dog 1
9 I love sandwiches 2 9 I love sandwiches 2
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_df() >>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_pandas()
token document_id token document_id
0 The quick brown fox jumped over 1 0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1 3 fox jumped over the lazy dog 1
@@ -176,7 +179,16 @@ class Contextualizer:
self._min_window_size = min_window_size self._min_window_size = min_window_size
return self return self
@deprecation.deprecated(
deprecated_in="0.3.1",
removed_in="0.4.0",
current_version=__version__,
details="Use the bar function instead",
)
def to_df(self) -> "pd.DataFrame": def to_df(self) -> "pd.DataFrame":
return self.to_pandas()
def to_pandas(self) -> "pd.DataFrame":
"""Create the context windows and return a DataFrame.""" """Create the context windows and return a DataFrame."""
if pd is None: if pd is None:
raise ImportError( raise ImportError(

View File

@@ -11,14 +11,10 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction
from .functions import ( from .cohere import CohereEmbeddingFunction
EmbeddingFunction, from .open_clip import OpenClipEmbeddings
EmbeddingFunctionConfig, from .openai import OpenAIEmbeddings
EmbeddingFunctionRegistry, from .registry import EmbeddingFunctionRegistry, get_registry
OpenAIEmbeddings, from .sentence_transformers import SentenceTransformerEmbeddings
OpenClipEmbeddings,
SentenceTransformerEmbeddings,
TextEmbeddingFunction,
)
from .utils import with_embeddings from .utils import with_embeddings

View File

@@ -0,0 +1,138 @@
import importlib
from abc import ABC, abstractmethod
from typing import List, Union
import numpy as np
import pyarrow as pa
from pydantic import BaseModel, Field, PrivateAttr
from .utils import TEXT
class EmbeddingFunction(BaseModel, ABC):
"""
An ABC for embedding functions.
All concrete embedding functions must implement the following:
1. compute_query_embeddings() which takes a query and returns a list of embeddings
2. get_source_embeddings() which returns a list of embeddings for the source column
For text data, the two will be the same. For multi-modal data, the source column
might be images and the vector column might be text.
3. ndims method which returns the number of dimensions of the vector column
"""
_ndims: int = PrivateAttr()
@classmethod
def create(cls, **kwargs):
"""
Create an instance of the embedding function
"""
return cls(**kwargs)
@abstractmethod
def compute_query_embeddings(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for a given user query
"""
pass
@abstractmethod
def compute_source_embeddings(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for the source column in the database
"""
pass
def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(texts, str):
texts = [texts]
elif isinstance(texts, pa.Array):
texts = texts.to_pylist()
elif isinstance(texts, pa.ChunkedArray):
texts = texts.combine_chunks().to_pylist()
return texts
@classmethod
def safe_import(cls, module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_model_dump(self):
from ..pydantic import PYDANTIC_VERSION
if PYDANTIC_VERSION.major < 2:
return dict(self)
return self.model_dump()
@abstractmethod
def ndims(self):
"""
Return the dimensions of the vector column
"""
pass
def SourceField(self, **kwargs):
"""
Creates a pydantic Field that can automatically annotate
the source column for this embedding function
"""
return Field(json_schema_extra={"source_column_for": self}, **kwargs)
def VectorField(self, **kwargs):
"""
Creates a pydantic Field that can automatically annotate
the target vector column for this embedding function
"""
return Field(json_schema_extra={"vector_column_for": self}, **kwargs)
class EmbeddingFunctionConfig(BaseModel):
"""
This model encapsulates the configuration for a embedding function
in a lancedb table. It holds the embedding function, the source column,
and the vector column
"""
vector_column: str
source_column: str
function: EmbeddingFunction
class TextEmbeddingFunction(EmbeddingFunction):
"""
A callable ABC for embedding functions that take text as input
"""
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.compute_source_embeddings(query, *args, **kwargs)
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
texts = self.sanitize_input(texts)
return self.generate_embeddings(texts)
@abstractmethod
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Generate the embeddings for the given texts
"""
pass

View File

@@ -0,0 +1,87 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import ClassVar, List, Union
import numpy as np
from .base import TextEmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help
@register("cohere")
class CohereEmbeddingFunction(TextEmbeddingFunction):
"""
An embedding function that uses the Cohere API
https://docs.cohere.com/docs/multilingual-language-models
Parameters
----------
name: str, default "embed-multilingual-v2.0"
The name of the model to use. See the Cohere documentation for a list of available models.
Examples
--------
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry.get_instance().get("cohere").create(name="embed-multilingual-v2.0")
class TextModel(LanceModel):
text: str = cohere.SourceField()
vector: Vector(cohere.ndims()) = cohere.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
"""
name: str = "embed-multilingual-v2.0"
client: ClassVar = None
def ndims(self):
# TODO: fix hardcoding
return 768
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
# TODO retry, rate limit, token limit
self._init_client()
rs = CohereEmbeddingFunction.client.embed(texts=texts, model=self.name)
return [emb for emb in rs.embeddings]
def _init_client(self):
cohere = self.safe_import("cohere")
if CohereEmbeddingFunction.client is None:
if os.environ.get("COHERE_API_KEY") is None:
api_key_not_found_help("cohere")
CohereEmbeddingFunction.client = cohere.Client(os.environ["COHERE_API_KEY"])

View File

@@ -1,578 +0,0 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import concurrent.futures
import importlib
import io
import json
import os
import socket
import urllib.error
import urllib.parse as urlparse
import urllib.request
from abc import ABC, abstractmethod
from typing import Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from cachetools import cached
from pydantic import BaseModel, Field, PrivateAttr
from tqdm import tqdm
class EmbeddingFunctionRegistry:
"""
This is a singleton class used to register embedding functions
and fetch them by name. It also handles serializing and deserializing.
You can implement your own embedding function by subclassing EmbeddingFunction
or TextEmbeddingFunction and registering it with the registry.
Examples
--------
>>> registry = EmbeddingFunctionRegistry.get_instance()
>>> @registry.register("my-embedding-function")
... class MyEmbeddingFunction(EmbeddingFunction):
... def ndims(self) -> int:
... return 128
...
... def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
... return self.compute_source_embeddings(query, *args, **kwargs)
...
... def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
... return [np.random.rand(self.ndims()) for _ in range(len(texts))]
...
>>> registry.get("my-embedding-function")
<class 'lancedb.embeddings.functions.MyEmbeddingFunction'>
"""
@classmethod
def get_instance(cls):
return __REGISTRY__
def __init__(self):
self._functions = {}
def register(self, alias: str = None):
"""
This creates a decorator that can be used to register
an EmbeddingFunction.
Parameters
----------
alias : Optional[str]
a human friendly name for the embedding function. If not
provided, the class name will be used.
"""
# This is a decorator for a class that inherits from BaseModel
# It adds the class to the registry
def decorator(cls):
if not issubclass(cls, EmbeddingFunction):
raise TypeError("Must be a subclass of EmbeddingFunction")
if cls.__name__ in self._functions:
raise KeyError(f"{cls.__name__} was already registered")
key = alias or cls.__name__
self._functions[key] = cls
cls.__embedding_function_registry_alias__ = alias
return cls
return decorator
def reset(self):
"""
Reset the registry to its initial state
"""
self._functions = {}
def get(self, name: str):
"""
Fetch an embedding function class by name
Parameters
----------
name : str
The name of the embedding function to fetch
Either the alias or the class name if no alias was provided
during registration
"""
return self._functions[name]
def parse_functions(
self, metadata: Optional[Dict[bytes, bytes]]
) -> Dict[str, "EmbeddingFunctionConfig"]:
"""
Parse the metadata from an arrow table and
return a mapping of the vector column to the
embedding function and source column
Parameters
----------
metadata : Optional[Dict[bytes, bytes]]
The metadata from an arrow table. Note that
the keys and values are bytes (pyarrow api)
Returns
-------
functions : dict
A mapping of vector column name to embedding function.
An empty dict is returned if input is None or does not
contain b"embedding_functions".
"""
if metadata is None or b"embedding_functions" not in metadata:
return {}
serialized = metadata[b"embedding_functions"]
raw_list = json.loads(serialized.decode("utf-8"))
return {
obj["vector_column"]: EmbeddingFunctionConfig(
vector_column=obj["vector_column"],
source_column=obj["source_column"],
function=self.get(obj["name"])(**obj["model"]),
)
for obj in raw_list
}
def function_to_metadata(self, conf: "EmbeddingFunctionConfig"):
"""
Convert the given embedding function and source / vector column configs
into a config dictionary that can be serialized into arrow metadata
"""
func = conf.function
name = getattr(
func, "__embedding_function_registry_alias__", func.__class__.__name__
)
json_data = func.safe_model_dump()
return {
"name": name,
"model": json_data,
"source_column": conf.source_column,
"vector_column": conf.vector_column,
}
def get_table_metadata(self, func_list):
"""
Convert a list of embedding functions and source / vector configs
into a config dictionary that can be serialized into arrow metadata
"""
if func_list is None or len(func_list) == 0:
return None
json_data = [self.function_to_metadata(func) for func in func_list]
# Note that metadata dictionary values must be bytes
# so we need to json dump then utf8 encode
metadata = json.dumps(json_data, indent=2).encode("utf-8")
return {"embedding_functions": metadata}
# Global instance
__REGISTRY__ = EmbeddingFunctionRegistry()
TEXT = Union[str, List[str], pa.Array, pa.ChunkedArray, np.ndarray]
IMAGES = Union[
str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray
]
class EmbeddingFunction(BaseModel, ABC):
"""
An ABC for embedding functions.
All concrete embedding functions must implement the following:
1. compute_query_embeddings() which takes a query and returns a list of embeddings
2. get_source_embeddings() which returns a list of embeddings for the source column
For text data, the two will be the same. For multi-modal data, the source column
might be images and the vector column might be text.
3. ndims method which returns the number of dimensions of the vector column
"""
_ndims: int = PrivateAttr()
@classmethod
def create(cls, **kwargs):
"""
Create an instance of the embedding function
"""
return cls(**kwargs)
@abstractmethod
def compute_query_embeddings(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for a given user query
"""
pass
@abstractmethod
def compute_source_embeddings(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for the source column in the database
"""
pass
def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(texts, str):
texts = [texts]
elif isinstance(texts, pa.Array):
texts = texts.to_pylist()
elif isinstance(texts, pa.ChunkedArray):
texts = texts.combine_chunks().to_pylist()
return texts
@classmethod
def safe_import(cls, module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_model_dump(self):
from ..pydantic import PYDANTIC_VERSION
if PYDANTIC_VERSION.major < 2:
return dict(self)
return self.model_dump()
@abstractmethod
def ndims(self):
"""
Return the dimensions of the vector column
"""
pass
def SourceField(self, **kwargs):
"""
Creates a pydantic Field that can automatically annotate
the source column for this embedding function
"""
return Field(json_schema_extra={"source_column_for": self}, **kwargs)
def VectorField(self, **kwargs):
"""
Creates a pydantic Field that can automatically annotate
the target vector column for this embedding function
"""
return Field(json_schema_extra={"vector_column_for": self}, **kwargs)
class EmbeddingFunctionConfig(BaseModel):
"""
This model encapsulates the configuration for a embedding function
in a lancedb table. It holds the embedding function, the source column,
and the vector column
"""
vector_column: str
source_column: str
function: EmbeddingFunction
class TextEmbeddingFunction(EmbeddingFunction):
"""
A callable ABC for embedding functions that take text as input
"""
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.compute_source_embeddings(query, *args, **kwargs)
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
texts = self.sanitize_input(texts)
return self.generate_embeddings(texts)
@abstractmethod
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Generate the embeddings for the given texts
"""
pass
# @EmbeddingFunctionRegistry.get_instance().register(name) doesn't work in 3.8
register = lambda name: EmbeddingFunctionRegistry.get_instance().register(name)
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses the sentence-transformers library
https://huggingface.co/sentence-transformers
"""
name: str = "all-MiniLM-L6-v2"
device: str = "cpu"
normalize: bool = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
@property
def embedding_model(self):
"""
Get the sentence-transformers embedding model specified by the
name and device. This is cached so that the model is only loaded
once per process.
"""
return self.__class__.get_embedding_model(self.name, self.device)
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
return self.embedding_model.encode(
list(texts),
convert_to_numpy=True,
normalize_embeddings=self.normalize,
).tolist()
@classmethod
@cached(cache={})
def get_embedding_model(cls, name, device):
"""
Get the sentence-transformers embedding model specified by the
name and device. This is cached so that the model is only loaded
once per process.
Parameters
----------
name : str
The name of the model to load
device : str
The device to load the model on
TODO: use lru_cache instead with a reasonable/configurable maxsize
"""
sentence_transformers = cls.safe_import(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(name, device=device)
@register("openai")
class OpenAIEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses the OpenAI API
https://platform.openai.com/docs/guides/embeddings
"""
name: str = "text-embedding-ada-002"
def ndims(self):
# TODO don't hardcode this
return 1536
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
# TODO retry, rate limit, token limit
openai = self.safe_import("openai")
rs = openai.Embedding.create(input=texts, model=self.name)["data"]
return [v["embedding"] for v in rs]
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
"""
An embedding function that uses the OpenClip API
For multi-modal text-to-image search
https://github.com/mlfoundations/open_clip
"""
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip")
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in tqdm(futures)]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor.to(self.device))
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
def url_retrieve(url: str):
"""
Parameters
----------
url: str
URL to download from
"""
try:
with urllib.request.urlopen(url) as conn:
return conn.read()
except (socket.gaierror, urllib.error.URLError) as err:
raise ConnectionError("could not download {} due to {}".format(url, err))

View File

@@ -0,0 +1,163 @@
import concurrent.futures
import io
import os
import urllib.parse as urlparse
from typing import List, Union
import numpy as np
import pyarrow as pa
from pydantic import PrivateAttr
from tqdm import tqdm
from .base import EmbeddingFunction
from .registry import register
from .utils import IMAGES, url_retrieve
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
"""
An embedding function that uses the OpenClip API
For multi-modal text-to-image search
https://github.com/mlfoundations/open_clip
"""
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip")
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in tqdm(futures)]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor.to(self.device))
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()

View File

@@ -0,0 +1,37 @@
from typing import List, Union
import numpy as np
from .base import TextEmbeddingFunction
from .registry import register
@register("openai")
class OpenAIEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses the OpenAI API
https://platform.openai.com/docs/guides/embeddings
"""
name: str = "text-embedding-ada-002"
def ndims(self):
# TODO don't hardcode this
return 1536
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
# TODO retry, rate limit, token limit
openai = self.safe_import("openai")
rs = openai.Embedding.create(input=texts, model=self.name)["data"]
return [v["embedding"] for v in rs]

