mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 05:19:58 +00:00
Compare commits
31 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6602a86dcb | ||
|
|
2025aefe80 | ||
|
|
68724c5d57 | ||
|
|
1884fe8a3e | ||
|
|
d8111b259c | ||
|
|
3c74bf5c7a | ||
|
|
b64bb75a82 | ||
|
|
93e03ec702 | ||
|
|
7a94a7e171 | ||
|
|
acae6522fb | ||
|
|
005d5b64ac | ||
|
|
1e89d07fe2 | ||
|
|
1da55719e7 | ||
|
|
9d0ca5a823 | ||
|
|
1e0cc69401 | ||
|
|
f31e0c749d | ||
|
|
7a3ef68306 | ||
|
|
43952e01d7 | ||
|
|
495c335831 | ||
|
|
77707db543 | ||
|
|
d6d7ad3b06 | ||
|
|
e58d64c286 | ||
|
|
76cbd18c46 | ||
|
|
4abb38ac70 | ||
|
|
cc7bc5011d | ||
|
|
8193183304 | ||
|
|
cf28b58b7d | ||
|
|
e3b7ee47b9 | ||
|
|
97c9c906e4 | ||
|
|
358f86b9c6 | ||
|
|
5489e215a3 |
@@ -1,5 +1,5 @@
|
|||||||
[tool.bumpversion]
|
[tool.bumpversion]
|
||||||
current_version = "0.5.2"
|
current_version = "0.5.2-final.1"
|
||||||
parse = """(?x)
|
parse = """(?x)
|
||||||
(?P<major>0|[1-9]\\d*)\\.
|
(?P<major>0|[1-9]\\d*)\\.
|
||||||
(?P<minor>0|[1-9]\\d*)\\.
|
(?P<minor>0|[1-9]\\d*)\\.
|
||||||
|
|||||||
@@ -28,7 +28,7 @@ runs:
|
|||||||
args: ${{ inputs.args }}
|
args: ${{ inputs.args }}
|
||||||
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
|
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
|
||||||
working-directory: python
|
working-directory: python
|
||||||
- uses: actions/upload-artifact@v3
|
- uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
name: windows-wheels
|
name: windows-wheels
|
||||||
path: python\target\wheels
|
path: python\target\wheels
|
||||||
|
|||||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -41,5 +41,3 @@ dist
|
|||||||
target
|
target
|
||||||
|
|
||||||
**/sccache.log
|
**/sccache.log
|
||||||
|
|
||||||
Cargo.lock
|
|
||||||
|
|||||||
7145
Cargo.lock
generated
Normal file
7145
Cargo.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
@@ -35,7 +35,7 @@ arrow-schema = "51.0"
|
|||||||
arrow-arith = "51.0"
|
arrow-arith = "51.0"
|
||||||
arrow-cast = "51.0"
|
arrow-cast = "51.0"
|
||||||
async-trait = "0"
|
async-trait = "0"
|
||||||
chrono = "0.4.35"
|
chrono = "=0.4.39"
|
||||||
datafusion-physical-plan = "37.1"
|
datafusion-physical-plan = "37.1"
|
||||||
half = { "version" = "=2.4.1", default-features = false, features = [
|
half = { "version" = "=2.4.1", default-features = false, features = [
|
||||||
"num-traits",
|
"num-traits",
|
||||||
@@ -45,7 +45,8 @@ log = "0.4"
|
|||||||
object_store = "0.9.0"
|
object_store = "0.9.0"
|
||||||
pin-project = "1.0.7"
|
pin-project = "1.0.7"
|
||||||
snafu = "0.7.4"
|
snafu = "0.7.4"
|
||||||
url = "2"
|
url = "=2.3.1"
|
||||||
num-traits = "0.2"
|
num-traits = "0.2"
|
||||||
regex = "1.10"
|
regex = "1.10"
|
||||||
lazy_static = "1"
|
lazy_static = "1"
|
||||||
|
napi-build = "=2.1.2"
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.5.2",
|
"version": "0.5.2-final.1",
|
||||||
"description": " Serverless, low-latency vector database for AI applications",
|
"description": " Serverless, low-latency vector database for AI applications",
|
||||||
"main": "dist/index.js",
|
"main": "dist/index.js",
|
||||||
"types": "dist/index.d.ts",
|
"types": "dist/index.d.ts",
|
||||||
|
|||||||
@@ -15,14 +15,15 @@ crate-type = ["cdylib"]
|
|||||||
arrow-ipc.workspace = true
|
arrow-ipc.workspace = true
|
||||||
futures.workspace = true
|
futures.workspace = true
|
||||||
lancedb = { path = "../rust/lancedb" }
|
lancedb = { path = "../rust/lancedb" }
|
||||||
napi = { version = "2.15", default-features = false, features = [
|
napi = { version = "=2.16.1", default-features = false, features = [
|
||||||
"napi7",
|
"napi7",
|
||||||
"async",
|
"async",
|
||||||
] }
|
] }
|
||||||
napi-derive = "2"
|
napi-derive = "=2.16.1"
|
||||||
|
napi-build = "=2.1.2"
|
||||||
|
|
||||||
# Prevent dynamic linking of lzma, which comes from datafusion
|
# Prevent dynamic linking of lzma, which comes from datafusion
|
||||||
lzma-sys = { version = "*", features = ["static"] }
|
lzma-sys = { version = "*", features = ["static"] }
|
||||||
|
|
||||||
[build-dependencies]
|
[build-dependencies]
|
||||||
napi-build = "2.1"
|
napi-build = "=2.1.2"
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@lancedb/lancedb-darwin-arm64",
|
"name": "@lancedb/lancedb-darwin-arm64",
|
||||||
"version": "0.5.2",
|
"version": "0.5.2-final.1",
|
||||||
"os": ["darwin"],
|
"os": ["darwin"],
