Compare commits

..

21 Commits

Author SHA1 Message Date
Lance Release
a300a238db Bump version: 0.24.1-beta.2 → 0.24.1 2025-07-10 21:36:02 +00:00
Lance Release
a41ff1df0a Bump version: 0.24.1-beta.1 → 0.24.1-beta.2 2025-07-10 21:36:02 +00:00
Weston Pace
77b005d849 feat: update lance to 0.31.1 (#2501)
This is preparation for a stable release
2025-07-10 14:35:29 -07:00
CyrusAttoun
167fccc427 fix: change 'return' to 'raise' for unimplemented remote table function (#2484)
just noticed that we're doing a 'return' instead of a 'raise' while
trying to get remote functionality working for my project. I went ahead
and implemented tests for both of the unimplemented functions (to_pandas
and to_arrow) while I was in there.

---------

Co-authored-by: Cyrus Attoun <jattoun1@gmail.com>
2025-07-09 14:27:08 -07:00
Lance Release
2bffbcefa5 Bump version: 0.21.1-beta.0 → 0.21.1-beta.1 2025-07-09 05:54:20 +00:00
Lance Release
905552f993 Bump version: 0.24.1-beta.0 → 0.24.1-beta.1 2025-07-09 05:53:28 +00:00
BubbleCal
e4898c9313 chore: sync node package-lock (#2491)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-09 12:34:03 +08:00
BubbleCal
cab36d94b2 feat: support to specify num_partitions and num_bits (#2488) 2025-07-09 11:36:09 +08:00
Weston Pace
b64252d4fd chore: don't require exact version of half (#2489)
I can't find any reason for pinning this dependency and the fact that it
is pinned can be kind of annoying to use downstream (e.g. datafusion
currently requires >= 2.6).
2025-07-08 08:36:04 -07:00
Lance Release
6fc006072c Bump version: 0.21.0 → 0.21.1-beta.0 2025-07-07 21:01:30 +00:00
Lance Release
d4bb59b542 Bump version: 0.24.0 → 0.24.1-beta.0 2025-07-07 21:00:38 +00:00
Wyatt Alt
6b2dd6de51 chore: update lance to 31.1-beta.2 (#2487) 2025-07-07 12:53:16 -07:00
BubbleCal
dbccd9e4f1 chore: upgrade lance to 0.31.1-beta.1 (#2486)
this also upgrades:
- datafusion 47.0 -> 48.0
- half 2.5.0 -> 2.6.0

to be consistent with lance

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-07 22:16:43 +08:00
Will Jones
b12ebfed4c fix: only monotonically update dataset (#2479)
Make sure we only update the latest version if it's actually newer. This
is important if there are concurrent queries, as they can take different
amounts of time.
2025-07-01 08:29:37 -07:00
Weston Pace
1dadb2aefa feat: upgrade to lance 0.31.0-beta.1 (#2469)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Chores**
* Updated dependencies to newer versions for improved compatibility and
stability.

* **Refactor**
* Improved internal handling of data ranges and stream lifetimes for
enhanced performance and reliability.
* Simplified code style for Python query object conversions without
affecting functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 11:10:53 -07:00
Haoyu Weng
eb9784d7f2 feat(python): batch Ollama embed calls (#2453)
Other embedding integrations such as Cohere and OpenAI already send
requests in batches. We should do that for Ollama too to improve
throughput.

The Ollama [`.embed`
API](63ca747622/ollama/_client.py (L359-L378))
was added in version 0.3.0 (almost a year ago) so I updated the version
requirement in pyproject.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved compatibility with newer versions of the "ollama" package by
requiring version 0.3.0 or higher.
- Enhanced embedding generation to process batches of texts more
efficiently and reliably.
- **Refactor**
	- Improved type consistency and clarity for embedding-related methods.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 08:28:14 -07:00
Kilerd Chan
ba755626cc fix: expose parsing error coming from invalid object store uri (#2475)
this PR is to expose the error from `ListingCatalog::open_path` which
unwrap the Result coming from `ObjectStore::from_uri` to avoid panic
2025-06-30 10:33:18 +08:00
Keming
7760799cb8 docs: fix multivector notebook markdown style (#2447)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Improved formatting and clarity in instructional text within the
Multivector on LanceDB notebook.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-27 15:34:01 -07:00
Will Jones
4beb2d2877 fix(python): make sure explain_plan works with FTS queries (#2466)
## Summary

Fixes issue #2465 where FTS explain plans only showed basic `LanceScan`
instead of detailed execution plans with FTS query details, limits, and
offsets.

## Root Cause

The `FTSQuery::explain_plan()` and `analyze_plan()` methods were missing
the `.full_text_search()` call before calling explain/analyze plan,
causing them to operate on the base query without FTS context.

## Changes

- **Fixed** `explain_plan()` and `analyze_plan()` in `src/query.rs` to
call `.full_text_search()`
- **Added comprehensive test coverage** for FTS explain plans with
limits, offsets, and filters
- **Updated existing tests** to expect correct behavior instead of buggy
behavior

## Before/After

**Before (broken):**
```
LanceScan: uri=..., projection=[...], row_id=false, row_addr=false, ordered=true
```

**After (fixed):**
```
ProjectionExec: expr=[id@2 as id, text@3 as text, _score@1 as _score]
  Take: columns="_rowid, _score, (id), (text)"
    CoalesceBatchesExec: target_batch_size=1024
      GlobalLimitExec: skip=2, fetch=4
        MatchQuery: query=test
```

## Test Plan

- [x] All new FTS explain plan tests pass 
- [x] Existing tests continue to pass
- [x] FTS queries now show proper execution plans with MatchQuery,
limits, filters

Closes #2465

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Tests**
* Added new test cases to verify explain plan output for full-text
search, vector queries with pagination, and queries with filters.

* **Bug Fixes**
* Improved the accuracy of explain plan and analysis output for
full-text search queries, ensuring the correct query details are
reflected.