View File

@@ -0,0 +1,186 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from typing import Dict, Optional
from .base import EmbeddingFunction, EmbeddingFunctionConfig
class EmbeddingFunctionRegistry:
"""
This is a singleton class used to register embedding functions
and fetch them by name. It also handles serializing and deserializing.
You can implement your own embedding function by subclassing EmbeddingFunction
or TextEmbeddingFunction and registering it with the registry.
NOTE: Here TEXT is a type alias for Union[str, List[str], pa.Array, pa.ChunkedArray, np.ndarray]
Examples
--------
>>> registry = EmbeddingFunctionRegistry.get_instance()
>>> @registry.register("my-embedding-function")
... class MyEmbeddingFunction(EmbeddingFunction):
... def ndims(self) -> int:
... return 128
...
... def compute_query_embeddings(self, query: str, *args, **kwargs):
... return self.compute_source_embeddings(query, *args, **kwargs)
...
... def compute_source_embeddings(self, texts, *args, **kwargs):
... return [np.random.rand(self.ndims()) for _ in range(len(texts))]
...
>>> registry.get("my-embedding-function")
<class 'lancedb.embeddings.registry.MyEmbeddingFunction'>
"""
@classmethod
def get_instance(cls):
return __REGISTRY__
def __init__(self):
self._functions = {}
def register(self, alias: str = None):
"""
This creates a decorator that can be used to register
an EmbeddingFunction.
Parameters
----------
alias : Optional[str]
a human friendly name for the embedding function. If not
provided, the class name will be used.
"""
# This is a decorator for a class that inherits from BaseModel
# It adds the class to the registry
def decorator(cls):
if not issubclass(cls, EmbeddingFunction):
raise TypeError("Must be a subclass of EmbeddingFunction")
if cls.__name__ in self._functions:
raise KeyError(f"{cls.__name__} was already registered")
key = alias or cls.__name__
self._functions[key] = cls
cls.__embedding_function_registry_alias__ = alias
return cls
return decorator
def reset(self):
"""
Reset the registry to its initial state
"""
self._functions = {}
def get(self, name: str):
"""
Fetch an embedding function class by name
Parameters
----------
name : str
The name of the embedding function to fetch
Either the alias or the class name if no alias was provided
during registration
"""
return self._functions[name]
def parse_functions(
self, metadata: Optional[Dict[bytes, bytes]]
) -> Dict[str, "EmbeddingFunctionConfig"]:
"""
Parse the metadata from an arrow table and
return a mapping of the vector column to the
embedding function and source column
Parameters
----------
metadata : Optional[Dict[bytes, bytes]]
The metadata from an arrow table. Note that
the keys and values are bytes (pyarrow api)
Returns
-------
functions : dict
A mapping of vector column name to embedding function.
An empty dict is returned if input is None or does not
contain b"embedding_functions".
"""
if metadata is None or b"embedding_functions" not in metadata:
return {}
serialized = metadata[b"embedding_functions"]
raw_list = json.loads(serialized.decode("utf-8"))
return {
obj["vector_column"]: EmbeddingFunctionConfig(
vector_column=obj["vector_column"],
source_column=obj["source_column"],
function=self.get(obj["name"])(**obj["model"]),
)
for obj in raw_list
}
def function_to_metadata(self, conf: "EmbeddingFunctionConfig"):
"""
Convert the given embedding function and source / vector column configs
into a config dictionary that can be serialized into arrow metadata
"""
func = conf.function
name = getattr(
func, "__embedding_function_registry_alias__", func.__class__.__name__
)
json_data = func.safe_model_dump()
return {
"name": name,
"model": json_data,
"source_column": conf.source_column,
"vector_column": conf.vector_column,
}
def get_table_metadata(self, func_list):
"""
Convert a list of embedding functions and source / vector configs
into a config dictionary that can be serialized into arrow metadata
"""
if func_list is None or len(func_list) == 0:
return None
json_data = [self.function_to_metadata(func) for func in func_list]
# Note that metadata dictionary values must be bytes
# so we need to json dump then utf8 encode
metadata = json.dumps(json_data, indent=2).encode("utf-8")
return {"embedding_functions": metadata}
# Global instance
__REGISTRY__ = EmbeddingFunctionRegistry()
# @EmbeddingFunctionRegistry.get_instance().register(name) doesn't work in 3.8
register = lambda name: EmbeddingFunctionRegistry.get_instance().register(name)
def get_registry():
"""
Utility function to get the global instance of the registry
Returns
-------
EmbeddingFunctionRegistry
The global registry instance
Examples
--------
from lancedb.embeddings import get_registry
registry = get_registry()
openai = registry.get("openai").create()
"""
return __REGISTRY__.get_instance()

View File

@@ -0,0 +1,77 @@
from typing import List, Union
import numpy as np
from cachetools import cached
from .base import TextEmbeddingFunction
from .registry import register
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses the sentence-transformers library
https://huggingface.co/sentence-transformers
"""
name: str = "all-MiniLM-L6-v2"
device: str = "cpu"
normalize: bool = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
@property
def embedding_model(self):
"""
Get the sentence-transformers embedding model specified by the
name and device. This is cached so that the model is only loaded
once per process.
"""
return self.__class__.get_embedding_model(self.name, self.device)
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
return self.embedding_model.encode(
list(texts),
convert_to_numpy=True,
normalize_embeddings=self.normalize,
).tolist()
@classmethod
@cached(cache={})
def get_embedding_model(cls, name, device):
"""
Get the sentence-transformers embedding model specified by the
name and device. This is cached so that the model is only loaded
once per process.
Parameters
----------
name : str
The name of the model to load
device : str
The device to load the model on
TODO: use lru_cache instead with a reasonable/configurable maxsize
"""
sentence_transformers = cls.safe_import(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(name, device=device)

View File

@@ -12,8 +12,10 @@
# limitations under the License. # limitations under the License.
import math import math
import socket
import sys import sys
from typing import Callable, Union import urllib.error
from typing import Callable, List, Union
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
@@ -21,9 +23,15 @@ from lance.vector import vec_to_table
from retry import retry from retry import retry
from ..util import safe_import_pandas from ..util import safe_import_pandas
from ..utils.general import LOGGER
pd = safe_import_pandas() pd = safe_import_pandas()
DATA = Union[pa.Table, "pd.DataFrame"] DATA = Union[pa.Table, "pd.DataFrame"]
TEXT = Union[str, List[str], pa.Array, pa.ChunkedArray, np.ndarray]
IMAGES = Union[
str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray
]
def with_embeddings( def with_embeddings(
@@ -152,3 +160,22 @@ class FunctionWrapper:
yield from tqdm(_chunker(arr), total=math.ceil(length / self._batch_size)) yield from tqdm(_chunker(arr), total=math.ceil(length / self._batch_size))
else: else:
yield from _chunker(arr) yield from _chunker(arr)
def url_retrieve(url: str):
"""
Parameters
----------
url: str
URL to download from
"""
try:
with urllib.request.urlopen(url) as conn:
return conn.read()
except (socket.gaierror, urllib.error.URLError) as err:
raise ConnectionError("could not download {} due to {}".format(url, err))
def api_key_not_found_help(provider):
LOGGER.error(f"Could not find API key for {provider}.")
raise ValueError(f"Please set the {provider.upper()}_API_KEY environment variable.")

View File

@@ -19,6 +19,7 @@ import inspect
import sys import sys
import types import types
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from datetime import date, datetime
from typing import Any, Callable, Dict, Generator, List, Type, Union, _GenericAlias from typing import Any, Callable, Dict, Generator, List, Type, Union, _GenericAlias
import numpy as np import numpy as np
@@ -159,6 +160,10 @@ def _py_type_to_arrow_type(py_type: Type[Any]) -> pa.DataType:
return pa.bool_() return pa.bool_()
elif py_type == bytes: elif py_type == bytes:
return pa.binary() return pa.binary()
elif py_type == date:
return pa.date32()
elif py_type == datetime:
return pa.timestamp("us")
raise TypeError( raise TypeError(
f"Converting Pydantic type to Arrow Type: unsupported type {py_type}" f"Converting Pydantic type to Arrow Type: unsupported type {py_type}"
) )
@@ -322,7 +327,12 @@ class LanceModel(pydantic.BaseModel):
for vec, func in vec_and_function: for vec, func in vec_and_function:
for source, field_info in cls.safe_get_fields().items(): for source, field_info in cls.safe_get_fields().items():
src_func = get_extras(field_info, "source_column_for") src_func = get_extras(field_info, "source_column_for")
if src_func == func: if src_func is func:
# note we can't use == here since the function is a pydantic
# model so two instances of the same function are ==, so if you
# have multiple vector columns from multiple sources, both will
# be mapped to the same source column
# GH594
configs.append( configs.append(
EmbeddingFunctionConfig( EmbeddingFunctionConfig(
source_column=source, vector_column=vec, function=func source_column=source, vector_column=vec, function=func

View File

@@ -16,10 +16,12 @@ from __future__ import annotations
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import List, Literal, Optional, Type, Union from typing import List, Literal, Optional, Type, Union
import deprecation
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
import pydantic import pydantic
from . import __version__
from .common import VECTOR_COLUMN_NAME from .common import VECTOR_COLUMN_NAME
from .pydantic import LanceModel from .pydantic import LanceModel
from .util import safe_import_pandas from .util import safe_import_pandas
@@ -127,7 +129,24 @@ class LanceQueryBuilder(ABC):
self._columns = None self._columns = None
self._where = None self._where = None
@deprecation.deprecated(
deprecated_in="0.3.1",
removed_in="0.4.0",
current_version=__version__,
details="Use the bar function instead",
)
def to_df(self) -> "pd.DataFrame": def to_df(self) -> "pd.DataFrame":
"""
Deprecated alias for `to_pandas()`. Please use `to_pandas()` instead.
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
return self.to_pandas()
def to_pandas(self) -> "pd.DataFrame":
""" """
Execute the query and return the results as a pandas DataFrame. Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector In addition to the selected columns, LanceDB also returns a vector
@@ -148,6 +167,16 @@ class LanceQueryBuilder(ABC):
""" """
raise NotImplementedError raise NotImplementedError
def to_list(self) -> List[dict]:
"""
Execute the query and return the results as a list of dictionaries.
Each list entry is a dictionary with the selected column names as keys,
or all table columns if `select` is not called. The vector and the "_distance"
fields are returned whether or not they're explicitly selected.
"""
return self.to_arrow().to_pylist()
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]: def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
"""Return the table as a list of pydantic models. """Return the table as a list of pydantic models.
@@ -232,7 +261,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
... .where("b < 10") ... .where("b < 10")
... .select(["b"]) ... .select(["b"])
... .limit(2) ... .limit(2)
... .to_df()) ... .to_pandas())
b vector _distance b vector _distance
0 6 [0.4, 0.4] 0.0 0 6 [0.4, 0.4] 0.0
""" """

View File

@@ -151,10 +151,15 @@ class RestfulLanceDBClient:
return await deserialize(resp) return await deserialize(resp)
@_check_not_closed @_check_not_closed
async def list_tables(self): async def list_tables(self, limit: int, page_token: str):
"""List all tables in the database.""" """List all tables in the database."""
json = await self.get("/v1/table/", {}) try:
json = await self.get(
"/v1/table/", {"limit": limit, "page_token": page_token}
)
return json["tables"] return json["tables"]
except StopAsyncIteration:
return []
@_check_not_closed @_check_not_closed
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult: async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:

View File

@@ -13,7 +13,7 @@
import asyncio import asyncio
import uuid import uuid
from typing import List, Optional from typing import Iterator, Optional
from urllib.parse import urlparse from urllib.parse import urlparse
import pyarrow as pa import pyarrow as pa
@@ -52,10 +52,27 @@ class RemoteDBConnection(DBConnection):
def __repr__(self) -> str: def __repr__(self) -> str:
return f"RemoveConnect(name={self.db_name})" return f"RemoveConnect(name={self.db_name})"
def table_names(self) -> List[str]: def table_names(self, last_token: str, limit=10) -> Iterator[str]:
"""List the names of all tables in the database.""" """List the names of all tables in the database.
result = self._loop.run_until_complete(self._client.list_tables()) Parameters
return result ----------
last_token: str
The last token to start the new page.
Returns
-------
An iterator of table names.
"""
while True:
result = self._loop.run_until_complete(
self._client.list_tables(limit, last_token)
)
if len(result) > 0:
last_token = result[len(result) - 1]
else:
break
for item in result:
yield result
def open_table(self, name: str) -> Table: def open_table(self, name: str) -> Table:
"""Open a Lance Table in the database. """Open a Lance Table in the database.
@@ -122,3 +139,8 @@ class RemoteDBConnection(DBConnection):
f"/v1/table/{name}/drop/", f"/v1/table/{name}/drop/",
) )
) )
async def close(self):
"""Close the connection to the database."""
self._loop.close()
await self._client.close()

View File

@@ -13,7 +13,7 @@
import uuid import uuid
from functools import cached_property from functools import cached_property
from typing import Union from typing import Optional, Union
import pyarrow as pa import pyarrow as pa
from lance import json_to_schema from lance import json_to_schema
@@ -62,6 +62,7 @@ class RemoteTable(Table):
num_sub_vectors=96, num_sub_vectors=96,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True, replace: bool = True,
accelerator: Optional[str] = None,
): ):
raise NotImplementedError raise NotImplementedError
@@ -104,4 +105,8 @@ class RemoteTable(Table):
return self._conn._loop.run_until_complete(result).to_arrow() return self._conn._loop.run_until_complete(result).to_arrow()
def delete(self, predicate: str): def delete(self, predicate: str):
raise NotImplementedError """Delete rows from the table."""
payload = {"predicate": predicate}
self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)
)