|
||||||
"cpu": ["arm64"],
|
"cpu": ["arm64"],
|
||||||
"main": "lancedb.darwin-arm64.node",
|
"main": "lancedb.darwin-arm64.node",
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@lancedb/lancedb-darwin-x64",
|
"name": "@lancedb/lancedb-darwin-x64",
|
||||||
"version": "0.5.2",
|
"version": "0.5.2-final.1",
|
||||||
"os": ["darwin"],
|
"os": ["darwin"],
|
||||||
"cpu": ["x64"],
|
"cpu": ["x64"],
|
||||||
"main": "lancedb.darwin-x64.node",
|
"main": "lancedb.darwin-x64.node",
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
||||||
"version": "0.5.2",
|
"version": "0.5.2-final.1",
|
||||||
"os": ["linux"],
|
"os": ["linux"],
|
||||||
"cpu": ["arm64"],
|
"cpu": ["arm64"],
|
||||||
"main": "lancedb.linux-arm64-gnu.node",
|
"main": "lancedb.linux-arm64-gnu.node",
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@lancedb/lancedb-linux-x64-gnu",
|
"name": "@lancedb/lancedb-linux-x64-gnu",
|
||||||
"version": "0.5.2",
|
"version": "0.5.2-final.1",
|
||||||
"os": ["linux"],
|
"os": ["linux"],
|
||||||
"cpu": ["x64"],
|
"cpu": ["x64"],
|
||||||
"main": "lancedb.linux-x64-gnu.node",
|
"main": "lancedb.linux-x64-gnu.node",
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@lancedb/lancedb-win32-x64-msvc",
|
"name": "@lancedb/lancedb-win32-x64-msvc",
|
||||||
"version": "0.5.2",
|
"version": "0.5.2-final.1",
|
||||||
"os": ["win32"],
|
"os": ["win32"],
|
||||||
"cpu": ["x64"],
|
"cpu": ["x64"],
|
||||||
"main": "lancedb.win32-x64-msvc.node",
|
"main": "lancedb.win32-x64-msvc.node",
|
||||||
|
|||||||
@@ -10,7 +10,7 @@
|
|||||||
"vector database",
|
"vector database",
|
||||||
"ann"
|
"ann"
|
||||||
],
|
],
|
||||||
"version": "0.5.2",
|
"version": "0.5.2-final.1",
|
||||||
"main": "dist/index.js",
|
"main": "dist/index.js",
|
||||||
"exports": {
|
"exports": {
|
||||||
".": "./dist/index.js",
|
".": "./dist/index.js",
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
[tool.bumpversion]
|
[tool.bumpversion]
|
||||||
current_version = "0.9.0"
|
current_version = "0.9.0-beta.9"
|
||||||
parse = """(?x)
|
parse = """(?x)
|
||||||
(?P<major>0|[1-9]\\d*)\\.
|
(?P<major>0|[1-9]\\d*)\\.
|
||||||
(?P<minor>0|[1-9]\\d*)\\.
|
(?P<minor>0|[1-9]\\d*)\\.
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "lancedb-python"
|
name = "lancedb-python"
|
||||||
version = "0.9.0"
|
version = "0.9.0-beta.9"
|
||||||
edition.workspace = true
|
edition.workspace = true
|
||||||
description = "Python bindings for LanceDB"
|
description = "Python bindings for LanceDB"
|
||||||
license.workspace = true
|
license.workspace = true
|
||||||
@@ -19,6 +19,8 @@ lancedb = { path = "../rust/lancedb" }
|
|||||||
env_logger = "0.10"
|
env_logger = "0.10"
|
||||||
pyo3 = { version = "0.20", features = ["extension-module", "abi3-py38"] }
|
pyo3 = { version = "0.20", features = ["extension-module", "abi3-py38"] }
|
||||||
pyo3-asyncio = { version = "0.20", features = ["attributes", "tokio-runtime"] }
|
pyo3-asyncio = { version = "0.20", features = ["attributes", "tokio-runtime"] }
|
||||||
|
base64ct = "=1.6.0" # workaround for https://github.com/RustCrypto/formats/issues/1684
|
||||||
|
chrono = "=0.4.39"
|
||||||
|
|
||||||
# Prevent dynamic linking of lzma, which comes from datafusion
|
# Prevent dynamic linking of lzma, which comes from datafusion
|
||||||
lzma-sys = { version = "*", features = ["static"] }
|
lzma-sys = { version = "*", features = ["static"] }
|
||||||
|
|||||||
@@ -13,6 +13,7 @@ dependencies = [
|
|||||||
"packaging",
|
"packaging",
|
||||||
"cachetools",
|
"cachetools",
|
||||||
"overrides>=0.7",
|
"overrides>=0.7",
|
||||||
|
"urllib3==1.26.19"
|
||||||
]
|
]
|
||||||
description = "lancedb"
|
description = "lancedb"
|
||||||
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
|
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
|
||||||
|
|||||||
@@ -35,6 +35,7 @@ def connect(
|
|||||||
host_override: Optional[str] = None,
|
host_override: Optional[str] = None,
|
||||||
read_consistency_interval: Optional[timedelta] = None,
|
read_consistency_interval: Optional[timedelta] = None,
|
||||||
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
|
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
|
||||||
|
storage_options: Optional[Dict[str, str]] = None,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
) -> DBConnection:
|
) -> DBConnection:
|
||||||
"""Connect to a LanceDB database.