* **Refactor**
* Enhanced the formatting and hierarchical structure of execution plans
for hybrid queries, providing clearer and more detailed plan
representations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-06-26 23:35:14 -07:00
Lance Release
a00b8595d1 Bump version: 0.21.0-beta.0 → 0.21.0 2025-06-20 05:47:06 +00:00
Lance Release
9c8314b4fd Bump version: 0.20.1-beta.2 → 0.21.0-beta.0 2025-06-20 05:46:27 +00:00
37 changed files with 577 additions and 357 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion] [tool.bumpversion]
current_version = "0.20.1-beta.2" current_version = "0.21.1-beta.1"
parse = """(?x) parse = """(?x)
(?P<major>0|[1-9]\\d*)\\. (?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\. (?P<minor>0|[1-9]\\d*)\\.

398
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -21,14 +21,14 @@ categories = ["database-implementations"]
rust-version = "1.78.0" rust-version = "1.78.0"
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.30.0", "features" = ["dynamodb"] } lance = { "version" = "=0.31.1", features = ["dynamodb"] }
lance-io = "=0.30.0" lance-io = { "version" = "=0.31.1" }
lance-index = "=0.30.0" lance-index = { "version" = "=0.31.1" }
lance-linalg = "=0.30.0" lance-linalg = { "version" = "=0.31.1" }
lance-table = "=0.30.0" lance-table = { "version" = "=0.31.1" }
lance-testing = "=0.30.0" lance-testing = { "version" = "=0.31.1" }
lance-datafusion = "=0.30.0" lance-datafusion = { "version" = "=0.31.1" }
lance-encoding = "=0.30.0" lance-encoding = { "version" = "=0.31.1" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "55.1", optional = false } arrow = { version = "55.1", optional = false }
arrow-array = "55.1" arrow-array = "55.1"
@@ -39,20 +39,20 @@ arrow-schema = "55.1"
arrow-arith = "55.1" arrow-arith = "55.1"
arrow-cast = "55.1" arrow-cast = "55.1"
async-trait = "0" async-trait = "0"
datafusion = { version = "47.0", default-features = false } datafusion = { version = "48.0", default-features = false }
datafusion-catalog = "47.0" datafusion-catalog = "48.0"
datafusion-common = { version = "47.0", default-features = false } datafusion-common = { version = "48.0", default-features = false }
datafusion-execution = "47.0" datafusion-execution = "48.0"
datafusion-expr = "47.0" datafusion-expr = "48.0"
datafusion-physical-plan = "47.0" datafusion-physical-plan = "48.0"
env_logger = "0.11" env_logger = "0.11"
half = { "version" = "=2.5.0", default-features = false, features = [ half = { "version" = "2.6.0", default-features = false, features = [
"num-traits", "num-traits",
] } ] }
futures = "0" futures = "0"
log = "0.4" log = "0.4"
moka = { version = "0.12", features = ["future"] } moka = { version = "0.12", features = ["future"] }
object_store = "0.11.0" object_store = "0.12.0"
pin-project = "1.0.7" pin-project = "1.0.7"
snafu = "0.8" snafu = "0.8"
url = "2" url = "2"

View File

@@ -428,7 +428,7 @@
"\n", "\n",
"**Why?** \n", "**Why?** \n",
"Embedding the UFO dataset and ingesting it into LanceDB takes **~2 hours on a T4 GPU**. To save time: \n", "Embedding the UFO dataset and ingesting it into LanceDB takes **~2 hours on a T4 GPU**. To save time: \n",
"- **Use the pre-prepared table with index created ** (provided below) to proceed directly to step7: search. \n", "- **Use the pre-prepared table with index created** (provided below) to proceed directly to **Step 7**: search. \n",
"- **Step 5a** contains the full ingestion code for reference (run it only if necessary). \n", "- **Step 5a** contains the full ingestion code for reference (run it only if necessary). \n",
"- **Step 6** contains the details on creating the index on the multivector column" "- **Step 6** contains the details on creating the index on the multivector column"
] ]

View File

@@ -8,7 +8,7 @@
<parent> <parent>
<groupId>com.lancedb</groupId> <groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId> <artifactId>lancedb-parent</artifactId>
<version>0.20.1-beta.2</version> <version>0.21.1-beta.1</version>
<relativePath>../pom.xml</relativePath> <relativePath>../pom.xml</relativePath>
</parent> </parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId> <groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId> <artifactId>lancedb-parent</artifactId>
<version>0.20.1-beta.2</version> <version>0.21.1-beta.1</version>
<packaging>pom</packaging> <packaging>pom</packaging>
<name>LanceDB Parent</name> <name>LanceDB Parent</name>

