mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 13:29:57 +00:00
Compare commits
2 Commits
python-v0.
...
docs/quick
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9e278fc5a6 | ||
|
|
09fed1f286 |
@@ -105,7 +105,8 @@ markdown_extensions:
|
|||||||
nav:
|
nav:
|
||||||
- Home:
|
- Home:
|
||||||
- LanceDB: index.md
|
- LanceDB: index.md
|
||||||
- 🏃🏼♂️ Quick start: basic.md
|
- 👉 Quickstart: quickstart.md
|
||||||
|
- 🏃🏼♂️ Basic Usage: basic.md
|
||||||
- 📚 Concepts:
|
- 📚 Concepts:
|
||||||
- Vector search: concepts/vector_search.md
|
- Vector search: concepts/vector_search.md
|
||||||
- Indexing:
|
- Indexing:
|
||||||
@@ -237,7 +238,9 @@ nav:
|
|||||||
- 👾 JavaScript (lancedb): js/globals.md
|
- 👾 JavaScript (lancedb): js/globals.md
|
||||||
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
|
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
|
||||||
|
|
||||||
- Quick start: basic.md
|
- Getting Started:
|
||||||
|
- Quickstart: quickstart.md
|
||||||
|
- Basic Usage: basic.md
|
||||||
- Concepts:
|
- Concepts:
|
||||||
- Vector search: concepts/vector_search.md
|
- Vector search: concepts/vector_search.md
|
||||||
- Indexing:
|
- Indexing:
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Quick start
|
# Basic Usage
|
||||||
|
|
||||||
!!! info "LanceDB can be run in a number of ways:"
|
!!! info "LanceDB can be run in a number of ways:"
|
||||||
|
|
||||||
|
|||||||
101
docs/src/quickstart.md
Normal file
101
docs/src/quickstart.md
Normal file
@@ -0,0 +1,101 @@
|
|||||||
|
|
||||||
|
# Getting Started with LanceDB: A Minimal Vector Search Tutorial
|
||||||
|
|
||||||
|
Let's set up a LanceDB database, insert vector data, and perform a simple vector search. We'll use simple character classes like "knight" and "rogue" to illustrate semantic relevance.
|
||||||
|
|
||||||
|
## 1. Install Dependencies
|
||||||
|
|
||||||
|
Before starting, make sure you have the necessary packages:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install lancedb pandas numpy
|
||||||
|
```
|
||||||
|
|
||||||
|
## 2. Import Required Libraries
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
```
|
||||||
|
|
||||||
|
## 3. Connect to LanceDB
|
||||||
|
|
||||||
|
You can use a local directory to store your database:
|
||||||
|
|
||||||
|
```python
|
||||||
|
db = lancedb.connect("./lancedb")
|
||||||
|
```
|
||||||
|
|
||||||
|
## 4. Create Sample Data
|
||||||
|
|
||||||
|
Add sample text data and corresponding 4D vectors:
|
||||||
|
|
||||||
|
```python
|
||||||
|
data = pd.DataFrame([
|
||||||
|
{"id": "1", "vector": [1.0, 0.0, 0.0, 0.0], "text": "knight"},
|
||||||
|
{"id": "2", "vector": [0.9, 0.1, 0.0, 0.0], "text": "warrior"},
|
||||||
|
{"id": "3", "vector": [0.0, 1.0, 0.0, 0.0], "text": "rogue"},
|
||||||
|
{"id": "4", "vector": [0.0, 0.9, 0.1, 0.0], "text": "thief"},
|
||||||
|
{"id": "5", "vector": [0.5, 0.5, 0.0, 0.0], "text": "ranger"},
|
||||||
|
])
|
||||||
|
```
|
||||||
|
|
||||||
|
## 5. Create a Table in LanceDB
|
||||||
|
|
||||||
|
```python
|
||||||
|
table = db.create_table("rpg_classes", data=data, mode="overwrite")
|
||||||
|
```
|
||||||
|
|
||||||
|
Let's see how the table looks:
|
||||||
|
```python
|
||||||
|
print(data)
|
||||||
|
```
|
||||||
|
|
||||||
|
| id | vector | text |
|
||||||
|
|----|--------|------|
|
||||||
|
| 1 | [1.0, 0.0, 0.0, 0.0] | knight |
|
||||||
|
| 2 | [0.9, 0.1, 0.0, 0.0] | warrior |
|
||||||
|
| 3 | [0.0, 1.0, 0.0, 0.0] | rogue |
|
||||||
|
| 4 | [0.0, 0.9, 0.1, 0.0] | thief |
|
||||||
|
| 5 | [0.5, 0.5, 0.0, 0.0] | ranger |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## 6. Perform a Vector Search
|
||||||
|
|
||||||
|
Search for the most similar character classes to our query vector:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Query as if we are searching for "rogue"
|
||||||
|
results = table.search([0.95, 0.05, 0.0, 0.0]).limit(3).to_df()
|
||||||
|
print(results)
|
||||||
|
```
|
||||||
|
|
||||||
|
This will return the top 3 closest classes to the vector, effectively showing how LanceDB can be used for semantic search.
|
||||||
|
|
||||||
|
| id | vector | text | _distance |
|
||||||
|
|------|------------------------|----------|-----------|
|
||||||
|
| 3 | [0.0, 1.0, 0.0, 0.0] | rogue | 0.00 |
|
||||||
|
| 4 | [0.0, 0.9, 0.1, 0.0] | thief | 0.02 |
|
||||||
|
| 5 | [0.5, 0.5, 0.0, 0.0] | ranger | 0.50 |
|
||||||
|
|
||||||
|
Let's try searching for "knight"
|
||||||
|
|
||||||
|
```python
|
||||||
|
query_vector = [1.0, 0.0, 0.0, 0.0]
|
||||||
|
results = table.search(query_vector).limit(3).to_pandas()
|
||||||
|
print(results)
|
||||||
|
```
|
||||||
|
|
||||||
|
| id | vector | text | _distance |
|
||||||
|
|------|------------------------|----------|-----------|
|
||||||
|
| 1 | [1.0, 0.0, 0.0, 0.0] | knight | 0.00 |
|
||||||
|
| 2 | [0.9, 0.1, 0.0, 0.0] | warrior | 0.02 |
|
||||||
|
| 5 | [0.5, 0.5, 0.0, 0.0] | ranger | 0.50 |
|
||||||
|
|
||||||
|
## Next Steps
|
||||||
|
|
||||||
|
That's it - you just conducted vector search!
|
||||||
|
|
||||||
|
For more beginner tips, check out the [Basic Usage](basic.md) guide.
|
||||||
Reference in New Issue
Block a user