|
"""Connect to a LanceDB database.
|
||||||
@@ -70,6 +71,9 @@ def connect(
|
|||||||
executor will be used for making requests. This is for LanceDB Cloud
|
executor will be used for making requests. This is for LanceDB Cloud
|
||||||
only and is only used when making batch requests (i.e., passing in
|
only and is only used when making batch requests (i.e., passing in
|
||||||
multiple queries to the search method at once).
|
multiple queries to the search method at once).
|
||||||
|
storage_options: dict, optional
|
||||||
|
Additional options for the storage backend. See available options at
|
||||||
|
https://lancedb.github.io/lancedb/guides/storage/
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
@@ -105,12 +109,16 @@ def connect(
|
|||||||
region,
|
region,
|
||||||
host_override,
|
host_override,
|
||||||
request_thread_pool=request_thread_pool,
|
request_thread_pool=request_thread_pool,
|
||||||
|
storage_options=storage_options,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
|
|
||||||
if kwargs:
|
if kwargs:
|
||||||
raise ValueError(f"Unknown keyword arguments: {kwargs}")
|
raise ValueError(f"Unknown keyword arguments: {kwargs}")
|
||||||
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)
|
return LanceDBConnection(
|
||||||
|
uri,
|
||||||
|
read_consistency_interval=read_consistency_interval,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
async def connect_async(
|
async def connect_async(
|
||||||
|
|||||||
@@ -117,6 +117,8 @@ class Query(pydantic.BaseModel):
|
|||||||
|
|
||||||
with_row_id: bool = False
|
with_row_id: bool = False
|
||||||
|
|
||||||
|
fast_search: bool = False
|
||||||
|
|
||||||
|
|
||||||
class LanceQueryBuilder(ABC):
|
class LanceQueryBuilder(ABC):
|
||||||
"""An abstract query builder. Subclasses are defined for vector search,
|
"""An abstract query builder. Subclasses are defined for vector search,
|
||||||
@@ -130,7 +132,9 @@ class LanceQueryBuilder(ABC):
|
|||||||
query: Optional[Union[np.ndarray, str, "PIL.Image.Image", Tuple]],
|
query: Optional[Union[np.ndarray, str, "PIL.Image.Image", Tuple]],
|
||||||
query_type: str,
|
query_type: str,
|
||||||
vector_column_name: str,
|
vector_column_name: str,
|
||||||
ordering_field_name: str = None,
|
ordering_field_name: Optional[str] = None,
|
||||||
|
fts_columns: Union[str, List[str]] = [],
|
||||||
|
fast_search: bool = False,
|
||||||
) -> LanceQueryBuilder:
|
) -> LanceQueryBuilder:
|
||||||
"""
|
"""
|
||||||
Create a query builder based on the given query and query type.
|
Create a query builder based on the given query and query type.
|
||||||
@@ -147,13 +151,18 @@ class LanceQueryBuilder(ABC):
|
|||||||
If "auto", the query type is inferred based on the query.
|
If "auto", the query type is inferred based on the query.
|
||||||
vector_column_name: str
|
vector_column_name: str
|
||||||
The name of the vector column to use for vector search.
|
The name of the vector column to use for vector search.
|
||||||
|
fast_search: bool
|
||||||
|
Skip flat search of unindexed data.