44
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -52,11 +52,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.20.1-beta.2", "@lancedb/vectordb-darwin-arm64": "0.21.1-beta.1",
"@lancedb/vectordb-darwin-x64": "0.20.1-beta.2", "@lancedb/vectordb-darwin-x64": "0.21.1-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.20.1-beta.2", "@lancedb/vectordb-linux-arm64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.20.1-beta.2", "@lancedb/vectordb-linux-x64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.20.1-beta.2" "@lancedb/vectordb-win32-x64-msvc": "0.21.1-beta.1"
}, },
"peerDependencies": { "peerDependencies": {
"@apache-arrow/ts": "^14.0.2", "@apache-arrow/ts": "^14.0.2",
@@ -327,9 +327,9 @@
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": { "node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.20.1-beta.2.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.21.1-beta.1.tgz",
"integrity": "sha512-mqi0yI+ZwBTydaDy1FRHAUZwrWS28u6tbHTe1s4uSrmERbVI6PfmoPR+NZWWAp6ZhlseSdl/+yeI4imk11rQSw==", "integrity": "sha512-D9SOLFb/40E2/9bt82xOti3jogRAaR1UkT2LfGZJw/0wBu8d8/xKjWgfm3d26S5K6in6DWsX1njLxevrFqD5HA==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -339,9 +339,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-darwin-x64": { "node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.20.1-beta.2.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.21.1-beta.1.tgz",
"integrity": "sha512-m8EYYA8JZIeNsJqQsBDUMu6r31/u7FzpjonJ4Y+CjapVl6UdvI65KUkeL2dYrFao++RuIoaiqcm3e7gRgFZpXQ==", "integrity": "sha512-JnZ41aDOJs6LWfI9t/+MnpqsK/Fj9r/hDdZSOjcQquLOcm2eP3NnvEnDvn+1pqWBN6ceqf1avTatPBGnD/yhNA==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -351,9 +351,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-arm64-gnu": { "node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.20.1-beta.2.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.21.1-beta.1.tgz",
"integrity": "sha512-3Og2+bk4GlWmMO1Yg2HBfeb5zrOMLaIHD7bEqQ4+6yw4IckAaV+ke05H0tyyqmOVrOQ0LpvtXgD7pPztjm9r9A==", "integrity": "sha512-Xnw0wYtnfzVUr4DzppJCSx+HZdAHr6sqMC8SdaYNQ9XEjBZE20n5SO2AdBYjejbmONJ7lpGs3ydnLIZ6N40dAQ==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -363,9 +363,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-x64-gnu": { "node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.20.1-beta.2.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.21.1-beta.1.tgz",
"integrity": "sha512-mwTQyA/FBoU/FkPuvCNBZG3y83gBN+iYoejehBH2HBkLUIcmlsDgSRZ1OQ+f9ijj12EMBCA11tBUPA9zhHzyrw==", "integrity": "sha512-7S7gV13hv9Ho5W1Jat3FYiaMJOjRAwZOol7lKvOhU+sR/tJMEfZIOWAgymoqhAowbMtf+wwLoeKacfybXGET/w==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -375,9 +375,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-win32-x64-msvc": { "node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.20.1-beta.2.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.21.1-beta.1.tgz",
"integrity": "sha512-VkjNpqhK3l3uHLLPmox+HrmKPMaZgV+qsGQWx0nfseGnSOEmXAWZWQFe0APVCQ9y0xTypQB0oH7eSOPZv2t4WQ==", "integrity": "sha512-w6fEQA9IquvJ/GUYfiawRQvvdFD6OU44UW9JWm+FoscUFzdLiV7qmH4QjYEeEXQD7ob83ikFaxXGPTksYXpNOA==",
"cpu": [ "cpu": [
"x64" "x64"
], ],

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"private": false, "private": false,
"main": "dist/index.js", "main": "dist/index.js",
@@ -89,10 +89,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.20.1-beta.2", "@lancedb/vectordb-darwin-x64": "0.21.1-beta.1",
"@lancedb/vectordb-darwin-arm64": "0.20.1-beta.2", "@lancedb/vectordb-darwin-arm64": "0.21.1-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.20.1-beta.2", "@lancedb/vectordb-linux-x64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.20.1-beta.2", "@lancedb/vectordb-linux-arm64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.20.1-beta.2" "@lancedb/vectordb-win32-x64-msvc": "0.21.1-beta.1"
} }
} }

View File

@@ -1,7 +1,7 @@
[package] [package]
name = "lancedb-nodejs" name = "lancedb-nodejs"
edition.workspace = true edition.workspace = true
version = "0.20.1-beta.2" version = "0.21.1-beta.1"
license.workspace = true license.workspace = true
description.workspace = true description.workspace = true
repository.workspace = true repository.workspace = true

View File

@@ -368,9 +368,9 @@ describe("merge insert", () => {
{ a: 4, b: "z" }, { a: 4, b: "z" },
]; ];
expect( const result = (await table.toArrow()).toArray().sort((a, b) => a.a - b.a);
JSON.parse(JSON.stringify((await table.toArrow()).toArray())),
).toEqual(expected); expect(result.map((row) => ({ ...row }))).toEqual(expected);
}); });
test("conditional update", async () => { test("conditional update", async () => {
const newData = [ const newData = [

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-darwin-arm64", "name": "@lancedb/lancedb-darwin-arm64",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"os": ["darwin"], "os": ["darwin"],
"cpu": ["arm64"], "cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node", "main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-darwin-x64", "name": "@lancedb/lancedb-darwin-x64",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"os": ["darwin"], "os": ["darwin"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.darwin-x64.node", "main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-arm64-gnu", "name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"os": ["linux"], "os": ["linux"],
"cpu": ["arm64"], "cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node", "main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-arm64-musl", "name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"os": ["linux"], "os": ["linux"],
"cpu": ["arm64"], "cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node", "main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-x64-gnu", "name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"os": ["linux"], "os": ["linux"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node", "main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-x64-musl", "name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"os": ["linux"], "os": ["linux"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node", "main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-win32-arm64-msvc", "name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"os": [ "os": [
"win32" "win32"
], ],

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-win32-x64-msvc", "name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"os": ["win32"], "os": ["win32"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node", "main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{ {
"name": "@lancedb/lancedb", "name": "@lancedb/lancedb",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "@lancedb/lancedb", "name": "@lancedb/lancedb",
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"

View File

@@ -11,7 +11,7 @@
"ann" "ann"
], ],
"private": false, "private": false,
"version": "0.20.1-beta.2", "version": "0.21.1-beta.1",
"main": "dist/index.js", "main": "dist/index.js",
"exports": { "exports": {
".": "./dist/index.js", ".": "./dist/index.js",

View File

@@ -1,5 +1,5 @@
[tool.bumpversion] [tool.bumpversion]
current_version = "0.24.0" current_version = "0.24.1"
parse = """(?x) parse = """(?x)
(?P<major>0|[1-9]\\d*)\\. (?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\. (?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "lancedb-python" name = "lancedb-python"
version = "0.24.0" version = "0.24.1"
edition.workspace = true edition.workspace = true
description = "Python bindings for LanceDB" description = "Python bindings for LanceDB"
license.workspace = true license.workspace = true

View File

@@ -85,7 +85,7 @@ embeddings = [
"boto3>=1.28.57", "boto3>=1.28.57",
"awscli>=1.29.57", "awscli>=1.29.57",
"botocore>=1.31.57", "botocore>=1.31.57",
"ollama", "ollama>=0.3.0",
"ibm-watsonx-ai>=1.1.2", "ibm-watsonx-ai>=1.1.2",
] ]
azure = ["adlfs>=2024.2.0"] azure = ["adlfs>=2024.2.0"]