View File

@@ -16,6 +16,7 @@ from __future__ import annotations
import inspect import inspect
import os import os
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from datetime import timedelta
from functools import cached_property from functools import cached_property
from typing import Any, Iterable, List, Optional, Union from typing import Any, Iterable, List, Optional, Union
@@ -24,15 +25,15 @@ import numpy as np
import pyarrow as pa import pyarrow as pa
import pyarrow.compute as pc import pyarrow.compute as pc
from lance import LanceDataset from lance import LanceDataset
from lance.dataset import ReaderLike from lance.dataset import CleanupStats, ReaderLike
from lance.vector import vec_to_table from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .embeddings import EmbeddingFunctionRegistry from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from .embeddings.functions import EmbeddingFunctionConfig
from .pydantic import LanceModel from .pydantic import LanceModel
from .query import LanceQueryBuilder, Query from .query import LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas from .util import fs_from_uri, safe_import_pandas
from .utils.events import register_event
pd = safe_import_pandas() pd = safe_import_pandas()
@@ -136,7 +137,7 @@ class Table(ABC):
Can query the table with [Table.search][lancedb.table.Table.search]. Can query the table with [Table.search][lancedb.table.Table.search].
>>> table.search([0.4, 0.4]).select(["b"]).to_df() >>> table.search([0.4, 0.4]).select(["b"]).to_pandas()
b vector _distance b vector _distance
0 4 [0.5, 1.3] 0.82 0 4 [0.5, 1.3] 0.82
1 2 [1.1, 1.2] 1.13 1 2 [1.1, 1.2] 1.13
@@ -149,7 +150,7 @@ class Table(ABC):
@abstractmethod @abstractmethod
def schema(self) -> pa.Schema: def schema(self) -> pa.Schema:
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of """The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of
this [Table](Table) this Table
""" """
raise NotImplementedError raise NotImplementedError
@@ -180,6 +181,7 @@ class Table(ABC):
num_sub_vectors=96, num_sub_vectors=96,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True, replace: bool = True,
accelerator: Optional[str] = None,
): ):
"""Create an index on the table. """Create an index on the table.
@@ -200,6 +202,9 @@ class Table(ABC):
replace: bool, default True replace: bool, default True
If True, replace the existing index if it exists. If True, replace the existing index if it exists.
If False, raise an error if duplicate index exists. If False, raise an error if duplicate index exists.
accelerator: str, default None
If set, use the given accelerator to create the index.
Only support "cuda" for now.
""" """
raise NotImplementedError raise NotImplementedError
@@ -286,8 +291,9 @@ class Table(ABC):
Examples Examples
-------- --------
>>> import lancedb >>> import lancedb
>>> import pandas as pd >>> data = [
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]}) ... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data) >>> table = db.create_table("my_table", data)
>>> table.to_pandas() >>> table.to_pandas()
@@ -390,6 +396,17 @@ class LanceTable(Table):
raise ValueError(f"Invalid version {version}") raise ValueError(f"Invalid version {version}")
self._reset_dataset(version=version) self._reset_dataset(version=version)
try:
# Accessing the property updates the cached value
_ = self._dataset
except Exception as e:
if "not found" in str(e):
raise ValueError(
f"Version {version} no longer exists. Was it cleaned up?"
)
else:
raise e
def restore(self, version: int = None): def restore(self, version: int = None):
"""Restore a version of the table. This is an in-place operation. """Restore a version of the table. This is an in-place operation.
@@ -479,6 +496,7 @@ class LanceTable(Table):
num_sub_vectors=96, num_sub_vectors=96,
vector_column_name=VECTOR_COLUMN_NAME, vector_column_name=VECTOR_COLUMN_NAME,
replace: bool = True, replace: bool = True,
accelerator: Optional[str] = None,
): ):
"""Create an index on the table.""" """Create an index on the table."""
self._dataset.create_index( self._dataset.create_index(
@@ -488,8 +506,10 @@ class LanceTable(Table):
num_partitions=num_partitions, num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors, num_sub_vectors=num_sub_vectors,
replace=replace, replace=replace,
accelerator=accelerator,
) )
self._reset_dataset() self._reset_dataset()
register_event("create_index")
def create_fts_index(self, field_names: Union[str, List[str]]): def create_fts_index(self, field_names: Union[str, List[str]]):
"""Create a full-text search index on the table. """Create a full-text search index on the table.
@@ -508,6 +528,7 @@ class LanceTable(Table):
field_names = [field_names] field_names = [field_names]
index = create_index(self._get_fts_index_path(), field_names) index = create_index(self._get_fts_index_path(), field_names)
populate_index(index, self, field_names) populate_index(index, self, field_names)
register_event("create_fts_index")
def _get_fts_index_path(self): def _get_fts_index_path(self):
return os.path.join(self._dataset_uri, "_indices", "tantivy") return os.path.join(self._dataset_uri, "_indices", "tantivy")
@@ -560,6 +581,7 @@ class LanceTable(Table):
) )
lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode) lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode)
self._reset_dataset() self._reset_dataset()
register_event("add")
def merge( def merge(
self, self,
@@ -623,6 +645,7 @@ class LanceTable(Table):
other_table, left_on=left_on, right_on=right_on, schema=schema other_table, left_on=left_on, right_on=right_on, schema=schema
) )
self._reset_dataset() self._reset_dataset()
register_event("merge")
@cached_property @cached_property
def embedding_functions(self) -> dict: def embedding_functions(self) -> dict:
@@ -673,6 +696,7 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
""" """
register_event("search")
return LanceQueryBuilder.create( return LanceQueryBuilder.create(
self, query, query_type, vector_column_name=vector_column_name self, query, query_type, vector_column_name=vector_column_name
) )
@@ -695,8 +719,9 @@ class LanceTable(Table):
Examples Examples
-------- --------
>>> import lancedb >>> import lancedb
>>> import pandas as pd >>> data = [
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]}) ... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data) >>> table = db.create_table("my_table", data)
>>> table.to_pandas() >>> table.to_pandas()
@@ -776,6 +801,7 @@ class LanceTable(Table):
if data is not None: if data is not None:
table.add(data) table.add(data)
register_event("create_table")
return table return table
@classmethod @classmethod
@@ -811,8 +837,9 @@ class LanceTable(Table):
Examples Examples
-------- --------
>>> import lancedb >>> import lancedb
>>> import pandas as pd >>> data = [
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]}) ... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data) >>> table = db.create_table("my_table", data)
>>> table.to_pandas() >>> table.to_pandas()
@@ -841,6 +868,7 @@ class LanceTable(Table):
self.delete(where) self.delete(where)
self.add(orig_data, mode="append") self.add(orig_data, mode="append")
self._reset_dataset() self._reset_dataset()
register_event("update")
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
ds = self.to_lance() ds = self.to_lance()
@@ -864,6 +892,48 @@ class LanceTable(Table):
}, },
) )
def cleanup_old_versions(
self,
older_than: Optional[timedelta] = None,
*,
delete_unverified: bool = False,
) -> CleanupStats:
"""
Clean up old versions of the table, freeing disk space.
Parameters
----------
older_than: timedelta, default None
The minimum age of the version to delete. If None, then this defaults
to two weeks.
delete_unverified: bool, default False
Because they may be part of an in-progress transaction, files newer
than 7 days old are not deleted by default. If you are sure that
there are no in-progress transactions, then you can set this to True
to delete all files older than `older_than`.
Returns
-------
CleanupStats
The stats of the cleanup operation, including how many bytes were
freed.
"""
return self.to_lance().cleanup_old_versions(
older_than, delete_unverified=delete_unverified
)
def compact_files(self, *args, **kwargs):
"""
Run the compaction process on the table.
This can be run after making several small appends to optimize the table
for faster reads.
Arguments are passed onto :meth:`lance.dataset.DatasetOptimizer.compact_files`.
For most cases, the default should be fine.
"""
return self.to_lance().optimize.compact_files(*args, **kwargs)
def _sanitize_schema( def _sanitize_schema(
data: pa.Table, data: pa.Table,

View File

@@ -0,0 +1,15 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .config import Config
CONFIG = Config()

View File

@@ -0,0 +1,116 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import hashlib
import os
import platform
import uuid
from pathlib import Path
from .general import LOGGER, is_dir_writeable, yaml_load, yaml_save
def get_user_config_dir(sub_dir="lancedb"):
"""
Get the user config directory.
Args:
sub_dir (str): The name of the subdirectory to create.
Returns:
(Path): The path to the user config directory.
"""
# Return the appropriate config directory for each operating system
if platform.system() == "Windows":
path = Path.home() / "AppData" / "Roaming" / sub_dir
elif platform.system() == "Darwin":
path = Path.home() / "Library" / "Application Support" / sub_dir
elif platform.system() == "Linux":
path = Path.home() / ".config" / sub_dir
else:
raise ValueError(f"Unsupported operating system: {platform.system()}")
# GCP and AWS lambda fix, only /tmp is writeable
if not is_dir_writeable(path.parent):
LOGGER.warning(
f"WARNING ⚠️ user config directory '{path}' is not writeable, defaulting to '/tmp' or CWD."
"Alternatively you can define a LANCEDB_CONFIG_DIR environment variable for this path."
)
path = (
Path("/tmp") / sub_dir
if is_dir_writeable("/tmp")
else Path().cwd() / sub_dir
)
# Create the subdirectory if it does not exist
path.mkdir(parents=True, exist_ok=True)
return path
USER_CONFIG_DIR = Path(os.getenv("LANCEDB_CONFIG_DIR") or get_user_config_dir())
CONFIG_FILE = USER_CONFIG_DIR / "config.yaml"
class Config(dict):
"""
Manages lancedb config stored in a YAML file.
Args:
file (str | Path): Path to the lancedb config YAML file. Default is USER_CONFIG_DIR / 'config.yaml'.
"""
def __init__(self, file=CONFIG_FILE):
self.file = Path(file)
self.defaults = { # Default global config values
"diagnostics": True,
"uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(),
}
super().__init__(copy.deepcopy(self.defaults))
if not self.file.exists():
self.save()
self.load()
correct_keys = self.keys() == self.defaults.keys()
correct_types = all(
type(a) is type(b) for a, b in zip(self.values(), self.defaults.values())
)
if not (correct_keys and correct_types):
LOGGER.warning(
"WARNING ⚠️ LanceDB settings reset to default values. This may be due to a possible problem "
"with your settings or a recent package update. "
f"\nView settings & usage with 'lancedb settings' or at '{self.file}'"
)
self.reset()
def load(self):
"""Loads settings from the YAML file."""
super().update(yaml_load(self.file))
def save(self):
"""Saves the current settings to the YAML file."""
yaml_save(self.file, dict(self))
def update(self, *args, **kwargs):
"""Updates a setting value in the current settings."""
super().update(*args, **kwargs)
self.save()
def reset(self):
"""Resets the settings to default and saves them."""
self.clear()
self.update(self.defaults)
self.save()

View File

@@ -0,0 +1,161 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
import importlib.metadata
import platform
import random
import sys
import time
from lancedb.utils import CONFIG
from lancedb.utils.general import TryExcept
from .general import (
PLATFORMS,
get_git_origin_url,
is_git_dir,
is_github_actions_ci,
is_online,
is_pip_package,
is_pytest_running,
threaded_request,
)
class _Events:
"""
A class for collecting anonymous event analytics. Event analytics are enabled when ``diagnostics=True`` in config and
disabled when ``diagnostics=False``.
You can enable or disable diagnostics by running ``lancedb diagnostics --enabled`` or ``lancedb diagnostics --disabled``.
Attributes
----------
url : str
The URL to send anonymous events.
rate_limit : float
The rate limit in seconds for sending events.
metadata : dict
A dictionary containing metadata about the environment.
enabled : bool
A flag to enable or disable Events based on certain conditions.
"""
_instance = None
url = "https://app.posthog.com/capture/"
headers = {"Content-Type": "application/json"}
api_key = "phc_oENDjGgHtmIDrV6puUiFem2RB4JA8gGWulfdulmMdZP"
# This api-key is write only and is safe to expose in the codebase.
def __init__(self):
"""
Initializes the Events object with default values for events, rate_limit, and metadata.
"""
self.events = [] # events list
self.max_events = 25 # max events to store in memory
self.rate_limit = 60.0 # rate limit (seconds)
self.time = 0.0
if is_git_dir():
install = "git"
elif is_pip_package():
install = "pip"
else:
install = "other"
self.metadata = {
"cli": sys.argv[0],
"install": install,
"python": ".".join(platform.python_version_tuple()[:2]),
"version": importlib.metadata.version("lancedb"),
"platforms": PLATFORMS,
"session_id": round(random.random() * 1e15),
# 'engagement_time_msec': 1000 # TODO: In future we might be interested in this metric
}
TESTS_RUNNING = is_pytest_running() or is_github_actions_ci()
ONLINE = is_online()
self.enabled = (
CONFIG["diagnostics"]
and not TESTS_RUNNING
and ONLINE
and (
is_pip_package()
or get_git_origin_url() == "https://github.com/lancedb/lancedb.git"
)
)
def __call__(self, event_name, params={}):
"""
Attempts to add a new event to the events list and send events if the rate limit is reached.
Args
----
event_name : str
The name of the event to be logged.
params : dict, optional
A dictionary of additional parameters to be logged with the event.
"""
### NOTE: We might need a way to tag a session with a label to check usage from a source. Setting label should be exposed to the user.
if not self.enabled:
return
if (
len(self.events) < self.max_events
): # Events list limited to 25 events (drop any events past this)
params.update(self.metadata)
self.events.append(
{
"event": event_name,
"properties": params,
"timestamp": datetime.datetime.now(
tz=datetime.timezone.utc
).isoformat(),
"distinct_id": CONFIG["uuid"],
}
)
# Check rate limit
t = time.time()
if (t - self.time) < self.rate_limit:
return
# Time is over rate limiter, send now
data = {
"api_key": self.api_key,
"distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event
"batch": self.events,
}
# POST equivalent to requests.post(self.url, json=data).
# threaded request is used to avoid blocking, retries are disabled, and verbose is disabled
# to avoid any possible disruption in the console.
threaded_request(
method="post",
url=self.url,
headers=self.headers,
json=data,
retry=0,
verbose=False,
)
# Flush & Reset
self.events = []
self.time = t
@TryExcept(verbose=False)
def register_event(name: str, **kwargs):
if _Events._instance is None:
_Events._instance = _Events()
_Events._instance(name, **kwargs)