|
||||||
"""
|
"""
|
||||||
if query is None:
|
# Check hybrid search first as it supports empty query pattern
|
||||||
return LanceEmptyQueryBuilder(table)
|
|
||||||
|
|
||||||
if query_type == "hybrid":
|
if query_type == "hybrid":
|
||||||
# hybrid fts and vector query
|
# hybrid fts and vector query
|
||||||
return LanceHybridQueryBuilder(table, query, vector_column_name)
|
return LanceHybridQueryBuilder(
|
||||||
|
table, query, vector_column_name, fts_columns=fts_columns
|
||||||
|
)
|
||||||
|
|
||||||
|
if query is None:
|
||||||
|
return LanceEmptyQueryBuilder(table)
|
||||||
|
|
||||||
# remember the string query for reranking purpose
|
# remember the string query for reranking purpose
|
||||||
str_query = query if isinstance(query, str) else None
|
str_query = query if isinstance(query, str) else None
|
||||||
@@ -165,12 +174,17 @@ class LanceQueryBuilder(ABC):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if query_type == "hybrid":
|
if query_type == "hybrid":
|
||||||
return LanceHybridQueryBuilder(table, query, vector_column_name)
|
return LanceHybridQueryBuilder(
|
||||||
|
table, query, vector_column_name, fts_columns=fts_columns
|
||||||
|
)
|
||||||
|
|
||||||
if isinstance(query, str):
|
if isinstance(query, str):
|
||||||
# fts
|
# fts
|
||||||
return LanceFtsQueryBuilder(
|
return LanceFtsQueryBuilder(
|
||||||
table, query, ordering_field_name=ordering_field_name
|
table,
|
||||||
|
query,
|
||||||
|
ordering_field_name=ordering_field_name,
|
||||||
|
fts_columns=fts_columns,
|
||||||
)
|
)
|
||||||
|
|
||||||
if isinstance(query, list):
|
if isinstance(query, list):
|
||||||
@@ -180,7 +194,9 @@ class LanceQueryBuilder(ABC):
|
|||||||
else:
|
else:
|
||||||
raise TypeError(f"Unsupported query type: {type(query)}")
|
raise TypeError(f"Unsupported query type: {type(query)}")
|
||||||
|
|
||||||
return LanceVectorQueryBuilder(table, query, vector_column_name, str_query)
|
return LanceVectorQueryBuilder(
|
||||||
|
table, query, vector_column_name, str_query, fast_search
|
||||||
|
)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def _resolve_query(cls, table, query, query_type, vector_column_name):
|
def _resolve_query(cls, table, query, query_type, vector_column_name):
|
||||||
@@ -196,8 +212,6 @@ class LanceQueryBuilder(ABC):
|
|||||||
elif query_type == "auto":
|
elif query_type == "auto":
|
||||||
if isinstance(query, (list, np.ndarray)):
|
if isinstance(query, (list, np.ndarray)):
|
||||||
return query, "vector"
|
return query, "vector"
|
||||||
if isinstance(query, tuple):
|
|
||||||
return query, "hybrid"
|
|
||||||
else:
|
else:
|
||||||
conf = table.embedding_functions.get(vector_column_name)
|
conf = table.embedding_functions.get(vector_column_name)
|
||||||
if conf is not None:
|
if conf is not None:
|
||||||
@@ -224,9 +238,14 @@ class LanceQueryBuilder(ABC):
|
|||||||
def __init__(self, table: "Table"):
|
def __init__(self, table: "Table"):
|
||||||
self._table = table
|
self._table = table
|
||||||
self._limit = 10
|
self._limit = 10
|
||||||
|
self._offset = 0
|
||||||
self._columns = None
|
self._columns = None
|
||||||
self._where = None
|
self._where = None
|
||||||
|
self._prefilter = False
|
||||||
self._with_row_id = False
|
self._with_row_id = False
|
||||||
|
self._vector = None
|
||||||
|
self._text = None
|
||||||
|
self._ef = None
|
||||||
|
|
||||||
@deprecation.deprecated(
|
@deprecation.deprecated(
|
||||||
deprecated_in="0.3.1",
|
deprecated_in="0.3.1",
|
||||||
@@ -337,11 +356,13 @@ class LanceQueryBuilder(ABC):
|
|||||||
----------
|
----------
|
||||||
limit: int
|
limit: int
|
||||||
The maximum number of results to return.
|
The maximum number of results to return.
|
||||||
By default the query is limited to the first 10.
|
The default query limit is 10 results.
|
||||||
Call this method and pass 0, a negative value,
|
For ANN/KNN queries, you must specify a limit.
|
||||||
or None to remove the limit.
|
Entering 0, a negative number, or None will reset
|
||||||
*WARNING* if you have a large dataset, removing
|
the limit to the default value of 10.
|
||||||
the limit can potentially result in reading a
|
*WARNING* if you have a large dataset, setting
|
||||||
|
the limit to a large number, e.g. the table size,
|
||||||
|
can potentially result in reading a
|
||||||
large amount of data into memory and cause
|
large amount of data into memory and cause
|
||||||
out of memory issues.
|
out of memory issues.
|
||||||
|
|
||||||
@@ -351,11 +372,33 @@ class LanceQueryBuilder(ABC):
|
|||||||
The LanceQueryBuilder object.
|
The LanceQueryBuilder object.
|
||||||
"""
|
"""
|
||||||
if limit is None or limit <= 0:
|
if limit is None or limit <= 0:
|
||||||
|
if isinstance(self, LanceVectorQueryBuilder):
|
||||||
|
raise ValueError("Limit is required for ANN/KNN queries")
|
||||||
|
else:
|
||||||
self._limit = None
|
self._limit = None
|
||||||
else:
|
else:
|
||||||
self._limit = limit
|
self._limit = limit
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
def offset(self, offset: int) -> LanceQueryBuilder:
|
||||||
|
"""Set the offset for the results.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
offset: int
|
||||||
|
The offset to start fetching results from.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
LanceQueryBuilder
|
||||||
|
The LanceQueryBuilder object.
|
||||||
|
"""
|
||||||
|
if offset is None or offset <= 0:
|
||||||
|
self._offset = 0
|
||||||
|
else:
|
||||||
|
self._offset = offset
|
||||||
|
return self
|
||||||
|
|
||||||
def select(self, columns: Union[list[str], dict[str, str]]) -> LanceQueryBuilder:
|
def select(self, columns: Union[list[str], dict[str, str]]) -> LanceQueryBuilder:
|
||||||
"""Set the columns to return.