View File

@@ -2,14 +2,15 @@
# SPDX-FileCopyrightText: Copyright The LanceDB Authors # SPDX-FileCopyrightText: Copyright The LanceDB Authors
from functools import cached_property from functools import cached_property
from typing import TYPE_CHECKING, List, Optional, Union from typing import TYPE_CHECKING, List, Optional, Sequence, Union
import numpy as np
from ..util import attempt_import_or_raise from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
if TYPE_CHECKING: if TYPE_CHECKING:
import numpy as np
import ollama import ollama
@@ -28,23 +29,21 @@ class OllamaEmbeddings(TextEmbeddingFunction):
keep_alive: Optional[Union[float, str]] = None keep_alive: Optional[Union[float, str]] = None
ollama_client_kwargs: Optional[dict] = {} ollama_client_kwargs: Optional[dict] = {}
def ndims(self): def ndims(self) -> int:
return len(self.generate_embeddings(["foo"])[0]) return len(self.generate_embeddings(["foo"])[0])
def _compute_embedding(self, text) -> Union["np.array", None]: def _compute_embedding(self, text: Sequence[str]) -> Sequence[Sequence[float]]:
return ( response = self._ollama_client.embed(
self._ollama_client.embeddings(
model=self.name, model=self.name,
prompt=text, input=text,
options=self.options, options=self.options,
keep_alive=self.keep_alive, keep_alive=self.keep_alive,
)["embedding"]
or None
) )
return response.embeddings
def generate_embeddings( def generate_embeddings(
self, texts: Union[List[str], "np.ndarray"] self, texts: Union[List[str], np.ndarray]
) -> list[Union["np.array", None]]: ) -> list[Union[np.array, None]]:
""" """
Get the embeddings for the given texts Get the embeddings for the given texts
@@ -54,8 +53,8 @@ class OllamaEmbeddings(TextEmbeddingFunction):
The texts to embed The texts to embed
""" """
# TODO retry, rate limit, token limit # TODO retry, rate limit, token limit
embeddings = [self._compute_embedding(text) for text in texts] embeddings = self._compute_embedding(texts)
return embeddings return list(embeddings)
@cached_property @cached_property
def _ollama_client(self) -> "ollama.Client": def _ollama_client(self) -> "ollama.Client":

View File

@@ -3049,8 +3049,14 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false] SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2 KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
<BLANKLINE>
FTS Search Plan: FTS Search Plan:
LanceScan: uri=..., projection=[vector, text], row_id=false, row_addr=false, ordered=true ProjectionExec: expr=[vector@2 as vector, text@3 as text, _score@1 as _score]
Take: columns="_rowid, _score, (vector), (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
MatchQuery: query=hello
<BLANKLINE>
Parameters Parameters
---------- ----------

View File

@@ -18,7 +18,7 @@ from lancedb._lancedb import (
UpdateResult, UpdateResult,
) )
from lancedb.embeddings.base import EmbeddingFunctionConfig from lancedb.embeddings.base import EmbeddingFunctionConfig
from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfFlat, IvfPq, LabelList from lancedb.index import FTS, BTree, Bitmap, HnswSq, IvfFlat, IvfPq, LabelList
from lancedb.remote.db import LOOP from lancedb.remote.db import LOOP
import pyarrow as pa import pyarrow as pa
@@ -89,7 +89,7 @@ class RemoteTable(Table):
def to_pandas(self): def to_pandas(self):
"""to_pandas() is not yet supported on LanceDB cloud.""" """to_pandas() is not yet supported on LanceDB cloud."""
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.") raise NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
def checkout(self, version: Union[int, str]): def checkout(self, version: Union[int, str]):
return LOOP.run(self._table.checkout(version)) return LOOP.run(self._table.checkout(version))
@@ -186,6 +186,8 @@ class RemoteTable(Table):
accelerator: Optional[str] = None, accelerator: Optional[str] = None,
index_type="vector", index_type="vector",
wait_timeout: Optional[timedelta] = None, wait_timeout: Optional[timedelta] = None,
*,
num_bits: int = 8,
): ):
"""Create an index on the table. """Create an index on the table.
Currently, the only parameters that matter are Currently, the only parameters that matter are
@@ -220,11 +222,6 @@ class RemoteTable(Table):
>>> table.create_index("l2", "vector") # doctest: +SKIP >>> table.create_index("l2", "vector") # doctest: +SKIP
""" """
if num_partitions is not None:
logging.warning(
"num_partitions is not supported on LanceDB cloud."
"This parameter will be tuned automatically."
)
if num_sub_vectors is not None: if num_sub_vectors is not None:
logging.warning( logging.warning(
"num_sub_vectors is not supported on LanceDB cloud." "num_sub_vectors is not supported on LanceDB cloud."
@@ -244,13 +241,21 @@ class RemoteTable(Table):
index_type = index_type.upper() index_type = index_type.upper()
if index_type == "VECTOR" or index_type == "IVF_PQ": if index_type == "VECTOR" or index_type == "IVF_PQ":
config = IvfPq(distance_type=metric) config = IvfPq(
distance_type=metric,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
num_bits=num_bits,
)
elif index_type == "IVF_HNSW_PQ": elif index_type == "IVF_HNSW_PQ":
config = HnswPq(distance_type=metric) raise ValueError(
"IVF_HNSW_PQ is not supported on LanceDB cloud."
"Please use IVF_HNSW_SQ instead."
)
elif index_type == "IVF_HNSW_SQ": elif index_type == "IVF_HNSW_SQ":
config = HnswSq(distance_type=metric) config = HnswSq(distance_type=metric, num_partitions=num_partitions)
elif index_type == "IVF_FLAT": elif index_type == "IVF_FLAT":
config = IvfFlat(distance_type=metric) config = IvfFlat(distance_type=metric, num_partitions=num_partitions)
else: else:
raise ValueError( raise ValueError(
f"Unknown vector index type: {index_type}. Valid options are" f"Unknown vector index type: {index_type}. Valid options are"