View File

@@ -0,0 +1,445 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import importlib
import logging.config
import os
import platform
import subprocess
import sys
import threading
import time
from pathlib import Path
from typing import Union
import requests
import yaml
LOGGING_NAME = "lancedb"
VERBOSE = (
str(os.getenv("LANCEDB_VERBOSE", True)).lower() == "true"
) # global verbose mode
def set_logging(name=LOGGING_NAME, verbose=True):
"""Sets up logging for the given name.
Parameters
----------
name : str, optional
The name of the logger. Default is 'lancedb'.
verbose : bool, optional
Whether to enable verbose logging. Default is True.
"""
rank = int(os.getenv("RANK", -1)) # rank in world for Multi-GPU trainings
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
logging.config.dictConfig(
{
"version": 1,
"disable_existing_loggers": False,
"formatters": {name: {"format": "%(message)s"}},
"handlers": {
name: {
"class": "logging.StreamHandler",
"formatter": name,
"level": level,
}
},
"loggers": {name: {"level": level, "handlers": [name], "propagate": False}},
}
)
set_logging(LOGGING_NAME, verbose=VERBOSE)
LOGGER = logging.getLogger(LOGGING_NAME)
def is_pip_package(filepath: str = __name__) -> bool:
"""Determines if the file at the given filepath is part of a pip package.
Parameters
----------
filepath : str, optional
The filepath to check. Default is the current file.
Returns
-------
bool
True if the file is part of a pip package, False otherwise.
"""
# Get the spec for the module
spec = importlib.util.find_spec(filepath)
# Return whether the spec is not None and the origin is not None (indicating it is a package)
return spec is not None and spec.origin is not None
def is_pytest_running():
"""Determines whether pytest is currently running or not.
Returns
-------
bool
True if pytest is running, False otherwise.
"""
return (
("PYTEST_CURRENT_TEST" in os.environ)
or ("pytest" in sys.modules)
or ("pytest" in Path(sys.argv[0]).stem)
)
def is_github_actions_ci() -> bool:
"""
Determine if the current environment is a GitHub Actions CI Python runner.
Returns
-------
bool
True if the current environment is a GitHub Actions CI Python runner, False otherwise.
"""
return (
"GITHUB_ACTIONS" in os.environ
and "RUNNER_OS" in os.environ
and "RUNNER_TOOL_CACHE" in os.environ
)
def is_git_dir():
"""
Determines whether the current file is part of a git repository.
If the current file is not part of a git repository, returns None.
Returns
-------
bool
True if current file is part of a git repository.
"""
return get_git_dir() is not None
def is_online() -> bool:
"""
Check internet connectivity by attempting to connect to a known online host.
Returns
-------
bool
True if connection is successful, False otherwise.
"""
import socket
for host in "1.1.1.1", "8.8.8.8", "223.5.5.5": # Cloudflare, Google, AliDNS:
try:
test_connection = socket.create_connection(address=(host, 53), timeout=2)
except (socket.timeout, socket.gaierror, OSError):
continue
else:
# If the connection was successful, close it to avoid a ResourceWarning
test_connection.close()
return True
return False
def is_dir_writeable(dir_path: Union[str, Path]) -> bool:
"""Check if a directory is writeable.
Parameters
----------
dir_path : Union[str, Path]
The path to the directory.
Returns
-------
bool
True if the directory is writeable, False otherwise.
"""
return os.access(str(dir_path), os.W_OK)
def is_colab():
"""Check if the current script is running inside a Google Colab notebook.
Returns
-------
bool
True if running inside a Colab notebook, False otherwise.
"""
return "COLAB_RELEASE_TAG" in os.environ or "COLAB_BACKEND_VERSION" in os.environ
def is_kaggle():
"""Check if the current script is running inside a Kaggle kernel.
Returns
-------
bool
True if running inside a Kaggle kernel, False otherwise.
"""
return (
os.environ.get("PWD") == "/kaggle/working"
and os.environ.get("KAGGLE_URL_BASE") == "https://www.kaggle.com"
)
def is_jupyter():
"""Check if the current script is running inside a Jupyter Notebook.
Returns
-------
bool
True if running inside a Jupyter Notebook, False otherwise.
"""
with contextlib.suppress(Exception):
from IPython import get_ipython
return get_ipython() is not None
return False
def is_docker() -> bool:
"""Determine if the script is running inside a Docker container.
Returns
-------
bool
True if the script is running inside a Docker container, False otherwise.
"""
file = Path("/proc/self/cgroup")
if file.exists():
with open(file) as f:
return "docker" in f.read()
else:
return False
def get_git_dir():
"""Determine whether the current file is part of a git repository and if so, returns the repository root directory.
If the current file is not part of a git repository, returns None.
Returns
-------
Path | None
Git root directory if found or None if not found.
"""
for d in Path(__file__).parents:
if (d / ".git").is_dir():
return d
def get_git_origin_url():
"""Retrieve the origin URL of a git repository.
Returns
-------
str | None
The origin URL of the git repository or None if not git directory.
"""
if is_git_dir():
with contextlib.suppress(subprocess.CalledProcessError):
origin = subprocess.check_output(
["git", "config", "--get", "remote.origin.url"]
)
return origin.decode().strip()
def yaml_save(file="data.yaml", data=None, header=""):
"""Save YAML data to a file.
Parameters
----------
file : str, optional
File name, by default 'data.yaml'.
data : dict, optional
Data to save in YAML format, by default None.
header : str, optional
YAML header to add, by default "".
"""
if data is None:
data = {}
file = Path(file)
if not file.parent.exists():
# Create parent directories if they don't exist
file.parent.mkdir(parents=True, exist_ok=True)
# Convert Path objects to strings
for k, v in data.items():
if isinstance(v, Path):
data[k] = str(v)
# Dump data to file in YAML format
with open(file, "w", errors="ignore", encoding="utf-8") as f:
if header:
f.write(header)
yaml.safe_dump(data, f, sort_keys=False, allow_unicode=True)
def yaml_load(file="data.yaml", append_filename=False):
"""
Load YAML data from a file.
Parameters
----------
file : str, optional
File name. Default is 'data.yaml'.
append_filename : bool, optional
Add the YAML filename to the YAML dictionary. Default is False.
Returns
-------
dict
YAML data and file name.
"""
assert Path(file).suffix in (
".yaml",
".yml",
), f"Attempting to load non-YAML file {file} with yaml_load()"
with open(file, errors="ignore", encoding="utf-8") as f:
s = f.read() # string
# Add YAML filename to dict and return
data = (
yaml.safe_load(s) or {}
) # always return a dict (yaml.safe_load() may return None for empty files)
if append_filename:
data["yaml_file"] = str(file)
return data
def yaml_print(yaml_file: Union[str, Path, dict]) -> None:
"""
Pretty prints a YAML file or a YAML-formatted dictionary.
Parameters
----------
yaml_file : Union[str, Path, dict]
The file path of the YAML file or a YAML-formatted dictionary.
Returns
-------
None
"""
yaml_dict = (
yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file
)
dump = yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True)
LOGGER.info(f"Printing '{yaml_file}'\n\n{dump}")
PLATFORMS = [platform.system()]
if is_colab():
PLATFORMS.append("Colab")
if is_kaggle():
PLATFORMS.append("Kaggle")
if is_jupyter():
PLATFORMS.append("Jupyter")
if is_docker():
PLATFORMS.append("Docker")
PLATFORMS = "|".join(PLATFORMS)
class TryExcept(contextlib.ContextDecorator):
"""
TryExcept context manager.
Usage: @TryExcept() decorator or 'with TryExcept():' context manager.
"""
def __init__(self, msg="", verbose=True):
"""
Parameters
----------
msg : str, optional
Custom message to display in case of exception, by default "".
verbose : bool, optional
Whether to display the message, by default True.
"""
self.msg = msg
self.verbose = verbose
def __enter__(self):
pass
def __exit__(self, exc_type, value, traceback):
if self.verbose and value:
LOGGER.info(f"{self.msg}{': ' if self.msg else ''}{value}")
return True
def threaded_request(
method, url, retry=3, timeout=30, thread=True, code=-1, verbose=True, **kwargs
):
"""
Makes an HTTP request using the 'requests' library, with exponential backoff retries up to a specified timeout.
Parameters
----------
method : str
The HTTP method to use for the request. Choices are 'post' and 'get'.
url : str
The URL to make the request to.
retry : int, optional
Number of retries to attempt before giving up, by default 3.
timeout : int, optional
Timeout in seconds after which the function will give up retrying, by default 30.
thread : bool, optional
Whether to execute the request in a separate daemon thread, by default True.
code : int, optional
An identifier for the request, used for logging purposes, by default -1.
verbose : bool, optional
A flag to determine whether to print out to console or not, by default True.
Returns
-------
requests.Response
The HTTP response object. If the request is executed in a separate thread, returns the thread itself.
"""
retry_codes = () # retry only these codes TODO: add codes if needed in future (500, 408)
@TryExcept(verbose=verbose)
def func(method, url, **kwargs):
"""Make HTTP requests with retries and timeouts, with optional progress tracking."""
response = None
t0 = time.time()
for i in range(retry + 1):
if (time.time() - t0) > timeout:
break
response = requests.request(method, url, **kwargs)
if response.status_code < 300: # good return codes in the 2xx range
break
try:
m = response.json().get("message", "No JSON message.")
except AttributeError:
m = "Unable to read JSON."
if i == 0:
if response.status_code in retry_codes:
m += f" Retrying {retry}x for {timeout}s." if retry else ""
elif response.status_code == 429: # rate limit
m = f"Rate limit reached"
if verbose:
LOGGER.warning(f"{response.status_code} #{code}")
if response.status_code not in retry_codes:
return response
time.sleep(2**i) # exponential standoff
return response
args = method, url
if thread:
return threading.Thread(
target=func, args=args, kwargs=kwargs, daemon=True
).start()
else:
return func(*args, **kwargs)

View File

@@ -0,0 +1,112 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import bdb
import importlib.metadata
import logging
import sys
from pathlib import Path
from lancedb.utils import CONFIG
from .general import (
PLATFORMS,
TryExcept,
is_git_dir,
is_github_actions_ci,
is_online,
is_pip_package,
is_pytest_running,
)
@TryExcept(verbose=False)
def set_sentry():
"""
Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and
sync=True in settings. Run 'lancedb settings' to see and update settings YAML file.
Conditions required to send errors (ALL conditions must be met or no errors will be reported):
- sentry_sdk package is installed
- sync=True in settings
- pytest is not running
- running in a pip package installation
- running in a non-git directory
- online environment
The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError
exceptions for now.
Additionally, the function sets custom tags and user information for Sentry events.
"""
def before_send(event, hint):
"""
Modify the event before sending it to Sentry based on specific exception types and messages.
Args:
event (dict): The event dictionary containing information about the error.
hint (dict): A dictionary containing additional information about the error.
Returns:
dict: The modified event or None if the event should not be sent to Sentry.
"""
if "exc_info" in hint:
exc_type, exc_value, tb = hint["exc_info"]
if "out of memory" in str(exc_value).lower():
return None
if is_git_dir():
install = "git"
elif is_pip_package():
install = "pip"
else:
install = "other"
event["tags"] = {
"sys_argv": sys.argv[0],
"sys_argv_name": Path(sys.argv[0]).name,
"install": install,
"platforms": PLATFORMS,
"version": importlib.metadata.version("lancedb"),
}
return event
TESTS_RUNNING = is_pytest_running() or is_github_actions_ci()
ONLINE = is_online()
if CONFIG["diagnostics"] and not TESTS_RUNNING and ONLINE and is_pip_package():
# and not is_git_dir(): # not running inside a git dir. Maybe too restrictive?
# If sentry_sdk package is not installed then return and do not use Sentry
try:
import sentry_sdk # noqa
except ImportError:
return
sentry_sdk.init(
dsn="https://c63ef8c64e05d1aa1a96513361f3ca2f@o4505950840946688.ingest.sentry.io/4505950933614592",
debug=False,
include_local_variables=False,
traces_sample_rate=1.0,
environment="production", # 'dev' or 'production'
before_send=before_send,
ignore_errors=[KeyboardInterrupt, FileNotFoundError, bdb.BdbQuit],
)
sentry_sdk.set_user({"id": CONFIG["uuid"]}) # SHA-256 anonymized UUID hash
# Disable all sentry logging
for logger in "sentry_sdk", "sentry_sdk.errors":
logging.getLogger(logger).setLevel(logging.CRITICAL)
set_sentry()

View File

@@ -1,8 +1,9 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.2.6" version = "0.3.2"
dependencies = [ dependencies = [
"pylance==0.8.0", "deprecation",
"pylance==0.8.7",
"ratelimiter~=1.0", "ratelimiter~=1.0",
"retry>=0.9.2", "retry>=0.9.2",
"tqdm>=4.1.0", "tqdm>=4.1.0",
@@ -10,7 +11,10 @@ dependencies = [
"pydantic>=1.10", "pydantic>=1.10",
"attrs>=21.3.0", "attrs>=21.3.0",
"semver>=3.0", "semver>=3.0",
"cachetools" "cachetools",
"pyyaml>=6.0",
"click>=8.1.7",
"requests>=2.31.0"
] ]
description = "lancedb" description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }] authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
@@ -48,7 +52,10 @@ tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests"]
dev = ["ruff", "pre-commit", "black"] dev = ["ruff", "pre-commit", "black"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"] docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
clip = ["torch", "pillow", "open-clip"] clip = ["torch", "pillow", "open-clip"]
embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip"] embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere"]
[project.scripts]
lancedb = "lancedb.cli.cli:cli"
[build-system] [build-system]
requires = ["setuptools", "wheel"] requires = ["setuptools", "wheel"]

35
python/tests/test_cli.py Normal file
View File

@@ -0,0 +1,35 @@
from click.testing import CliRunner
from lancedb.cli.cli import cli
from lancedb.utils import CONFIG
def test_entry():
runner = CliRunner()
result = runner.invoke(cli)
assert result.exit_code == 0 # Main check
assert "lancedb" in result.output.lower() # lazy check
def test_diagnostics():
runner = CliRunner()
result = runner.invoke(cli, ["diagnostics", "--disabled"])
assert result.exit_code == 0 # Main check
assert CONFIG["diagnostics"] == False
result = runner.invoke(cli, ["diagnostics", "--enabled"])
assert result.exit_code == 0 # Main check
assert CONFIG["diagnostics"] == True
def test_config():
runner = CliRunner()
result = runner.invoke(cli, ["config"])
assert result.exit_code == 0 # Main check
cfg = CONFIG.copy()
cfg.pop("uuid")
for (
item,
_,
) in cfg.items(): # check for keys only as formatting is subject to change
assert item in result.output

View File

@@ -47,7 +47,7 @@ def test_contextualizer(raw_df: pd.DataFrame):
.stride(3) .stride(3)
.text_col("token") .text_col("token")
.groupby("document_id") .groupby("document_id")
.to_df()["token"] .to_pandas()["token"]
.to_list() .to_list()
) )
@@ -67,7 +67,7 @@ def test_contextualizer_with_threshold(raw_df: pd.DataFrame):
.text_col("token") .text_col("token")
.groupby("document_id") .groupby("document_id")
.min_window_size(4) .min_window_size(4)
.to_df()["token"] .to_pandas()["token"]
.to_list() .to_list()
) )

View File

@@ -33,11 +33,11 @@ def test_basic(tmp_path):
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}, {"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
], ],
) )
rs = table.search([100, 100]).limit(1).to_df() rs = table.search([100, 100]).limit(1).to_pandas()
assert len(rs) == 1 assert len(rs) == 1
assert rs["item"].iloc[0] == "bar" assert rs["item"].iloc[0] == "bar"
rs = table.search([100, 100]).where("price < 15").limit(2).to_df() rs = table.search([100, 100]).where("price < 15").limit(2).to_pandas()
assert len(rs) == 1 assert len(rs) == 1
assert rs["item"].iloc[0] == "foo" assert rs["item"].iloc[0] == "foo"
@@ -62,11 +62,11 @@ def test_ingest_pd(tmp_path):
} }
) )
table = db.create_table("test", data=data) table = db.create_table("test", data=data)
rs = table.search([100, 100]).limit(1).to_df() rs = table.search([100, 100]).limit(1).to_pandas()
assert len(rs) == 1 assert len(rs) == 1
assert rs["item"].iloc[0] == "bar" assert rs["item"].iloc[0] == "bar"
rs = table.search([100, 100]).where("price < 15").limit(2).to_df() rs = table.search([100, 100]).where("price < 15").limit(2).to_pandas()
assert len(rs) == 1 assert len(rs) == 1
assert rs["item"].iloc[0] == "foo" assert rs["item"].iloc[0] == "foo"
@@ -137,8 +137,8 @@ def test_ingest_iterator(tmp_path):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
tbl = db.create_table("table2", make_batches(), schema=schema, mode="overwrite") tbl = db.create_table("table2", make_batches(), schema=schema, mode="overwrite")
tbl.to_pandas() tbl.to_pandas()
assert tbl.search([3.1, 4.1]).limit(1).to_df()["_distance"][0] == 0.0 assert tbl.search([3.1, 4.1]).limit(1).to_pandas()["_distance"][0] == 0.0
assert tbl.search([5.9, 26.5]).limit(1).to_df()["_distance"][0] == 0.0 assert tbl.search([5.9, 26.5]).limit(1).to_pandas()["_distance"][0] == 0.0
tbl_len = len(tbl) tbl_len = len(tbl)
tbl.add(make_batches()) tbl.add(make_batches())
assert tbl_len == 50 assert tbl_len == 50