|
"""Set the columns to return.
|
||||||
|
|
||||||
@@ -417,6 +460,80 @@ class LanceQueryBuilder(ABC):
|
|||||||
self._with_row_id = with_row_id
|
self._with_row_id = with_row_id
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
def explain_plan(self, verbose: Optional[bool] = False) -> str:
|
||||||
|
"""Return the execution plan for this query.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> db = lancedb.connect("./.lancedb")
|
||||||
|
>>> table = db.create_table("my_table", [{"vector": [99, 99]}])
|
||||||
|
>>> query = [100, 100]
|
||||||
|
>>> plan = table.search(query).explain_plan(True)
|
||||||
|
>>> print(plan) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
|
||||||
|
ProjectionExec: expr=[vector@0 as vector, _distance@2 as _distance]
|
||||||
|
GlobalLimitExec: skip=0, fetch=10
|
||||||
|
FilterExec: _distance@2 IS NOT NULL
|
||||||
|
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
|
||||||
|
KNNVectorDistance: metric=l2
|
||||||
|
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
verbose : bool, default False
|
||||||
|
Use a verbose output format.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
plan : str
|
||||||
|
""" # noqa: E501
|
||||||
|
ds = self._table.to_lance()
|
||||||
|
return ds.scanner(
|
||||||
|
nearest={
|
||||||
|
"column": self._vector_column,
|
||||||
|
"q": self._query,
|
||||||
|
"k": self._limit,
|
||||||
|
"metric": self._metric,
|
||||||
|
"nprobes": self._nprobes,
|
||||||
|
"refine_factor": self._refine_factor,
|
||||||
|
},
|
||||||
|
prefilter=self._prefilter,
|
||||||
|
filter=self._str_query,
|
||||||
|
limit=self._limit,
|
||||||
|
with_row_id=self._with_row_id,
|
||||||
|
offset=self._offset,
|
||||||
|
).explain_plan(verbose)
|
||||||
|
|
||||||
|
def vector(self, vector: Union[np.ndarray, list]) -> LanceQueryBuilder:
|
||||||
|
"""Set the vector to search for.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
vector: np.ndarray or list
|
||||||
|
The vector to search for.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
LanceQueryBuilder
|
||||||
|
The LanceQueryBuilder object.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def text(self, text: str) -> LanceQueryBuilder:
|
||||||
|
"""Set the text to search for.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
text: str
|
||||||
|
The text to search for.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
LanceQueryBuilder
|
||||||
|
The LanceQueryBuilder object.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
class LanceVectorQueryBuilder(LanceQueryBuilder):
|
class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||||
"""
|
"""
|
||||||
@@ -445,6 +562,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
|||||||
query: Union[np.ndarray, list, "PIL.Image.Image"],
|
query: Union[np.ndarray, list, "PIL.Image.Image"],
|
||||||
vector_column: str,
|
vector_column: str,
|
||||||
str_query: Optional[str] = None,
|
str_query: Optional[str] = None,
|
||||||
|
fast_search: bool = False,
|
||||||
):
|
):
|
||||||
super().__init__(table)
|
super().__init__(table)
|
||||||
self._query = query
|
self._query = query
|
||||||
@@ -455,13 +573,14 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
|||||||
self._prefilter = False
|
self._prefilter = False
|
||||||
self._reranker = None
|
self._reranker = None
|
||||||
self._str_query = str_query
|
self._str_query = str_query
|
||||||
|
self._fast_search = fast_search
|
||||||
|
|
||||||
def metric(self, metric: Literal["L2", "cosine"]) -> LanceVectorQueryBuilder:
|
def metric(self, metric: Literal["L2", "cosine", "dot"]) -> LanceVectorQueryBuilder:
|
||||||
"""Set the distance metric to use.
|
"""Set the distance metric to use.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
metric: "L2" or "cosine"
|
metric: "L2" or "cosine" or "dot"
|
||||||
The distance metric to use. By default "L2" is used.
|
The distance metric to use. By default "L2" is used.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
@@ -469,7 +588,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
|||||||
LanceVectorQueryBuilder
|
LanceVectorQueryBuilder
|
||||||
The LanceQueryBuilder object.
|
The LanceQueryBuilder object.
|
||||||
"""
|
"""
|
||||||
self._metric = metric
|
self._metric = metric.lower()
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def nprobes(self, nprobes: int) -> LanceVectorQueryBuilder:
|
def nprobes(self, nprobes: int) -> LanceVectorQueryBuilder:
|
||||||
@@ -494,6 +613,28 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
|||||||
self._nprobes = nprobes
|
self._nprobes = nprobes
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
def ef(self, ef: int) -> LanceVectorQueryBuilder:
|
||||||
|
"""Set the number of candidates to consider during search.
|
||||||
|
|
||||||
|
Higher values will yield better recall (more likely to find vectors if
|
||||||
|
they exist) at the expense of latency.
|
||||||
|
|
||||||
|
This only applies to the HNSW-related index.
|
||||||
|
The default value is 1.5 * limit.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
ef: int
|
||||||
|
The number of candidates to consider during search.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
LanceVectorQueryBuilder
|
||||||
|
The LanceQueryBuilder object.