View File

@@ -775,6 +775,82 @@ async def test_explain_plan_async(table_async: AsyncTable):
assert "KNN" in plan assert "KNN" in plan
@pytest.mark.asyncio
async def test_explain_plan_fts(table_async: AsyncTable):
"""Test explain plan for FTS queries"""
# Create FTS index
from lancedb.index import FTS
await table_async.create_index("text", config=FTS())
# Test pure FTS query
query = await table_async.search("dog", query_type="fts", fts_columns="text")
plan = await query.explain_plan()
# Should show FTS details (issue #2465 is now fixed)
assert "MatchQuery: query=dog" in plan
assert "GlobalLimitExec" in plan # Default limit
# Test FTS query with limit
query_with_limit = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_with_limit = await query_with_limit.limit(1).explain_plan()
assert "MatchQuery: query=dog" in plan_with_limit
assert "GlobalLimitExec: skip=0, fetch=1" in plan_with_limit
# Test FTS query with offset and limit
query_with_offset = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_with_offset = await query_with_offset.offset(1).limit(1).explain_plan()
assert "MatchQuery: query=dog" in plan_with_offset
assert "GlobalLimitExec: skip=1, fetch=1" in plan_with_offset
@pytest.mark.asyncio
async def test_explain_plan_vector_with_limit_offset(table_async: AsyncTable):
"""Test explain plan for vector queries with limit and offset"""
# Test vector query with limit
plan_with_limit = await (
table_async.query().nearest_to(pa.array([1, 2])).limit(1).explain_plan()
)
assert "KNN" in plan_with_limit
assert "GlobalLimitExec: skip=0, fetch=1" in plan_with_limit
# Test vector query with offset and limit
plan_with_offset = await (
table_async.query()
.nearest_to(pa.array([1, 2]))
.offset(1)
.limit(1)
.explain_plan()
)
assert "KNN" in plan_with_offset
assert "GlobalLimitExec: skip=1, fetch=1" in plan_with_offset
@pytest.mark.asyncio
async def test_explain_plan_with_filters(table_async: AsyncTable):
"""Test explain plan for queries with filters"""
# Test vector query with filter
plan_with_filter = await (
table_async.query().nearest_to(pa.array([1, 2])).where("id = 1").explain_plan()
)
assert "KNN" in plan_with_filter
assert "FilterExec" in plan_with_filter
# Test FTS query with filter
from lancedb.index import FTS
await table_async.create_index("text", config=FTS())
query_fts_filter = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_fts_filter = await query_fts_filter.where("id = 1").explain_plan()
assert "MatchQuery: query=dog" in plan_fts_filter
assert "FilterExec: id@" in plan_fts_filter # Should show filter details
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_query_camelcase_async(tmp_path): async def test_query_camelcase_async(tmp_path):
db = await lancedb.connect_async(tmp_path) db = await lancedb.connect_async(tmp_path)

View File

@@ -210,6 +210,25 @@ async def test_retry_error():
assert cause.status_code == 429 assert cause.status_code == 429
def test_table_unimplemented_functions():
def handler(request):
if request.path == "/v1/table/test/create/?mode=create":
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
request.wfile.write(b"{}")
else:
request.send_response(404)
request.end_headers()
with mock_lancedb_connection(handler) as db:
table = db.create_table("test", [{"id": 1}])
with pytest.raises(NotImplementedError):
table.to_arrow()
with pytest.raises(NotImplementedError):
table.to_pandas()
def test_table_add_in_threadpool(): def test_table_add_in_threadpool():
def handler(request): def handler(request):
if request.path == "/v1/table/test/insert/": if request.path == "/v1/table/test/insert/":