View File

@@ -23,5 +23,5 @@ from lancedb import LanceDBConnection
def test_against_local_server(): def test_against_local_server():
conn = LanceDBConnection("lancedb+http://localhost:10024") conn = LanceDBConnection("lancedb+http://localhost:10024")
table = conn.open_table("sift1m_ivf1024_pq16") table = conn.open_table("sift1m_ivf1024_pq16")
df = table.search(np.random.rand(128)).to_df() df = table.search(np.random.rand(128)).to_pandas()
assert len(df) == 10 assert len(df) == 10

View File

@@ -11,6 +11,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import io import io
import os
import numpy as np import numpy as np
import pandas as pd import pandas as pd
@@ -18,7 +19,7 @@ import pytest
import requests import requests
import lancedb import lancedb
from lancedb.embeddings import EmbeddingFunctionRegistry from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector from lancedb.pydantic import LanceModel, Vector
# These are integration tests for embedding functions. # These are integration tests for embedding functions.
@@ -30,12 +31,15 @@ from lancedb.pydantic import LanceModel, Vector
@pytest.mark.parametrize("alias", ["sentence-transformers", "openai"]) @pytest.mark.parametrize("alias", ["sentence-transformers", "openai"])
def test_sentence_transformer(alias, tmp_path): def test_sentence_transformer(alias, tmp_path):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance() registry = get_registry()
func = registry.get(alias).create() func = registry.get(alias).create()
func2 = registry.get(alias).create()
class Words(LanceModel): class Words(LanceModel):
text: str = func.SourceField() text: str = func.SourceField()
text2: str = func2.SourceField()
vector: Vector(func.ndims()) = func.VectorField() vector: Vector(func.ndims()) = func.VectorField()
vector2: Vector(func2.ndims()) = func2.VectorField()
table = db.create_table("words", schema=Words) table = db.create_table("words", schema=Words)
table.add( table.add(
@@ -49,7 +53,16 @@ def test_sentence_transformer(alias, tmp_path):
"foo", "foo",
"bar", "bar",
"baz", "baz",
] ],
"text2": [
"to be or not to be",
"that is the question",
"for whether tis nobler",
"in the mind to suffer",
"the slings and arrows",
"of outrageous fortune",
"or to take arms",
],
} }
) )
) )
@@ -61,6 +74,13 @@ def test_sentence_transformer(alias, tmp_path):
expected = table.search(vec).limit(1).to_pydantic(Words)[0] expected = table.search(vec).limit(1).to_pydantic(Words)[0]
assert actual.text == expected.text assert actual.text == expected.text
assert actual.text == "hello world" assert actual.text == "hello world"
assert not np.allclose(actual.vector, actual.vector2)
actual = (
table.search(query, vector_column_name="vector2").limit(1).to_pydantic(Words)[0]
)
assert actual.text != "hello world"
assert not np.allclose(actual.vector, actual.vector2)
@pytest.mark.slow @pytest.mark.slow
@@ -68,7 +88,7 @@ def test_openclip(tmp_path):
from PIL import Image from PIL import Image
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance() registry = get_registry()
func = registry.get("open-clip").create() func = registry.get("open-clip").create()
class Images(LanceModel): class Images(LanceModel):
@@ -123,3 +143,22 @@ def test_openclip(tmp_path):
arrow_table["vector"].combine_chunks().values.to_numpy(), arrow_table["vector"].combine_chunks().values.to_numpy(),
arrow_table["vec_from_bytes"].combine_chunks().values.to_numpy(), arrow_table["vec_from_bytes"].combine_chunks().values.to_numpy(),
) )
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set"
) # also skip if cohere not installed
def test_cohere_embedding_function():
cohere = get_registry().get("cohere").create(name="embed-multilingual-v2.0")
class TextModel(LanceModel):
text: str = cohere.SourceField()
vector: Vector(cohere.ndims()) = cohere.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == cohere.ndims()

View File

@@ -71,14 +71,14 @@ def test_search_index(tmp_path, table):
def test_create_index_from_table(tmp_path, table): def test_create_index_from_table(tmp_path, table):
table.create_fts_index("text") table.create_fts_index("text")
df = table.search("puppy").limit(10).select(["text"]).to_df() df = table.search("puppy").limit(10).select(["text"]).to_pandas()
assert len(df) == 10 assert len(df) == 10
assert "text" in df.columns assert "text" in df.columns
def test_create_index_multiple_columns(tmp_path, table): def test_create_index_multiple_columns(tmp_path, table):
table.create_fts_index(["text", "text2"]) table.create_fts_index(["text", "text2"])
df = table.search("puppy").limit(10).to_df() df = table.search("puppy").limit(10).to_pandas()
assert len(df) == 10 assert len(df) == 10
assert "text" in df.columns assert "text" in df.columns
assert "text2" in df.columns assert "text2" in df.columns
@@ -87,5 +87,5 @@ def test_create_index_multiple_columns(tmp_path, table):
def test_empty_rs(tmp_path, table, mocker): def test_empty_rs(tmp_path, table, mocker):
table.create_fts_index(["text", "text2"]) table.create_fts_index(["text", "text2"])
mocker.patch("lancedb.fts.search_index", return_value=([], [])) mocker.patch("lancedb.fts.search_index", return_value=([], []))
df = table.search("puppy").limit(10).to_df() df = table.search("puppy").limit(10).to_pandas()
assert len(df) == 0 assert len(df) == 0

View File

@@ -36,11 +36,11 @@ def test_s3_io():
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}, {"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
], ],
) )
rs = table.search([100, 100]).limit(1).to_df() rs = table.search([100, 100]).limit(1).to_pandas()
assert len(rs) == 1 assert len(rs) == 1
assert rs["item"].iloc[0] == "bar" assert rs["item"].iloc[0] == "bar"
rs = table.search([100, 100]).where("price < 15").limit(2).to_df() rs = table.search([100, 100]).where("price < 15").limit(2).to_pandas()
assert len(rs) == 1 assert len(rs) == 1
assert rs["item"].iloc[0] == "foo" assert rs["item"].iloc[0] == "foo"

View File

@@ -14,6 +14,7 @@
import json import json
import sys import sys
from datetime import date, datetime
from typing import List, Optional from typing import List, Optional
import pyarrow as pa import pyarrow as pa
@@ -40,10 +41,18 @@ def test_pydantic_to_arrow():
li: List[int] li: List[int]
opt: Optional[str] = None opt: Optional[str] = None
st: StructModel st: StructModel
dt: date
dtt: datetime
# d: dict # d: dict
m = TestModel( m = TestModel(
id=1, s="hello", vec=[1.0, 2.0, 3.0], li=[2, 3, 4], st=StructModel(a="a", b=1.0) id=1,
s="hello",
vec=[1.0, 2.0, 3.0],
li=[2, 3, 4],
st=StructModel(a="a", b=1.0),
dt=date.today(),
dtt=datetime.now(),
) )
schema = pydantic_to_schema(TestModel) schema = pydantic_to_schema(TestModel)
@@ -62,6 +71,8 @@ def test_pydantic_to_arrow():
), ),
False, False,
), ),
pa.field("dt", pa.date32(), False),
pa.field("dtt", pa.timestamp("us"), False),
] ]
) )
assert schema == expect_schema assert schema == expect_schema
@@ -79,10 +90,18 @@ def test_pydantic_to_arrow_py38():
li: List[int] li: List[int]
opt: Optional[str] = None opt: Optional[str] = None
st: StructModel st: StructModel
dt: date
dtt: datetime
# d: dict # d: dict
m = TestModel( m = TestModel(
id=1, s="hello", vec=[1.0, 2.0, 3.0], li=[2, 3, 4], st=StructModel(a="a", b=1.0) id=1,
s="hello",
vec=[1.0, 2.0, 3.0],
li=[2, 3, 4],
st=StructModel(a="a", b=1.0),
dt=date.today(),
dtt=datetime.now(),
) )
schema = pydantic_to_schema(TestModel) schema = pydantic_to_schema(TestModel)
@@ -101,6 +120,8 @@ def test_pydantic_to_arrow_py38():
), ),
False, False,
), ),
pa.field("dt", pa.date32(), False),
pa.field("dtt", pa.timestamp("us"), False),
] ]
) )
assert schema == expect_schema assert schema == expect_schema

View File

@@ -85,17 +85,20 @@ def test_cast(table):
def test_query_builder(table): def test_query_builder(table):
df = ( rs = (
LanceVectorQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df() LanceVectorQueryBuilder(table, [0, 0], "vector")
.limit(1)
.select(["id"])
.to_list()
) )
assert df["id"].values[0] == 1 assert rs[0]["id"] == 1
assert all(df["vector"].values[0] == [1, 2]) assert all(np.array(rs[0]["vector"]) == [1, 2])
def test_query_builder_with_filter(table): def test_query_builder_with_filter(table):
df = LanceVectorQueryBuilder(table, [0, 0], "vector").where("id = 2").to_df() rs = LanceVectorQueryBuilder(table, [0, 0], "vector").where("id = 2").to_list()
assert df["id"].values[0] == 2 assert rs[0]["id"] == 2
assert all(df["vector"].values[0] == [3, 4]) assert all(np.array(rs[0]["vector"]) == [3, 4])
def test_query_builder_with_prefilter(table): def test_query_builder_with_prefilter(table):
@@ -103,7 +106,7 @@ def test_query_builder_with_prefilter(table):
LanceVectorQueryBuilder(table, [0, 0], "vector") LanceVectorQueryBuilder(table, [0, 0], "vector")
.where("id = 2") .where("id = 2")
.limit(1) .limit(1)
.to_df() .to_pandas()
) )
assert len(df) == 0 assert len(df) == 0
@@ -111,7 +114,7 @@ def test_query_builder_with_prefilter(table):
LanceVectorQueryBuilder(table, [0, 0], "vector") LanceVectorQueryBuilder(table, [0, 0], "vector")
.where("id = 2", prefilter=True) .where("id = 2", prefilter=True)
.limit(1) .limit(1)
.to_df() .to_pandas()
) )
assert df["id"].values[0] == 2 assert df["id"].values[0] == 2
assert all(df["vector"].values[0] == [3, 4]) assert all(df["vector"].values[0] == [3, 4])
@@ -120,9 +123,11 @@ def test_query_builder_with_prefilter(table):
def test_query_builder_with_metric(table): def test_query_builder_with_metric(table):
query = [4, 8] query = [4, 8]
vector_column_name = "vector" vector_column_name = "vector"
df_default = LanceVectorQueryBuilder(table, query, vector_column_name).to_df() df_default = LanceVectorQueryBuilder(table, query, vector_column_name).to_pandas()
df_l2 = ( df_l2 = (
LanceVectorQueryBuilder(table, query, vector_column_name).metric("L2").to_df() LanceVectorQueryBuilder(table, query, vector_column_name)
.metric("L2")
.to_pandas()
) )
tm.assert_frame_equal(df_default, df_l2) tm.assert_frame_equal(df_default, df_l2)
@@ -130,7 +135,7 @@ def test_query_builder_with_metric(table):
LanceVectorQueryBuilder(table, query, vector_column_name) LanceVectorQueryBuilder(table, query, vector_column_name)
.metric("cosine") .metric("cosine")
.limit(1) .limit(1)
.to_df() .to_pandas()
) )
assert df_cosine._distance[0] == pytest.approx( assert df_cosine._distance[0] == pytest.approx(
cosine_distance(query, df_cosine.vector[0]), cosine_distance(query, df_cosine.vector[0]),

View File

@@ -86,7 +86,7 @@ async def test_e2e_with_mock_server():
columns=["id", "vector"], columns=["id", "vector"],
), ),
) )
).to_df() ).to_pandas()
assert "vector" in df.columns assert "vector" in df.columns
assert "id" in df.columns assert "id" in df.columns

View File

@@ -32,4 +32,4 @@ def test_remote_db():
setattr(conn, "_client", FakeLanceDBClient()) setattr(conn, "_client", FakeLanceDBClient())
table = conn["test"] table = conn["test"]
table.search([1.0, 2.0]).to_df() table.search([1.0, 2.0]).to_pandas()

View File

@@ -12,6 +12,7 @@
# limitations under the License. # limitations under the License.
import functools import functools
from datetime import timedelta
from pathlib import Path from pathlib import Path
from typing import List from typing import List
from unittest.mock import PropertyMock, patch from unittest.mock import PropertyMock, patch
@@ -223,6 +224,7 @@ def test_create_index_method():
num_partitions=256, num_partitions=256,
num_sub_vectors=96, num_sub_vectors=96,
replace=True, replace=True,
accelerator=None,
) )
@@ -426,8 +428,8 @@ def test_multiple_vector_columns(db):
table.add(df) table.add(df)
q = np.random.randn(10) q = np.random.randn(10)
result1 = table.search(q, vector_column_name="vector1").limit(1).to_df() result1 = table.search(q, vector_column_name="vector1").limit(1).to_pandas()
result2 = table.search(q, vector_column_name="vector2").limit(1).to_df() result2 = table.search(q, vector_column_name="vector2").limit(1).to_pandas()
assert result1["text"].iloc[0] != result2["text"].iloc[0] assert result1["text"].iloc[0] != result2["text"].iloc[0]
@@ -438,6 +440,35 @@ def test_empty_query(db):
"my_table", "my_table",
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}], data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
) )
df = table.search().select(["id"]).where("text='bar'").limit(1).to_df() df = table.search().select(["id"]).where("text='bar'").limit(1).to_pandas()
val = df.id.iloc[0] val = df.id.iloc[0]
assert val == 1 assert val == 1
def test_compact_cleanup(db):
table = LanceTable.create(
db,
"my_table",
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
)
table.add([{"text": "baz", "id": 2}])
assert len(table) == 3
assert table.version == 3
stats = table.compact_files()
assert len(table) == 3
# Compact_files bump 2 versions.
assert table.version == 5
assert stats.fragments_removed > 0
assert stats.fragments_added == 1
stats = table.cleanup_old_versions()
assert stats.bytes_removed == 0
stats = table.cleanup_old_versions(older_than=timedelta(0), delete_unverified=True)
assert stats.bytes_removed > 0
assert table.version == 5
with pytest.raises(Exception, match="Version 3 no longer exists"):
table.checkout(3)