|
||||||
|
"""
|
||||||
|
self._ef = ef
|
||||||
|
return self
|
||||||
|
|
||||||
def refine_factor(self, refine_factor: int) -> LanceVectorQueryBuilder:
|
def refine_factor(self, refine_factor: int) -> LanceVectorQueryBuilder:
|
||||||
"""Set the refine factor to use, increasing the number of vectors sampled.
|
"""Set the refine factor to use, increasing the number of vectors sampled.
|
||||||
|
|
||||||
@@ -554,15 +695,11 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
|||||||
refine_factor=self._refine_factor,
|
refine_factor=self._refine_factor,
|
||||||
vector_column=self._vector_column,
|
vector_column=self._vector_column,
|
||||||
with_row_id=self._with_row_id,
|
with_row_id=self._with_row_id,
|
||||||
|
offset=self._offset,
|
||||||
|
fast_search=self._fast_search,
|
||||||
|
ef=self._ef,
|
||||||
)
|
)
|
||||||
result_set = self._table._execute_query(query, batch_size)
|
result_set = self._table._execute_query(query, batch_size)
|
||||||
if self._reranker is not None:
|
|
||||||
rs_table = result_set.read_all()
|
|
||||||
result_set = self._reranker.rerank_vector(self._str_query, rs_table)
|
|
||||||
# convert result_set back to RecordBatchReader
|
|
||||||
result_set = pa.RecordBatchReader.from_batches(
|
|
||||||
result_set.schema, result_set.to_batches()
|
|
||||||
)
|
|
||||||
|
|
||||||
return result_set
|
return result_set
|
||||||
|
|
||||||
@@ -756,12 +893,34 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
|||||||
|
|
||||||
class LanceEmptyQueryBuilder(LanceQueryBuilder):
|
class LanceEmptyQueryBuilder(LanceQueryBuilder):
|
||||||
def to_arrow(self) -> pa.Table:
|
def to_arrow(self) -> pa.Table:
|
||||||
ds = self._table.to_lance()
|
return self.to_batches().read_all()
|
||||||
return ds.to_table(
|
|
||||||
|
def to_batches(self, /, batch_size: Optional[int] = None) -> pa.RecordBatchReader:
|
||||||
|
query = Query(
|
||||||
columns=self._columns,
|
columns=self._columns,
|
||||||
filter=self._where,
|
filter=self._where,
|
||||||
limit=self._limit,
|
k=self._limit or 10,
|
||||||
|
with_row_id=self._with_row_id,
|
||||||
|
vector=[],
|
||||||
|
# not actually respected in remote query
|
||||||
|
offset=self._offset or 0,
|
||||||
)
|
)
|
||||||
|
return self._table._execute_query(query)
|
||||||
|
|
||||||
|
def rerank(self, reranker: Reranker) -> LanceEmptyQueryBuilder:
|
||||||
|
"""Rerank the results using the specified reranker.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
reranker: Reranker
|
||||||
|
The reranker to use.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
LanceEmptyQueryBuilder
|
||||||
|
The LanceQueryBuilder object.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError("Reranking is not yet supported.")
|
||||||
|
|
||||||
|
|
||||||
class LanceHybridQueryBuilder(LanceQueryBuilder):
|
class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||||
|
|||||||
@@ -47,6 +47,8 @@ class VectorQuery(BaseModel):
|
|||||||
|
|
||||||
vector_column: str = VECTOR_COLUMN_NAME
|
vector_column: str = VECTOR_COLUMN_NAME
|
||||||
|
|
||||||
|
bypass_vector_index: Optional[bool] = None
|
||||||
|
|
||||||
|
|
||||||
@attrs.define
|
@attrs.define
|
||||||
class VectorQueryResult:
|
class VectorQueryResult:
|
||||||
|
|||||||
@@ -55,11 +55,13 @@ class RestfulLanceDBClient:
|
|||||||
region: str
|
region: str
|
||||||
api_key: Credential
|
api_key: Credential
|
||||||
host_override: Optional[str] = attrs.field(default=None)
|
host_override: Optional[str] = attrs.field(default=None)
|
||||||
|
db_prefix: Optional[str] = attrs.field(default=None)
|
||||||
|
|
||||||
closed: bool = attrs.field(default=False, init=False)
|
closed: bool = attrs.field(default=False, init=False)
|
||||||
|
|
||||||
connection_timeout: float = attrs.field(default=120.0, kw_only=True)
|
connection_timeout: float = attrs.field(default=120.0, kw_only=True)
|
||||||
read_timeout: float = attrs.field(default=300.0, kw_only=True)
|
read_timeout: float = attrs.field(default=300.0, kw_only=True)
|
||||||
|
storage_options: Optional[Dict[str, str]] = attrs.field(default=None, kw_only=True)
|
||||||
|
|
||||||
@functools.cached_property
|
@functools.cached_property
|
||||||
def session(self) -> requests.Session:
|
def session(self) -> requests.Session:
|
||||||
@@ -92,6 +94,18 @@ class RestfulLanceDBClient:
|
|||||||
headers["Host"] = f"{self.db_name}.{self.region}.api.lancedb.com"
|
headers["Host"] = f"{self.db_name}.{self.region}.api.lancedb.com"
|
||||||
if self.host_override:
|
if self.host_override:
|
||||||
headers["x-lancedb-database"] = self.db_name
|
headers["x-lancedb-database"] = self.db_name
|
||||||
|
if self.storage_options:
|
||||||
|
if self.storage_options.get("account_name") is not None:
|
||||||
|
headers["x-azure-storage-account-name"] = self.storage_options[
|
||||||
|
"account_name"
|
||||||
|
]
|
||||||
|
if self.storage_options.get("azure_storage_account_name") is not None:
|
||||||
|
headers["x-azure-storage-account-name"] = self.storage_options[