View File

@@ -52,7 +52,7 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
let operator = ob.getattr("operator")?.extract::<String>()?; let operator = ob.getattr("operator")?.extract::<String>()?;
let prefix_length = ob.getattr("prefix_length")?.extract()?; let prefix_length = ob.getattr("prefix_length")?.extract()?;
Ok(PyLanceDB( Ok(Self(
MatchQuery::new(query) MatchQuery::new(query)
.with_column(Some(column)) .with_column(Some(column))
.with_boost(boost) .with_boost(boost)
@@ -70,7 +70,7 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
let column = ob.getattr("column")?.extract()?; let column = ob.getattr("column")?.extract()?;
let slop = ob.getattr("slop")?.extract()?; let slop = ob.getattr("slop")?.extract()?;
Ok(PyLanceDB( Ok(Self(
PhraseQuery::new(query) PhraseQuery::new(query)
.with_column(Some(column)) .with_column(Some(column))
.with_slop(slop) .with_slop(slop)
@@ -78,10 +78,10 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
)) ))
} }
"BoostQuery" => { "BoostQuery" => {
let positive: PyLanceDB<FtsQuery> = ob.getattr("positive")?.extract()?; let positive: Self = ob.getattr("positive")?.extract()?;
let negative: PyLanceDB<FtsQuery> = ob.getattr("negative")?.extract()?; let negative: Self = ob.getattr("negative")?.extract()?;
let negative_boost = ob.getattr("negative_boost")?.extract()?; let negative_boost = ob.getattr("negative_boost")?.extract()?;
Ok(PyLanceDB( Ok(Self(
BoostQuery::new(positive.0, negative.0, negative_boost).into(), BoostQuery::new(positive.0, negative.0, negative_boost).into(),
)) ))
} }
@@ -103,18 +103,17 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
let op = Operator::try_from(operator.as_str()) let op = Operator::try_from(operator.as_str())
.map_err(|e| PyValueError::new_err(format!("Invalid operator: {}", e)))?; .map_err(|e| PyValueError::new_err(format!("Invalid operator: {}", e)))?;
Ok(PyLanceDB(q.with_operator(op).into())) Ok(Self(q.with_operator(op).into()))
} }
"BooleanQuery" => { "BooleanQuery" => {
let queries: Vec<(String, PyLanceDB<FtsQuery>)> = let queries: Vec<(String, Self)> = ob.getattr("queries")?.extract()?;
ob.getattr("queries")?.extract()?;
let mut sub_queries = Vec::with_capacity(queries.len()); let mut sub_queries = Vec::with_capacity(queries.len());
for (occur, q) in queries { for (occur, q) in queries {
let occur = Occur::try_from(occur.as_str()) let occur = Occur::try_from(occur.as_str())
.map_err(|e| PyValueError::new_err(e.to_string()))?; .map_err(|e| PyValueError::new_err(e.to_string()))?;
sub_queries.push((occur, q.0)); sub_queries.push((occur, q.0));
} }
Ok(PyLanceDB(BooleanQuery::new(sub_queries).into())) Ok(Self(BooleanQuery::new(sub_queries).into()))
} }
name => Err(PyValueError::new_err(format!( name => Err(PyValueError::new_err(format!(
"Unsupported FTS query type: {}", "Unsupported FTS query type: {}",
@@ -155,8 +154,8 @@ impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
.call((query.terms, query.column.unwrap()), Some(&kwargs)) .call((query.terms, query.column.unwrap()), Some(&kwargs))
} }
FtsQuery::Boost(query) => { FtsQuery::Boost(query) => {
let positive = PyLanceDB(query.positive.as_ref().clone()).into_pyobject(py)?; let positive = Self(query.positive.as_ref().clone()).into_pyobject(py)?;
let negative = PyLanceDB(query.negative.as_ref().clone()).into_pyobject(py)?; let negative = Self(query.negative.as_ref().clone()).into_pyobject(py)?;
let kwargs = PyDict::new(py); let kwargs = PyDict::new(py);
kwargs.set_item("negative_boost", query.negative_boost)?; kwargs.set_item("negative_boost", query.negative_boost)?;
namespace namespace
@@ -182,13 +181,13 @@ impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
query.should.len() + query.must.len() + query.must_not.len(), query.should.len() + query.must.len() + query.must_not.len(),
); );
for q in query.should { for q in query.should {
queries.push((Occur::Should.into(), PyLanceDB(q).into_pyobject(py)?)); queries.push((Occur::Should.into(), Self(q).into_pyobject(py)?));
} }
for q in query.must { for q in query.must {
queries.push((Occur::Must.into(), PyLanceDB(q).into_pyobject(py)?)); queries.push((Occur::Must.into(), Self(q).into_pyobject(py)?));
} }
for q in query.must_not { for q in query.must_not {
queries.push((Occur::MustNot.into(), PyLanceDB(q).into_pyobject(py)?)); queries.push((Occur::MustNot.into(), Self(q).into_pyobject(py)?));
} }
namespace namespace
@@ -563,7 +562,10 @@ impl FTSQuery {
} }
pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> { pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone(); let inner = self_
.inner
.clone()
.full_text_search(self_.fts_query.clone());
future_into_py(self_.py(), async move { future_into_py(self_.py(), async move {
inner inner
.explain_plan(verbose) .explain_plan(verbose)
@@ -573,7 +575,10 @@ impl FTSQuery {
} }
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> { pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone(); let inner = self_
.inner
.clone()
.full_text_search(self_.fts_query.clone());
future_into_py(self_.py(), async move { future_into_py(self_.py(), async move {
inner inner
.analyze_plan() .analyze_plan()

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "lancedb-node" name = "lancedb-node"
version = "0.20.1-beta.2" version = "0.21.1-beta.1"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license.workspace = true license.workspace = true
edition.workspace = true edition.workspace = true

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "lancedb" name = "lancedb"
version = "0.20.1-beta.2" version = "0.21.1-beta.1"
edition.workspace = true edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications" description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true license.workspace = true

View File

@@ -105,7 +105,7 @@ impl ListingCatalog {
} }
async fn open_path(path: &str) -> Result<Self> { async fn open_path(path: &str) -> Result<Self> {
let (object_store, base_path) = ObjectStore::from_uri(path).await.unwrap(); let (object_store, base_path) = ObjectStore::from_uri(path).await?;
if object_store.is_local() { if object_store.is_local() {
Self::try_create_dir(path).context(CreateDirSnafu { path })?; Self::try_create_dir(path).context(CreateDirSnafu { path })?;
} }

View File

@@ -107,7 +107,7 @@ impl ObjectStore for MirroringObjectStore {
self.primary.delete(location).await self.primary.delete(location).await
} }
fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, Result<ObjectMeta>> { fn list(&self, prefix: Option<&Path>) -> BoxStream<'static, Result<ObjectMeta>> {
self.primary.list(prefix) self.primary.list(prefix)
} }

View File

@@ -119,7 +119,7 @@ impl ObjectStore for IoTrackingStore {
let result = self.target.get(location).await; let result = self.target.get(location).await;
if let Ok(result) = &result { if let Ok(result) = &result {
let num_bytes = result.range.end - result.range.start; let num_bytes = result.range.end - result.range.start;
self.record_read(num_bytes as u64); self.record_read(num_bytes);
} }
result result
} }
@@ -128,12 +128,12 @@ impl ObjectStore for IoTrackingStore {
let result = self.target.get_opts(location, options).await; let result = self.target.get_opts(location, options).await;
if let Ok(result) = &result { if let Ok(result) = &result {
let num_bytes = result.range.end - result.range.start; let num_bytes = result.range.end - result.range.start;
self.record_read(num_bytes as u64); self.record_read(num_bytes);
} }
result result
} }
async fn get_range(&self, location: &Path, range: std::ops::Range<usize>) -> OSResult<Bytes> { async fn get_range(&self, location: &Path, range: std::ops::Range<u64>) -> OSResult<Bytes> {
let result = self.target.get_range(location, range).await; let result = self.target.get_range(location, range).await;
if let Ok(result) = &result { if let Ok(result) = &result {
self.record_read(result.len() as u64); self.record_read(result.len() as u64);
@@ -144,7 +144,7 @@ impl ObjectStore for IoTrackingStore {
async fn get_ranges( async fn get_ranges(
&self, &self,
location: &Path, location: &Path,
ranges: &[std::ops::Range<usize>], ranges: &[std::ops::Range<u64>],
) -> OSResult<Vec<Bytes>> { ) -> OSResult<Vec<Bytes>> {
let result = self.target.get_ranges(location, ranges).await; let result = self.target.get_ranges(location, ranges).await;
if let Ok(result) = &result { if let Ok(result) = &result {
@@ -170,7 +170,7 @@ impl ObjectStore for IoTrackingStore {
self.target.delete_stream(locations) self.target.delete_stream(locations)
} }
fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, OSResult<ObjectMeta>> { fn list(&self, prefix: Option<&Path>) -> BoxStream<'static, OSResult<ObjectMeta>> {
self.record_read(0); self.record_read(0);
self.target.list(prefix) self.target.list(prefix)
} }
@@ -179,7 +179,7 @@ impl ObjectStore for IoTrackingStore {
&self, &self,
prefix: Option<&Path>, prefix: Option<&Path>,
offset: &Path, offset: &Path,
) -> BoxStream<'_, OSResult<ObjectMeta>> { ) -> BoxStream<'static, OSResult<ObjectMeta>> {
self.record_read(0); self.record_read(0);
self.target.list_with_offset(prefix, offset) self.target.list_with_offset(prefix, offset)
} }