View File

@@ -0,0 +1,60 @@
import json
import pytest
import lancedb
from lancedb.utils.events import _Events
@pytest.fixture(autouse=True)
def request_log_path(tmp_path):
return tmp_path / "request.json"
def mock_register_event(name: str, **kwargs):
if _Events._instance is None:
_Events._instance = _Events()
_Events._instance.enabled = True
_Events._instance.rate_limit = 0
_Events._instance(name, **kwargs)
def test_event_reporting(monkeypatch, request_log_path, tmp_path) -> None:
def mock_request(**kwargs):
json_data = kwargs.get("json", {})
with open(request_log_path, "w") as f:
json.dump(json_data, f)
monkeypatch.setattr(
lancedb.table, "register_event", mock_register_event
) # Force enable registering events and strip exception handling
monkeypatch.setattr(lancedb.utils.events, "threaded_request", mock_request)
db = lancedb.connect(tmp_path)
db.create_table(
"test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
mode="overwrite",
)
assert request_log_path.exists() # test if event was registered
with open(request_log_path, "r") as f:
json_data = json.load(f)
# TODO: don't hardcode these here. Instead create a module level json scehma in lancedb.utils.events for better evolvability
batch_keys = ["api_key", "distinct_id", "batch"]
event_keys = ["event", "properties", "timestamp", "distinct_id"]
property_keys = ["cli", "install", "platforms", "version", "session_id"]
assert all([key in json_data for key in batch_keys])
assert all([key in json_data["batch"][0] for key in event_keys])
assert all([key in json_data["batch"][0]["properties"] for key in property_keys])
# cleanup & reset
monkeypatch.undo()
_Events._instance = None

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb-node" name = "vectordb-node"
version = "0.2.6" version = "0.3.3"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
edition = "2018" edition = "2018"
@@ -13,6 +13,7 @@ crate-type = ["cdylib"]
arrow-array = { workspace = true } arrow-array = { workspace = true }
arrow-ipc = { workspace = true } arrow-ipc = { workspace = true }
arrow-schema = { workspace = true } arrow-schema = { workspace = true }
chrono = { workspace = true }
conv = "0.3.3" conv = "0.3.3"
once_cell = "1" once_cell = "1"
futures = "0.3" futures = "0.3"

View File

@@ -12,8 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use lance::index::vector::ivf::IvfBuildParams; use lance::index::vector::{ivf::IvfBuildParams, pq::PQBuildParams};
use lance::index::vector::pq::PQBuildParams;
use lance_linalg::distance::MetricType; use lance_linalg::distance::MetricType;
use neon::context::FunctionContext; use neon::context::FunctionContext;
use neon::prelude::*; use neon::prelude::*;
@@ -82,7 +81,7 @@ fn get_index_params_builder(
let ivf_params = IvfBuildParams { let ivf_params = IvfBuildParams {
num_partitions: np, num_partitions: np,
max_iters, max_iters,
centroids: None, ..Default::default()
}; };
index_builder.ivf_params(ivf_params) index_builder.ivf_params(ivf_params)
}); });

View File

@@ -74,7 +74,7 @@ fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> {
static RUNTIME: OnceCell<Runtime> = OnceCell::new(); static RUNTIME: OnceCell<Runtime> = OnceCell::new();
static LOG: OnceCell<()> = OnceCell::new(); static LOG: OnceCell<()> = OnceCell::new();
LOG.get_or_init(|| env_logger::init()); LOG.get_or_init(env_logger::init);
RUNTIME.get_or_try_init(|| Runtime::new().or_throw(cx)) RUNTIME.get_or_try_init(|| Runtime::new().or_throw(cx))
} }
@@ -148,7 +148,7 @@ fn get_aws_creds(
match (secret_key_id, secret_key, temp_token) { match (secret_key_id, secret_key, temp_token) {
(Some(key_id), Some(key), optional_token) => Ok(Some(Arc::new( (Some(key_id), Some(key), optional_token) => Ok(Some(Arc::new(
StaticCredentialProvider::new(AwsCredential { StaticCredentialProvider::new(AwsCredential {
key_id: key_id, key_id,
secret_key: key, secret_key: key,
token: optional_token, token: optional_token,
}), }),
@@ -195,7 +195,7 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
let (deferred, promise) = cx.promise(); let (deferred, promise) = cx.promise();
rt.spawn(async move { rt.spawn(async move {
let table_rst = database.open_table_with_params(&table_name, &params).await; let table_rst = database.open_table_with_params(&table_name, params).await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let js_table = JsTable::from(table_rst.or_throw(&mut cx)?); let js_table = JsTable::from(table_rst.or_throw(&mut cx)?);
@@ -237,6 +237,8 @@ fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("tableAdd", JsTable::js_add)?; cx.export_function("tableAdd", JsTable::js_add)?;
cx.export_function("tableCountRows", JsTable::js_count_rows)?; cx.export_function("tableCountRows", JsTable::js_count_rows)?;
cx.export_function("tableDelete", JsTable::js_delete)?; cx.export_function("tableDelete", JsTable::js_delete)?;
cx.export_function("tableCleanupOldVersions", JsTable::js_cleanup)?;
cx.export_function("tableCompactFiles", JsTable::js_compact)?;
cx.export_function( cx.export_function(
"tableCreateVectorIndex", "tableCreateVectorIndex",
index::vector::table_create_vector_index, index::vector::table_create_vector_index,

View File

@@ -13,6 +13,7 @@
// limitations under the License. // limitations under the License.
use arrow_array::RecordBatchIterator; use arrow_array::RecordBatchIterator;
use lance::dataset::optimize::CompactionOptions;
use lance::dataset::{WriteMode, WriteParams}; use lance::dataset::{WriteMode, WriteParams};
use lance::io::object_store::ObjectStoreParams; use lance::io::object_store::ObjectStoreParams;
@@ -69,7 +70,7 @@ impl JsTable {
store_params: Some(ObjectStoreParams::with_aws_credentials( store_params: Some(ObjectStoreParams::with_aws_credentials(
aws_creds, aws_region, aws_creds, aws_region,
)), )),
mode: mode, mode,
..WriteParams::default() ..WriteParams::default()
}; };
@@ -120,7 +121,7 @@ impl JsTable {
let add_result = table.add(batch_reader, Some(params)).await; let add_result = table.add(batch_reader, Some(params)).await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let _added = add_result.or_throw(&mut cx)?; add_result.or_throw(&mut cx)?;
Ok(cx.boxed(JsTable::from(table))) Ok(cx.boxed(JsTable::from(table)))
}); });
}); });
@@ -163,4 +164,116 @@ impl JsTable {
}); });
Ok(promise) Ok(promise)
} }
pub(crate) fn js_cleanup(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
let channel = cx.channel();
let older_than: i64 = cx
.argument_opt(0)
.and_then(|val| val.downcast::<JsNumber, _>(&mut cx).ok())
.map(|val| val.value(&mut cx) as i64)
.unwrap_or_else(|| 2 * 7 * 24 * 60); // 2 weeks
let older_than = chrono::Duration::minutes(older_than);
let delete_unverified: bool = cx
.argument_opt(1)
.and_then(|val| val.downcast::<JsBoolean, _>(&mut cx).ok())
.map(|val| val.value(&mut cx))
.unwrap_or_default();
rt.spawn(async move {
let stats = table
.cleanup_old_versions(older_than, Some(delete_unverified))
.await;
deferred.settle_with(&channel, move |mut cx| {
let stats = stats.or_throw(&mut cx)?;
let output_metrics = JsObject::new(&mut cx);
let bytes_removed = cx.number(stats.bytes_removed as f64);
output_metrics.set(&mut cx, "bytesRemoved", bytes_removed)?;
let old_versions = cx.number(stats.old_versions as f64);
output_metrics.set(&mut cx, "oldVersions", old_versions)?;
let output_table = cx.boxed(JsTable::from(table));
let output = JsObject::new(&mut cx);
output.set(&mut cx, "metrics", output_metrics)?;
output.set(&mut cx, "newTable", output_table)?;
Ok(output)
})
});
Ok(promise)
}
pub(crate) fn js_compact(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let mut table = js_table.table.clone();
let channel = cx.channel();
let js_options = cx.argument::<JsObject>(0)?;
let mut options = CompactionOptions::default();
if let Some(target_rows) =
js_options.get_opt::<JsNumber, _, _>(&mut cx, "targetRowsPerFragment")?
{
options.target_rows_per_fragment = target_rows.value(&mut cx) as usize;
}
if let Some(max_per_group) =
js_options.get_opt::<JsNumber, _, _>(&mut cx, "maxRowsPerGroup")?
{
options.max_rows_per_group = max_per_group.value(&mut cx) as usize;
}
if let Some(materialize_deletions) =
js_options.get_opt::<JsBoolean, _, _>(&mut cx, "materializeDeletions")?
{
options.materialize_deletions = materialize_deletions.value(&mut cx);
}
if let Some(materialize_deletions_threshold) =
js_options.get_opt::<JsNumber, _, _>(&mut cx, "materializeDeletionsThreshold")?
{
options.materialize_deletions_threshold =
materialize_deletions_threshold.value(&mut cx) as f32;
}
if let Some(num_threads) = js_options.get_opt::<JsNumber, _, _>(&mut cx, "numThreads")? {
options.num_threads = num_threads.value(&mut cx) as usize;
}
rt.spawn(async move {
let stats = table.compact_files(options).await;
deferred.settle_with(&channel, move |mut cx| {
let stats = stats.or_throw(&mut cx)?;
let output_metrics = JsObject::new(&mut cx);
let fragments_removed = cx.number(stats.fragments_removed as f64);
output_metrics.set(&mut cx, "fragmentsRemoved", fragments_removed)?;
let fragments_added = cx.number(stats.fragments_added as f64);
output_metrics.set(&mut cx, "fragmentsAdded", fragments_added)?;
let files_removed = cx.number(stats.files_removed as f64);
output_metrics.set(&mut cx, "filesRemoved", files_removed)?;
let files_added = cx.number(stats.files_added as f64);
output_metrics.set(&mut cx, "filesAdded", files_added)?;
let output_table = cx.boxed(JsTable::from(table));
let output = JsObject::new(&mut cx);
output.set(&mut cx, "metrics", output_metrics)?;
output.set(&mut cx, "newTable", output_table)?;
Ok(output)
})
});
Ok(promise)
}
} }

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb" name = "vectordb"
version = "0.2.6" version = "0.3.3"
edition = "2021" edition = "2021"
description = "LanceDB: A serverless, low-latency vector database for AI applications" description = "LanceDB: A serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
@@ -16,16 +16,22 @@ arrow-data = { workspace = true }
arrow-schema = { workspace = true } arrow-schema = { workspace = true }
arrow-ord = { workspace = true } arrow-ord = { workspace = true }
arrow-cast = { workspace = true } arrow-cast = { workspace = true }
chrono = { workspace = true }
object_store = { workspace = true } object_store = { workspace = true }
snafu = { workspace = true } snafu = { workspace = true }
half = { workspace = true } half = { workspace = true }
lance = { workspace = true } lance = { workspace = true }
lance-linalg = { workspace = true } lance-linalg = { workspace = true }
lance-testing = { workspace = true }
tokio = { version = "1.23", features = ["rt-multi-thread"] } tokio = { version = "1.23", features = ["rt-multi-thread"] }
log = { workspace = true } log = { workspace = true }
async-trait = "0"
bytes = "1"
futures = "0"
num-traits = "0" num-traits = "0"
url = { workspace = true } url = { workspace = true }
[dev-dependencies] [dev-dependencies]
tempfile = "3.5.0" tempfile = "3.5.0"
rand = { version = "0.8.3", features = ["small_rng"] } rand = { version = "0.8.3", features = ["small_rng"] }
walkdir = "2"

View File

@@ -18,9 +18,9 @@ use arrow::compute::kernels::{aggregate::bool_and, length::length};
use arrow_array::{ use arrow_array::{
cast::AsArray, cast::AsArray,
types::{ArrowPrimitiveType, Int32Type, Int64Type}, types::{ArrowPrimitiveType, Int32Type, Int64Type},
Array, GenericListArray, OffsetSizeTrait, RecordBatchReader, Array, GenericListArray, OffsetSizeTrait, PrimitiveArray, RecordBatchReader,
}; };
use arrow_ord::comparison::eq_dyn_scalar; use arrow_ord::cmp::eq;
use arrow_schema::DataType; use arrow_schema::DataType;
use num_traits::{ToPrimitive, Zero}; use num_traits::{ToPrimitive, Zero};
@@ -38,7 +38,8 @@ where
} }
let dim = len_arr.as_primitive::<T>().value(0); let dim = len_arr.as_primitive::<T>().value(0);
if bool_and(&eq_dyn_scalar(len_arr.as_primitive::<T>(), dim)?) != Some(true) { let datum = PrimitiveArray::<T>::new_scalar(dim);
if bool_and(&eq(len_arr.as_primitive::<T>(), &datum)?) != Some(true) {
Ok(None) Ok(None)
} else { } else {
Ok(Some(dim)) Ok(Some(dim))