|
||||||
|
"azure_storage_account_name"
|
||||||
|
]
|
||||||
|
if self.db_prefix:
|
||||||
|
headers["x-lancedb-database-prefix"] = self.db_prefix
|
||||||
|
|
||||||
return headers
|
return headers
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@@ -158,6 +172,7 @@ class RestfulLanceDBClient:
|
|||||||
headers["content-type"] = content_type
|
headers["content-type"] = content_type
|
||||||
if request_id is not None:
|
if request_id is not None:
|
||||||
headers["x-request-id"] = request_id
|
headers["x-request-id"] = request_id
|
||||||
|
|
||||||
with self.session.post(
|
with self.session.post(
|
||||||
urljoin(self.url, uri),
|
urljoin(self.url, uri),
|
||||||
headers=headers,
|
headers=headers,
|
||||||
@@ -245,7 +260,6 @@ def retry_adapter(options: Dict[str, Any]) -> HTTPAdapter:
|
|||||||
connect=connect_retries,
|
connect=connect_retries,
|
||||||
read=read_retries,
|
read=read_retries,
|
||||||
backoff_factor=backoff_factor,
|
backoff_factor=backoff_factor,
|
||||||
backoff_jitter=backoff_jitter,
|
|
||||||
status_forcelist=statuses,
|
status_forcelist=statuses,
|
||||||
allowed_methods=methods,
|
allowed_methods=methods,
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -15,7 +15,7 @@ import inspect
|
|||||||
import logging
|
import logging
|
||||||
import uuid
|
import uuid
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
from typing import Iterable, List, Optional, Union
|
from typing import Dict, Iterable, List, Optional, Union
|
||||||
from urllib.parse import urlparse
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
from cachetools import TTLCache
|
from cachetools import TTLCache
|
||||||
@@ -44,20 +44,25 @@ class RemoteDBConnection(DBConnection):
|
|||||||
request_thread_pool: Optional[ThreadPoolExecutor] = None,
|
request_thread_pool: Optional[ThreadPoolExecutor] = None,
|
||||||
connection_timeout: float = 120.0,
|
connection_timeout: float = 120.0,
|
||||||
read_timeout: float = 300.0,
|
read_timeout: float = 300.0,
|
||||||
|
storage_options: Optional[Dict[str, str]] = None,
|
||||||
):
|
):
|
||||||
"""Connect to a remote LanceDB database."""
|
"""Connect to a remote LanceDB database."""
|
||||||
parsed = urlparse(db_url)
|
parsed = urlparse(db_url)
|
||||||
if parsed.scheme != "db":
|
if parsed.scheme != "db":
|
||||||
raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://")
|
raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://")
|
||||||
self.db_name = parsed.netloc
|
self.db_name = parsed.netloc
|
||||||
|
prefix = parsed.path.lstrip("/")
|
||||||
|
self.db_prefix = None if not prefix else prefix
|
||||||
self.api_key = api_key
|
self.api_key = api_key
|
||||||
self._client = RestfulLanceDBClient(
|
self._client = RestfulLanceDBClient(
|
||||||
self.db_name,
|
self.db_name,
|
||||||
region,
|
region,
|
||||||
api_key,
|
api_key,
|
||||||
host_override,
|
host_override,
|
||||||
|
self.db_prefix,
|
||||||
connection_timeout=connection_timeout,
|
connection_timeout=connection_timeout,
|
||||||
read_timeout=read_timeout,
|
read_timeout=read_timeout,
|
||||||
|
storage_options=storage_options,
|
||||||
)
|
)
|
||||||
self._request_thread_pool = request_thread_pool
|
self._request_thread_pool = request_thread_pool
|
||||||
self._table_cache = TTLCache(maxsize=10000, ttl=300)
|
self._table_cache = TTLCache(maxsize=10000, ttl=300)
|
||||||
|
|||||||
@@ -15,13 +15,14 @@ import logging
|
|||||||
import uuid
|
import uuid
|
||||||
from concurrent.futures import Future
|
from concurrent.futures import Future
|
||||||
from functools import cached_property
|
from functools import cached_property
|
||||||
from typing import Dict, Iterable, Optional, Union
|
from typing import Dict, Iterable, Optional, Union, Literal
|
||||||
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from lance import json_to_schema
|
from lance import json_to_schema
|
||||||
|
|
||||||
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
|
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||||
from lancedb.merge import LanceMergeInsertBuilder
|
from lancedb.merge import LanceMergeInsertBuilder
|
||||||
|
from lancedb.query import LanceQueryBuilder
|
||||||
|
|
||||||
from ..query import LanceVectorQueryBuilder
|
from ..query import LanceVectorQueryBuilder
|
||||||
from ..table import Query, Table, _sanitize_data
|
from ..table import Query, Table, _sanitize_data
|
||||||
@@ -81,6 +82,7 @@ class RemoteTable(Table):
|
|||||||
def create_scalar_index(
|
def create_scalar_index(
|
||||||
self,
|
self,
|
||||||
column: str,
|
column: str,
|
||||||
|
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST", "scalar"] = "scalar",
|
||||||
):
|
):
|
||||||
"""Creates a scalar index
|
"""Creates a scalar index
|
||||||
Parameters
|
Parameters
|
||||||
@@ -89,8 +91,6 @@ class RemoteTable(Table):
|
|||||||
The column to be indexed. Must be a boolean, integer, float,
|
The column to be indexed. Must be a boolean, integer, float,
|
||||||
or string column.