View File

@@ -57,6 +57,8 @@ use crate::{
}; };
const REQUEST_TIMEOUT_HEADER: HeaderName = HeaderName::from_static("x-request-timeout-ms"); const REQUEST_TIMEOUT_HEADER: HeaderName = HeaderName::from_static("x-request-timeout-ms");
const METRIC_TYPE_KEY: &str = "metric_type";
const INDEX_TYPE_KEY: &str = "index_type";
pub struct RemoteTags<'a, S: HttpSend = Sender> { pub struct RemoteTags<'a, S: HttpSend = Sender> {
inner: &'a RemoteTable<S>, inner: &'a RemoteTable<S>,
@@ -997,23 +999,53 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
"column": column "column": column
}); });
let (index_type, distance_type) = match index.index { match index.index {
// TODO: Should we pass the actual index parameters? SaaS does not // TODO: Should we pass the actual index parameters? SaaS does not
// yet support them. // yet support them.
Index::IvfFlat(index) => ("IVF_FLAT", Some(index.distance_type)), Index::IvfFlat(index) => {
Index::IvfPq(index) => ("IVF_PQ", Some(index.distance_type)), body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_FLAT".to_string());
Index::IvfHnswSq(index) => ("IVF_HNSW_SQ", Some(index.distance_type)), body[METRIC_TYPE_KEY] =
Index::BTree(_) => ("BTREE", None), serde_json::Value::String(index.distance_type.to_string().to_lowercase());
Index::Bitmap(_) => ("BITMAP", None), if let Some(num_partitions) = index.num_partitions {
Index::LabelList(_) => ("LABEL_LIST", None), body["num_partitions"] = serde_json::Value::Number(num_partitions.into());
}
}
Index::IvfPq(index) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_PQ".to_string());
body[METRIC_TYPE_KEY] =
serde_json::Value::String(index.distance_type.to_string().to_lowercase());
if let Some(num_partitions) = index.num_partitions {
body["num_partitions"] = serde_json::Value::Number(num_partitions.into());
}
if let Some(num_bits) = index.num_bits {
body["num_bits"] = serde_json::Value::Number(num_bits.into());
}
}
Index::IvfHnswSq(index) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_HNSW_SQ".to_string());
body[METRIC_TYPE_KEY] =
serde_json::Value::String(index.distance_type.to_string().to_lowercase());
if let Some(num_partitions) = index.num_partitions {
body["num_partitions"] = serde_json::Value::Number(num_partitions.into());
}
}
Index::BTree(_) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("BTREE".to_string());
}
Index::Bitmap(_) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("BITMAP".to_string());
}
Index::LabelList(_) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("LABEL_LIST".to_string());
}
Index::FTS(fts) => { Index::FTS(fts) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("FTS".to_string());
let params = serde_json::to_value(&fts).map_err(|e| Error::InvalidInput { let params = serde_json::to_value(&fts).map_err(|e| Error::InvalidInput {
message: format!("failed to serialize FTS index params {:?}", e), message: format!("failed to serialize FTS index params {:?}", e),
})?; })?;
for (key, value) in params.as_object().unwrap() { for (key, value) in params.as_object().unwrap() {
body[key] = value.clone(); body[key] = value.clone();
} }
("FTS", None)
} }
Index::Auto => { Index::Auto => {
let schema = self.schema().await?; let schema = self.schema().await?;
@@ -1023,9 +1055,11 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
message: format!("Column {} not found in schema", column), message: format!("Column {} not found in schema", column),
})?; })?;
if supported_vector_data_type(field.data_type()) { if supported_vector_data_type(field.data_type()) {
("IVF_PQ", Some(DistanceType::L2)) body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_PQ".to_string());
body[METRIC_TYPE_KEY] =
serde_json::Value::String(DistanceType::L2.to_string().to_lowercase());
} else if supported_btree_data_type(field.data_type()) { } else if supported_btree_data_type(field.data_type()) {
("BTREE", None) body[INDEX_TYPE_KEY] = serde_json::Value::String("BTREE".to_string());
} else { } else {
return Err(Error::NotSupported { return Err(Error::NotSupported {
message: format!( message: format!(
@@ -1042,12 +1076,6 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
}) })
} }
}; };
body["index_type"] = serde_json::Value::String(index_type.into());
if let Some(distance_type) = distance_type {
// Phalanx expects this to be lowercase right now.
body["metric_type"] =
serde_json::Value::String(distance_type.to_string().to_lowercase());
}
let request = request.json(&body); let request = request.json(&body);
@@ -1429,11 +1457,12 @@ mod tests {
use chrono::{DateTime, Utc}; use chrono::{DateTime, Utc};
use futures::{future::BoxFuture, StreamExt, TryFutureExt}; use futures::{future::BoxFuture, StreamExt, TryFutureExt};
use lance_index::scalar::inverted::query::MatchQuery; use lance_index::scalar::inverted::query::MatchQuery;
use lance_index::scalar::FullTextSearchQuery; use lance_index::scalar::{FullTextSearchQuery, InvertedIndexParams};
use reqwest::Body; use reqwest::Body;
use rstest::rstest; use rstest::rstest;
use serde_json::json;
use crate::index::vector::IvfFlatIndexBuilder; use crate::index::vector::{IvfFlatIndexBuilder, IvfHnswSqIndexBuilder};
use crate::remote::db::DEFAULT_SERVER_VERSION; use crate::remote::db::DEFAULT_SERVER_VERSION;
use crate::remote::JSON_CONTENT_TYPE; use crate::remote::JSON_CONTENT_TYPE;
use crate::{ use crate::{
@@ -2433,29 +2462,79 @@ mod tests {
let cases = [ let cases = [
( (
"IVF_FLAT", "IVF_FLAT",
Some("hamming"), json!({
"metric_type": "hamming",
}),
Index::IvfFlat(IvfFlatIndexBuilder::default().distance_type(DistanceType::Hamming)), Index::IvfFlat(IvfFlatIndexBuilder::default().distance_type(DistanceType::Hamming)),
), ),
("IVF_PQ", Some("l2"), Index::IvfPq(Default::default())), (
"IVF_FLAT",
json!({
"metric_type": "hamming",
"num_partitions": 128,
}),
Index::IvfFlat(
IvfFlatIndexBuilder::default()
.distance_type(DistanceType::Hamming)
.num_partitions(128),
),
),
( (
"IVF_PQ", "IVF_PQ",
Some("cosine"), json!({
Index::IvfPq(IvfPqIndexBuilder::default().distance_type(DistanceType::Cosine)), "metric_type": "l2",
}),
Index::IvfPq(Default::default()),
),
(
"IVF_PQ",
json!({
"metric_type": "cosine",
"num_partitions": 128,
"num_bits": 4,
}),
Index::IvfPq(
IvfPqIndexBuilder::default()
.distance_type(DistanceType::Cosine)
.num_partitions(128)
.num_bits(4),
),
), ),
( (
"IVF_HNSW_SQ", "IVF_HNSW_SQ",
Some("l2"), json!({
"metric_type": "l2",
}),
Index::IvfHnswSq(Default::default()), Index::IvfHnswSq(Default::default()),
), ),
(
"IVF_HNSW_SQ",
json!({
"metric_type": "l2",
"num_partitions": 128,
}),
Index::IvfHnswSq(
IvfHnswSqIndexBuilder::default()
.distance_type(DistanceType::L2)
.num_partitions(128),
),
),
// HNSW_PQ isn't yet supported on SaaS // HNSW_PQ isn't yet supported on SaaS
("BTREE", None, Index::BTree(Default::default())), ("BTREE", json!({}), Index::BTree(Default::default())),
("BITMAP", None, Index::Bitmap(Default::default())), ("BITMAP", json!({}), Index::Bitmap(Default::default())),
("LABEL_LIST", None, Index::LabelList(Default::default())), (
("FTS", None, Index::FTS(Default::default())), "LABEL_LIST",
json!({}),
Index::LabelList(Default::default()),
),
(
"FTS",
serde_json::to_value(InvertedIndexParams::default()).unwrap(),
Index::FTS(Default::default()),
),
]; ];
for (index_type, distance_type, index) in cases { for (index_type, expected_body, index) in cases {
let params = index.clone();
let table = Table::new_with_handler("my_table", move |request| { let table = Table::new_with_handler("my_table", move |request| {
assert_eq!(request.method(), "POST"); assert_eq!(request.method(), "POST");
assert_eq!(request.url().path(), "/v1/table/my_table/create_index/"); assert_eq!(request.url().path(), "/v1/table/my_table/create_index/");
@@ -2465,19 +2544,9 @@ mod tests {
); );
let body = request.body().unwrap().as_bytes().unwrap(); let body = request.body().unwrap().as_bytes().unwrap();
let body: serde_json::Value = serde_json::from_slice(body).unwrap(); let body: serde_json::Value = serde_json::from_slice(body).unwrap();
let mut expected_body = serde_json::json!({ let mut expected_body = expected_body.clone();
"column": "a", expected_body["column"] = "a".into();
"index_type": index_type, expected_body[INDEX_TYPE_KEY] = index_type.into();
});
if let Some(distance_type) = distance_type {
expected_body["metric_type"] = distance_type.to_lowercase().into();
}
if let Index::FTS(fts) = &params {
let params = serde_json::to_value(fts).unwrap();
for (key, value) in params.as_object().unwrap() {
expected_body[key] = value.clone();
}
}
assert_eq!(body, expected_body); assert_eq!(body, expected_body);