View File

@@ -14,13 +14,16 @@
use std::fs::create_dir_all; use std::fs::create_dir_all;
use std::path::Path; use std::path::Path;
use std::sync::Arc;
use arrow_array::RecordBatchReader; use arrow_array::RecordBatchReader;
use lance::dataset::WriteParams; use lance::dataset::WriteParams;
use lance::io::object_store::ObjectStore; use lance::io::object_store::{ObjectStore, WrappingObjectStore};
use object_store::local::LocalFileSystem;
use snafu::prelude::*; use snafu::prelude::*;
use crate::error::{CreateDirSnafu, InvalidTableNameSnafu, Result}; use crate::error::{CreateDirSnafu, Error, InvalidTableNameSnafu, Result};
use crate::io::object_store::MirroringObjectStoreWrapper;
use crate::table::{ReadParams, Table}; use crate::table::{ReadParams, Table};
pub const LANCE_FILE_EXTENSION: &str = "lance"; pub const LANCE_FILE_EXTENSION: &str = "lance";
@@ -31,10 +34,14 @@ pub struct Database {
pub(crate) uri: String, pub(crate) uri: String,
pub(crate) base_path: object_store::path::Path, pub(crate) base_path: object_store::path::Path,
// the object store wrapper to use on write path
pub(crate) store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
} }
const LANCE_EXTENSION: &str = "lance"; const LANCE_EXTENSION: &str = "lance";
const ENGINE: &str = "engine"; const ENGINE: &str = "engine";
const MIRRORED_STORE: &str = "mirroredStore";
/// A connection to LanceDB /// A connection to LanceDB
impl Database { impl Database {
@@ -55,6 +62,7 @@ impl Database {
Ok(mut url) => { Ok(mut url) => {
// iter thru the query params and extract the commit store param // iter thru the query params and extract the commit store param
let mut engine = None; let mut engine = None;
let mut mirrored_store = None;
let mut filtered_querys = vec![]; let mut filtered_querys = vec![];
// WARNING: specifying engine is NOT a publicly supported feature in lancedb yet // WARNING: specifying engine is NOT a publicly supported feature in lancedb yet
@@ -62,6 +70,13 @@ impl Database {
for (key, value) in url.query_pairs() { for (key, value) in url.query_pairs() {
if key == ENGINE { if key == ENGINE {
engine = Some(value.to_string()); engine = Some(value.to_string());
} else if key == MIRRORED_STORE {
if cfg!(windows) {
return Err(Error::Lance {
message: "mirrored store is not supported on windows".into(),
});
}
mirrored_store = Some(value.to_string());
} else { } else {
// to owned so we can modify the url // to owned so we can modify the url
filtered_querys.push((key.to_string(), value.to_string())); filtered_querys.push((key.to_string(), value.to_string()));
@@ -96,11 +111,21 @@ impl Database {
Self::try_create_dir(&plain_uri).context(CreateDirSnafu { path: plain_uri })?; Self::try_create_dir(&plain_uri).context(CreateDirSnafu { path: plain_uri })?;
} }
let write_store_wrapper = match mirrored_store {
Some(path) => {
let mirrored_store = Arc::new(LocalFileSystem::new_with_prefix(path)?);
let wrapper = MirroringObjectStoreWrapper::new(mirrored_store);
Some(Arc::new(wrapper) as Arc<dyn WrappingObjectStore>)
}
None => None,
};
Ok(Database { Ok(Database {
uri: table_base_uri, uri: table_base_uri,
query_string, query_string,
base_path, base_path,
object_store, object_store,
store_wrapper: write_store_wrapper,
}) })
} }
Err(_) => Self::open_path(uri).await, Err(_) => Self::open_path(uri).await,
@@ -110,13 +135,14 @@ impl Database {
async fn open_path(path: &str) -> Result<Database> { async fn open_path(path: &str) -> Result<Database> {
let (object_store, base_path) = ObjectStore::from_uri(path).await?; let (object_store, base_path) = ObjectStore::from_uri(path).await?;
if object_store.is_local() { if object_store.is_local() {
Self::try_create_dir(path).context(CreateDirSnafu { path: path })?; Self::try_create_dir(path).context(CreateDirSnafu { path })?;
} }
Ok(Self { Ok(Self {
uri: path.to_string(), uri: path.to_string(),
query_string: None, query_string: None,
base_path, base_path,
object_store, object_store,
store_wrapper: None,
}) })
} }
@@ -166,7 +192,15 @@ impl Database {
params: Option<WriteParams>, params: Option<WriteParams>,
) -> Result<Table> { ) -> Result<Table> {
let table_uri = self.table_uri(name)?; let table_uri = self.table_uri(name)?;
Table::create(&table_uri, name, batches, params).await
Table::create(
&table_uri,
name,
batches,
self.store_wrapper.clone(),
params,
)
.await
} }
/// Open a table in the database. /// Open a table in the database.
@@ -178,7 +212,7 @@ impl Database {
/// ///
/// * A [Table] object. /// * A [Table] object.
pub async fn open_table(&self, name: &str) -> Result<Table> { pub async fn open_table(&self, name: &str) -> Result<Table> {
self.open_table_with_params(name, &ReadParams::default()) self.open_table_with_params(name, ReadParams::default())
.await .await
} }
@@ -191,9 +225,9 @@ impl Database {
/// # Returns /// # Returns
/// ///
/// * A [Table] object. /// * A [Table] object.
pub async fn open_table_with_params(&self, name: &str, params: &ReadParams) -> Result<Table> { pub async fn open_table_with_params(&self, name: &str, params: ReadParams) -> Result<Table> {
let table_uri = self.table_uri(name)?; let table_uri = self.table_uri(name)?;
Table::open_with_params(&table_uri, name, params).await Table::open_with_params(&table_uri, name, self.store_wrapper.clone(), params).await
} }
/// Drop a table in the database. /// Drop a table in the database.

View File

@@ -95,8 +95,8 @@ impl VectorIndexBuilder for IvfPQIndexBuilder {
} }
fn build(&self) -> VectorIndexParams { fn build(&self) -> VectorIndexParams {
let ivf_params = self.ivf_params.clone().unwrap_or(IvfBuildParams::default()); let ivf_params = self.ivf_params.clone().unwrap_or_default();
let pq_params = self.pq_params.clone().unwrap_or(PQBuildParams::default()); let pq_params = self.pq_params.clone().unwrap_or_default();
VectorIndexParams::with_ivf_pq_params(pq_params.metric_type, ivf_params, pq_params) VectorIndexParams::with_ivf_pq_params(pq_params.metric_type, ivf_params, pq_params)
} }

1
rust/vectordb/src/io.rs Normal file
View File

@@ -0,0 +1 @@
pub mod object_store;

View File

@@ -0,0 +1,401 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! A mirroring object store that mirror writes to a secondary object store
use std::{
fmt::Formatter,
pin::Pin,
sync::Arc,
task::{Context, Poll},
};
use bytes::Bytes;
use futures::{stream::BoxStream, FutureExt, StreamExt};
use lance::io::object_store::WrappingObjectStore;
use object_store::{
path::Path, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore, Result,
};
use async_trait::async_trait;
use tokio::{
io::{AsyncWrite, AsyncWriteExt},
task::JoinHandle,
};
#[derive(Debug)]
struct MirroringObjectStore {
primary: Arc<dyn ObjectStore>,
secondary: Arc<dyn ObjectStore>,
}
impl std::fmt::Display for MirroringObjectStore {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
writeln!(f, "MirrowingObjectStore")?;
writeln!(f, "primary:")?;
self.primary.fmt(f)?;
writeln!(f, "secondary:")?;
self.secondary.fmt(f)?;
Ok(())
}
}
trait PrimaryOnly {
fn primary_only(&self) -> bool;
}
impl PrimaryOnly for Path {
fn primary_only(&self) -> bool {
self.filename().unwrap_or("") == "_latest.manifest"
}
}
/// An object store that mirrors write to secondsry object store first
/// and than commit to primary object store.
///
/// This is meant to mirrow writes to a less-durable but lower-latency
/// store. We have primary store that is durable but slow, and a secondary
/// store that is fast but not asdurable
///
/// Note: this object store does not mirror writes to *.manifest files
#[async_trait]
impl ObjectStore for MirroringObjectStore {
async fn put(&self, location: &Path, bytes: Bytes) -> Result<()> {
if location.primary_only() {
self.primary.put(location, bytes).await
} else {
self.secondary.put(location, bytes.clone()).await?;
self.primary.put(location, bytes).await?;
Ok(())
}
}
async fn put_multipart(
&self,
location: &Path,
) -> Result<(MultipartId, Box<dyn AsyncWrite + Unpin + Send>)> {
if location.primary_only() {
return self.primary.put_multipart(location).await;
}
let (id, stream) = self.secondary.put_multipart(location).await?;
let mirroring_upload = MirroringUpload::new(
Pin::new(stream),
self.primary.clone(),
self.secondary.clone(),
location.clone(),
);
Ok((id, Box::new(mirroring_upload)))
}
async fn abort_multipart(&self, location: &Path, multipart_id: &MultipartId) -> Result<()> {
if location.primary_only() {
return self.primary.abort_multipart(location, multipart_id).await;
}
self.secondary.abort_multipart(location, multipart_id).await
}
// Reads are routed to primary only
async fn get_opts(&self, location: &Path, options: GetOptions) -> Result<GetResult> {
self.primary.get_opts(location, options).await
}
async fn head(&self, location: &Path) -> Result<ObjectMeta> {
self.primary.head(location).await
}
async fn delete(&self, location: &Path) -> Result<()> {
if !location.primary_only() {
self.secondary.delete(location).await?;
}
self.primary.delete(location).await
}
async fn list(&self, prefix: Option<&Path>) -> Result<BoxStream<'_, Result<ObjectMeta>>> {
self.primary.list(prefix).await
}
async fn list_with_delimiter(&self, prefix: Option<&Path>) -> Result<ListResult> {
self.primary.list_with_delimiter(prefix).await
}
async fn copy(&self, from: &Path, to: &Path) -> Result<()> {
if to.primary_only() {
self.primary.copy(from, to).await
} else {
self.secondary.copy(from, to).await?;
self.primary.copy(from, to).await?;
Ok(())
}
}
async fn copy_if_not_exists(&self, from: &Path, to: &Path) -> Result<()> {
if !to.primary_only() {
self.secondary.copy(from, to).await?;
}
self.primary.copy_if_not_exists(from, to).await
}
}
struct MirroringUpload {
secondary_stream: Pin<Box<dyn AsyncWrite + Unpin + Send>>,
primary_store: Arc<dyn ObjectStore>,
secondary_store: Arc<dyn ObjectStore>,
location: Path,
state: MirroringUploadShutdown,
}
// The state goes from
// None
// -> (secondary)ShutingDown
// -> (secondary)ShutdownDone
// -> Uploading(to primary)
// -> Done
#[derive(Debug)]
enum MirroringUploadShutdown {
None,
ShutingDown,
ShutdownDone,
Uploading(Pin<Box<JoinHandle<()>>>),
Completed,
}
impl MirroringUpload {
pub fn new(
secondary_stream: Pin<Box<dyn AsyncWrite + Unpin + Send>>,
primary_store: Arc<dyn ObjectStore>,
secondary_store: Arc<dyn ObjectStore>,
location: Path,
) -> Self {
Self {
secondary_stream,
primary_store,
secondary_store,
location,
state: MirroringUploadShutdown::None,
}
}
}
impl AsyncWrite for MirroringUpload {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize, std::io::Error>> {
if !matches!(self.state, MirroringUploadShutdown::None) {
return Poll::Ready(Err(std::io::Error::new(
std::io::ErrorKind::Other,
"already shutdown",
)));
}
// Write to secondary first
let mut_self = self.get_mut();
mut_self.secondary_stream.as_mut().poll_write(cx, buf)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), std::io::Error>> {
if !matches!(self.state, MirroringUploadShutdown::None) {
return Poll::Ready(Err(std::io::Error::new(
std::io::ErrorKind::Other,
"already shutdown",
)));
}
let mut_self = self.get_mut();
mut_self.secondary_stream.as_mut().poll_flush(cx)
}
fn poll_shutdown(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Result<(), std::io::Error>> {
let mut_self = self.get_mut();
loop {
// try to shutdown secondary first
match &mut mut_self.state {
MirroringUploadShutdown::None | MirroringUploadShutdown::ShutingDown => {
match mut_self.secondary_stream.as_mut().poll_shutdown(cx) {
Poll::Ready(Ok(())) => {
mut_self.state = MirroringUploadShutdown::ShutdownDone;
// don't return, no waker is setup
}
Poll::Ready(Err(e)) => return Poll::Ready(Err(e)),
Poll::Pending => {
mut_self.state = MirroringUploadShutdown::ShutingDown;
return Poll::Pending;
}
}
}
MirroringUploadShutdown::ShutdownDone => {
let primary_store = mut_self.primary_store.clone();
let secondary_store = mut_self.secondary_store.clone();
let location = mut_self.location.clone();
let upload_future =
Box::pin(tokio::runtime::Handle::current().spawn(async move {
let mut source =
secondary_store.get(&location).await.unwrap().into_stream();
let upload_stream = primary_store.put_multipart(&location).await;
let (_, mut stream) = upload_stream.unwrap();
while let Some(buf) = source.next().await {
let buf = buf.unwrap();
stream.write_all(&buf).await.unwrap();
}
stream.shutdown().await.unwrap();
}));
mut_self.state = MirroringUploadShutdown::Uploading(upload_future);
// don't return, no waker is setup
}
MirroringUploadShutdown::Uploading(ref mut join_handle) => {
match join_handle.poll_unpin(cx) {
Poll::Ready(Ok(())) => {
mut_self.state = MirroringUploadShutdown::Completed;
return Poll::Ready(Ok(()));
}
Poll::Ready(Err(e)) => {
mut_self.state = MirroringUploadShutdown::Completed;
return Poll::Ready(Err(e.into()));
}
Poll::Pending => {
return Poll::Pending;
}
}
}
MirroringUploadShutdown::Completed => {
return Poll::Ready(Err(std::io::Error::new(
std::io::ErrorKind::Other,
"shutdown already completed",
)))
}
}
}
}
}
#[derive(Debug)]
pub struct MirroringObjectStoreWrapper {
secondary: Arc<dyn ObjectStore>,
}
impl MirroringObjectStoreWrapper {
pub fn new(secondary: Arc<dyn ObjectStore>) -> Self {
Self { secondary }
}
}
impl WrappingObjectStore for MirroringObjectStoreWrapper {
fn wrap(&self, primary: Arc<dyn ObjectStore>) -> Arc<dyn ObjectStore> {
Arc::new(MirroringObjectStore {
primary,
secondary: self.secondary.clone(),
})
}
}
// windows pathing can't be simply concatenated
#[cfg(all(test, not(windows)))]
mod test {
use super::*;
use crate::Database;
use arrow_array::PrimitiveArray;
use futures::TryStreamExt;
use lance::{dataset::WriteParams, io::object_store::ObjectStoreParams};
use lance_testing::datagen::{BatchGenerator, IncrementingInt32, RandomVector};
use object_store::local::LocalFileSystem;
use tempfile;
#[tokio::test]
async fn test_e2e() {
let dir1 = tempfile::tempdir().unwrap().into_path();
let dir2 = tempfile::tempdir().unwrap().into_path();
let secondary_store = LocalFileSystem::new_with_prefix(dir2.to_str().unwrap()).unwrap();
let object_store_wrapper = Arc::new(MirroringObjectStoreWrapper {
secondary: Arc::new(secondary_store),
});
let db = Database::connect(dir1.to_str().unwrap()).await.unwrap();
let mut param = WriteParams::default();
let mut store_params = ObjectStoreParams::default();
store_params.object_store_wrapper = Some(object_store_wrapper);
param.store_params = Some(store_params);
let mut datagen = BatchGenerator::new();
datagen = datagen.col(Box::new(IncrementingInt32::default()));
datagen = datagen.col(Box::new(RandomVector::default().named("vector".into())));
let res = db
.create_table("test", datagen.batch(100), Some(param.clone()))
.await;
// leave this here for easy debugging
let t = res.unwrap();
assert_eq!(t.count_rows().await.unwrap(), 100);
let q = t
.search(PrimitiveArray::from_iter_values(vec![0.1, 0.1, 0.1, 0.1]))
.limit(10)
.execute()
.await
.unwrap();
let bateches = q.try_collect::<Vec<_>>().await.unwrap();
assert_eq!(bateches.len(), 1);
assert_eq!(bateches[0].num_rows(), 10);
use walkdir::WalkDir;
let primary_location = dir1.join("test.lance").canonicalize().unwrap();
let secondary_location = dir2.join(primary_location.strip_prefix("/").unwrap());
let mut primary_iter = WalkDir::new(&primary_location).into_iter();
let mut secondary_iter = WalkDir::new(&secondary_location).into_iter();
let mut primary_elem = primary_iter.next();
let mut secondary_elem = secondary_iter.next();
loop {
if primary_elem.is_none() && secondary_elem.is_none() {
break;
}
// primary has more data then secondary, should not run out before secondary
let primary_f = primary_elem.unwrap().unwrap();
// hit manifest, skip, _versions contains all the manifest and should not exist on secondary
let primary_raw_path = primary_f.file_name().to_str().unwrap();
if primary_raw_path.contains("_latest.manifest") {
primary_elem = primary_iter.next();
continue;
}
let secondary_f = secondary_elem.unwrap().unwrap();
assert_eq!(
primary_f.path().strip_prefix(&primary_location),
secondary_f.path().strip_prefix(&secondary_location)
);
primary_elem = primary_iter.next();
secondary_elem = secondary_iter.next();
}
}
}