View File

@@ -392,9 +392,18 @@ pub mod tests {
} else { } else {
expected_line.trim() expected_line.trim()
}; };
assert_eq!(&actual_trimmed[..expected_trimmed.len()], expected_trimmed); assert_eq!(
&actual_trimmed[..expected_trimmed.len()],
expected_trimmed,
"\nactual:\n{physical_plan}\nexpected:\n{expected}"
);
} }
assert_eq!(lines_checked, expected.lines().count()); assert_eq!(
lines_checked,
expected.lines().count(),
"\nlines_checked:\n{lines_checked}\nexpected:\n{}",
expected.lines().count()
);
} }
} }
@@ -477,9 +486,9 @@ pub mod tests {
TestFixture::check_plan( TestFixture::check_plan(
plan, plan,
"MetadataEraserExec "MetadataEraserExec
RepartitionExec:...
CoalesceBatchesExec:... CoalesceBatchesExec:...
FilterExec: i@0 >= 5 FilterExec: i@0 >= 5
RepartitionExec:...
ProjectionExec:... ProjectionExec:...
LanceScan:...", LanceScan:...",
) )

View File

@@ -129,8 +129,10 @@ impl DatasetRef {
dataset: ref mut ds, dataset: ref mut ds,
.. ..
} => { } => {
if dataset.manifest().version > ds.manifest().version {
*ds = dataset; *ds = dataset;
} }
}
_ => unreachable!("Dataset should be in latest mode at this point"), _ => unreachable!("Dataset should be in latest mode at this point"),
} }
} }