View File

@@ -16,8 +16,10 @@ pub mod data;
pub mod database; pub mod database;
pub mod error; pub mod error;
pub mod index; pub mod index;
pub mod io;
pub mod query; pub mod query;
pub mod table; pub mod table;
pub mod utils;
pub use database::Database; pub use database::Database;
pub use table::Table; pub use table::Table;

View File

@@ -12,17 +12,22 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use chrono::Duration;
use std::sync::Arc; use std::sync::Arc;
use arrow_array::{Float32Array, RecordBatchReader}; use arrow_array::{Float32Array, RecordBatchReader};
use arrow_schema::SchemaRef; use arrow_schema::SchemaRef;
use lance::dataset::cleanup::RemovalStats;
use lance::dataset::optimize::{compact_files, CompactionMetrics, CompactionOptions};
use lance::dataset::{Dataset, WriteParams}; use lance::dataset::{Dataset, WriteParams};
use lance::index::IndexType; use lance::index::IndexType;
use lance::io::object_store::WrappingObjectStore;
use std::path::Path; use std::path::Path;
use crate::error::{Error, Result}; use crate::error::{Error, Result};
use crate::index::vector::VectorIndexBuilder; use crate::index::vector::VectorIndexBuilder;
use crate::query::Query; use crate::query::Query;
use crate::utils::{PatchReadParam, PatchWriteParam};
use crate::WriteMode; use crate::WriteMode;
pub use lance::dataset::ReadParams; pub use lance::dataset::ReadParams;
@@ -35,6 +40,9 @@ pub struct Table {
name: String, name: String,
uri: String, uri: String,
dataset: Arc<Dataset>, dataset: Arc<Dataset>,
// the object store wrapper to use on write path
store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
} }
impl std::fmt::Display for Table { impl std::fmt::Display for Table {
@@ -56,12 +64,12 @@ impl Table {
/// * A [Table] object. /// * A [Table] object.
pub async fn open(uri: &str) -> Result<Self> { pub async fn open(uri: &str) -> Result<Self> {
let name = Self::get_table_name(uri)?; let name = Self::get_table_name(uri)?;
Self::open_with_params(uri, &name, &ReadParams::default()).await Self::open_with_params(uri, &name, None, ReadParams::default()).await
} }
/// Open an Table with a given name. /// Open an Table with a given name.
pub async fn open_with_name(uri: &str, name: &str) -> Result<Self> { pub async fn open_with_name(uri: &str, name: &str) -> Result<Self> {
Self::open_with_params(uri, name, &ReadParams::default()).await Self::open_with_params(uri, name, None, ReadParams::default()).await
} }
/// Opens an existing Table /// Opens an existing Table
@@ -75,8 +83,18 @@ impl Table {
/// # Returns /// # Returns
/// ///
/// * A [Table] object. /// * A [Table] object.
pub async fn open_with_params(uri: &str, name: &str, params: &ReadParams) -> Result<Self> { pub async fn open_with_params(
let dataset = Dataset::open_with_params(uri, params) uri: &str,
name: &str,
write_store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
params: ReadParams,
) -> Result<Self> {
// patch the params if we have a write store wrapper
let params = match write_store_wrapper.clone() {
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
None => params,
};
let dataset = Dataset::open_with_params(uri, &params)
.await .await
.map_err(|e| match e { .map_err(|e| match e {
lance::Error::DatasetNotFound { .. } => Error::TableNotFound { lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
@@ -90,6 +108,7 @@ impl Table {
name: name.to_string(), name: name.to_string(),
uri: uri.to_string(), uri: uri.to_string(),
dataset: Arc::new(dataset), dataset: Arc::new(dataset),
store_wrapper: write_store_wrapper,
}) })
} }
@@ -97,20 +116,26 @@ impl Table {
/// ///
pub async fn checkout(uri: &str, version: u64) -> Result<Self> { pub async fn checkout(uri: &str, version: u64) -> Result<Self> {
let name = Self::get_table_name(uri)?; let name = Self::get_table_name(uri)?;
Self::checkout_with_params(uri, &name, version, &ReadParams::default()).await Self::checkout_with_params(uri, &name, version, None, ReadParams::default()).await
} }
pub async fn checkout_with_name(uri: &str, name: &str, version: u64) -> Result<Self> { pub async fn checkout_with_name(uri: &str, name: &str, version: u64) -> Result<Self> {
Self::checkout_with_params(uri, name, version, &ReadParams::default()).await Self::checkout_with_params(uri, name, version, None, ReadParams::default()).await
} }
pub async fn checkout_with_params( pub async fn checkout_with_params(
uri: &str, uri: &str,
name: &str, name: &str,
version: u64, version: u64,
params: &ReadParams, write_store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
params: ReadParams,
) -> Result<Self> { ) -> Result<Self> {
let dataset = Dataset::checkout_with_params(uri, version, params) // patch the params if we have a write store wrapper
let params = match write_store_wrapper.clone() {
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
None => params,
};
let dataset = Dataset::checkout_with_params(uri, version, &params)
.await .await
.map_err(|e| match e { .map_err(|e| match e {
lance::Error::DatasetNotFound { .. } => Error::TableNotFound { lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
@@ -124,6 +149,23 @@ impl Table {
name: name.to_string(), name: name.to_string(),
uri: uri.to_string(), uri: uri.to_string(),
dataset: Arc::new(dataset), dataset: Arc::new(dataset),
store_wrapper: write_store_wrapper,
})
}
pub async fn checkout_latest(&self) -> Result<Self> {
let latest_version_id = self.dataset.latest_version_id().await?;
let dataset = if latest_version_id == self.dataset.version().version {
self.dataset.clone()
} else {
Arc::new(self.dataset.checkout_version(latest_version_id).await?)
};
Ok(Table {
name: self.name.clone(),
uri: self.uri.clone(),
dataset,
store_wrapper: self.store_wrapper.clone(),
}) })
} }
@@ -157,8 +199,15 @@ impl Table {
uri: &str, uri: &str,
name: &str, name: &str,
batches: impl RecordBatchReader + Send + 'static, batches: impl RecordBatchReader + Send + 'static,
write_store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
params: Option<WriteParams>, params: Option<WriteParams>,
) -> Result<Self> { ) -> Result<Self> {
// patch the params if we have a write store wrapper
let params = match write_store_wrapper.clone() {
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
None => params,
};
let dataset = Dataset::write(batches, uri, params) let dataset = Dataset::write(batches, uri, params)
.await .await
.map_err(|e| match e { .map_err(|e| match e {
@@ -173,6 +222,7 @@ impl Table {
name: name.to_string(), name: name.to_string(),
uri: uri.to_string(), uri: uri.to_string(),
dataset: Arc::new(dataset), dataset: Arc::new(dataset),
store_wrapper: write_store_wrapper,
}) })
} }
@@ -190,8 +240,8 @@ impl Table {
pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> { pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> {
use lance::index::DatasetIndexExt; use lance::index::DatasetIndexExt;
let dataset = self let mut dataset = self.dataset.as_ref().clone();
.dataset dataset
.create_index( .create_index(
&[index_builder &[index_builder
.get_column() .get_column()
@@ -221,12 +271,18 @@ impl Table {
batches: impl RecordBatchReader + Send + 'static, batches: impl RecordBatchReader + Send + 'static,
params: Option<WriteParams>, params: Option<WriteParams>,
) -> Result<()> { ) -> Result<()> {
let params = params.unwrap_or(WriteParams { let params = Some(params.unwrap_or(WriteParams {
mode: WriteMode::Append, mode: WriteMode::Append,
..WriteParams::default() ..WriteParams::default()
}); }));
self.dataset = Arc::new(Dataset::write(batches, &self.uri, Some(params)).await?); // patch the params if we have a write store wrapper
let params = match self.store_wrapper.clone() {
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
None => params,
};
self.dataset = Arc::new(Dataset::write(batches, &self.uri, params).await?);
Ok(()) Ok(())
} }
@@ -268,6 +324,41 @@ impl Table {
self.dataset = Arc::new(dataset); self.dataset = Arc::new(dataset);
Ok(()) Ok(())
} }
/// Remove old versions of the dataset from disk.
///
/// # Arguments
/// * `older_than` - The duration of time to keep versions of the dataset.
/// * `delete_unverified` - Because they may be part of an in-progress
/// transaction, files newer than 7 days old are not deleted by default.
/// If you are sure that there are no in-progress transactions, then you
/// can set this to True to delete all files older than `older_than`.
///
/// This calls into [lance::dataset::Dataset::cleanup_old_versions] and
/// returns the result.
pub async fn cleanup_old_versions(
&self,
older_than: Duration,
delete_unverified: Option<bool>,
) -> Result<RemovalStats> {
Ok(self
.dataset
.cleanup_old_versions(older_than, delete_unverified)
.await?)
}
/// Compact files in the dataset.
///
/// This can be run after making several small appends to optimize the table
/// for faster reads.
///
/// This calls into [lance::dataset::optimize::compact_files].
pub async fn compact_files(&mut self, options: CompactionOptions) -> Result<CompactionMetrics> {
let mut dataset = self.dataset.as_ref().clone();
let metrics = compact_files(&mut dataset, options, None).await?;
self.dataset = Arc::new(dataset);
Ok(metrics)
}
} }
#[cfg(test)] #[cfg(test)]
@@ -330,10 +421,12 @@ mod tests {
let batches = make_test_batches(); let batches = make_test_batches();
let _ = batches.schema().clone(); let _ = batches.schema().clone();
Table::create(&uri, "test", batches, None).await.unwrap(); Table::create(&uri, "test", batches, None, None)
.await
.unwrap();
let batches = make_test_batches(); let batches = make_test_batches();
let result = Table::create(&uri, "test", batches, None).await; let result = Table::create(&uri, "test", batches, None, None).await;
assert!(matches!( assert!(matches!(
result.unwrap_err(), result.unwrap_err(),
Error::TableAlreadyExists { .. } Error::TableAlreadyExists { .. }
@@ -347,7 +440,9 @@ mod tests {
let batches = make_test_batches(); let batches = make_test_batches();
let schema = batches.schema().clone(); let schema = batches.schema().clone();
let mut table = Table::create(&uri, "test", batches, None).await.unwrap(); let mut table = Table::create(&uri, "test", batches, None, None)
.await
.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10); assert_eq!(table.count_rows().await.unwrap(), 10);
let new_batches = RecordBatchIterator::new( let new_batches = RecordBatchIterator::new(
@@ -373,7 +468,9 @@ mod tests {
let batches = make_test_batches(); let batches = make_test_batches();
let schema = batches.schema().clone(); let schema = batches.schema().clone();
let mut table = Table::create(uri, "test", batches, None).await.unwrap(); let mut table = Table::create(uri, "test", batches, None, None)
.await
.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10); assert_eq!(table.count_rows().await.unwrap(), 10);
let new_batches = RecordBatchIterator::new( let new_batches = RecordBatchIterator::new(
@@ -456,7 +553,9 @@ mod tests {
..Default::default() ..Default::default()
}; };
assert!(!wrapper.called()); assert!(!wrapper.called());
let _ = Table::open_with_params(uri, "test", &param).await.unwrap(); let _ = Table::open_with_params(uri, "test", None, param)
.await
.unwrap();
assert!(wrapper.called()); assert!(wrapper.called());
} }
@@ -508,7 +607,9 @@ mod tests {
schema, schema,
); );
let mut table = Table::create(uri, "test", batches, None).await.unwrap(); let mut table = Table::create(uri, "test", batches, None, None)
.await
.unwrap();
let mut i = IvfPQIndexBuilder::new(); let mut i = IvfPQIndexBuilder::new();
let index_builder = i let index_builder = i

View File

@@ -0,0 +1,67 @@
use std::sync::Arc;
use lance::{
dataset::{ReadParams, WriteParams},
io::object_store::{ObjectStoreParams, WrappingObjectStore},
};
use crate::error::{Error, Result};
pub trait PatchStoreParam {
fn patch_with_store_wrapper(
self,
wrapper: Arc<dyn WrappingObjectStore>,
) -> Result<Option<ObjectStoreParams>>;
}
impl PatchStoreParam for Option<ObjectStoreParams> {
fn patch_with_store_wrapper(
self,
wrapper: Arc<dyn WrappingObjectStore>,
) -> Result<Option<ObjectStoreParams>> {
let mut params = self.unwrap_or_default();
if params.object_store_wrapper.is_some() {
return Err(Error::Lance {
message: "can not patch param because object store is already set".into(),
});
}
params.object_store_wrapper = Some(wrapper);
Ok(Some(params))
}
}
pub trait PatchWriteParam {
fn patch_with_store_wrapper(
self,
wrapper: Arc<dyn WrappingObjectStore>,
) -> Result<Option<WriteParams>>;
}
impl PatchWriteParam for Option<WriteParams> {
fn patch_with_store_wrapper(
self,
wrapper: Arc<dyn WrappingObjectStore>,
) -> Result<Option<WriteParams>> {
let mut params = self.unwrap_or_default();
params.store_params = params.store_params.patch_with_store_wrapper(wrapper)?;
Ok(Some(params))
}
}
// NOTE: we have some API inconsistency here.
// WriteParam is found in the form of Option<WriteParam> and ReadParam is found in the form of ReadParam
pub trait PatchReadParam {
fn patch_with_store_wrapper(self, wrapper: Arc<dyn WrappingObjectStore>) -> Result<ReadParams>;
}
impl PatchReadParam for ReadParams {
fn patch_with_store_wrapper(
mut self,
wrapper: Arc<dyn WrappingObjectStore>,
) -> Result<ReadParams> {
self.store_options = self.store_options.patch_with_store_wrapper(wrapper)?;
Ok(self)
}
}