|
or string column.
|
||||||
"""
|
"""
|
||||||
index_type = "scalar"
|
|
||||||
|
|
||||||
data = {
|
data = {
|
||||||
"column": column,
|
"column": column,
|
||||||
"index_type": index_type,
|
"index_type": index_type,
|
||||||
@@ -228,10 +228,21 @@ class RemoteTable(Table):
|
|||||||
content_type=ARROW_STREAM_CONTENT_TYPE,
|
content_type=ARROW_STREAM_CONTENT_TYPE,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def query(
|
||||||
|
self,
|
||||||
|
query: Union[VEC, str] = None,
|
||||||
|
query_type: str = "vector",
|
||||||
|
vector_column_name: Optional[str] = None,
|
||||||
|
fast_search: bool = False,
|
||||||
|
) -> LanceVectorQueryBuilder:
|
||||||
|
return self.search(query, query_type, vector_column_name, fast_search)
|
||||||
|
|
||||||
def search(
|
def search(
|
||||||
self,
|
self,
|
||||||
query: Union[VEC, str],
|
query: Union[VEC, str] = None,
|
||||||
|
query_type: str = "vector",
|
||||||
vector_column_name: Optional[str] = None,
|
vector_column_name: Optional[str] = None,
|
||||||
|
fast_search: bool = False,
|
||||||
) -> LanceVectorQueryBuilder:
|
) -> LanceVectorQueryBuilder:
|
||||||
"""Create a search query to find the nearest neighbors
|
"""Create a search query to find the nearest neighbors
|
||||||
of the given query vector. We currently support [vector search][search]
|
of the given query vector. We currently support [vector search][search]
|
||||||
@@ -278,6 +289,11 @@ class RemoteTable(Table):
|
|||||||
- If the table has multiple vector columns then the *vector_column_name*
|
- If the table has multiple vector columns then the *vector_column_name*
|
||||||
needs to be specified. Otherwise, an error is raised.
|
needs to be specified. Otherwise, an error is raised.
|
||||||
|
|
||||||
|
fast_search: bool, optional
|
||||||
|
Skip a flat search of unindexed data. This may improve
|
||||||
|
search performance but search results will not include unindexed data.
|
||||||
|
|
||||||
|
- *default False*.
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
LanceQueryBuilder
|
LanceQueryBuilder
|
||||||
@@ -293,7 +309,14 @@ class RemoteTable(Table):
|
|||||||
"""
|
"""
|
||||||
if vector_column_name is None:
|
if vector_column_name is None:
|
||||||
vector_column_name = inf_vector_column_query(self.schema)
|
vector_column_name = inf_vector_column_query(self.schema)
|
||||||
return LanceVectorQueryBuilder(self, query, vector_column_name)
|
|
||||||
|
return LanceQueryBuilder.create(
|
||||||
|
self,
|
||||||
|
query,
|
||||||
|
query_type,
|
||||||
|
vector_column_name=vector_column_name,
|
||||||
|
fast_search=fast_search,
|
||||||
|
)
|
||||||
|
|
||||||
def _execute_query(
|
def _execute_query(
|
||||||
self, query: Query, batch_size: Optional[int] = None
|
self, query: Query, batch_size: Optional[int] = None
|
||||||
|
|||||||
@@ -21,6 +21,7 @@ class FakeLanceDBClient:
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
|
def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
|
||||||
|
print(f"{query=}")
|
||||||
assert table_name == "test"
|
assert table_name == "test"
|
||||||
t = pa.schema([]).empty_table()
|
t = pa.schema([]).empty_table()
|
||||||
return VectorQueryResult(t)
|
return VectorQueryResult(t)
|
||||||
@@ -39,3 +40,21 @@ def test_remote_db():
|
|||||||
table = conn["test"]
|
table = conn["test"]
|
||||||
table.schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), 2))])
|
table.schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), 2))])
|
||||||
table.search([1.0, 2.0]).to_pandas()
|
table.search([1.0, 2.0]).to_pandas()
|
||||||
|
|
||||||
|
|
||||||
|
def test_empty_query_with_filter():
|
||||||
|
conn = lancedb.connect("db://client-will-be-injected", api_key="fake")
|
||||||
|
setattr(conn, "_client", FakeLanceDBClient())
|
||||||
|
|
||||||
|
table = conn["test"]
|
||||||
|
table.schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), 2))])
|
||||||
|
print(table.query().select(["vector"]).where("foo == bar").to_arrow())
|
||||||
|
|
||||||
|
|
||||||
|
def test_fast_search_query_with_filter():
|
||||||
|
conn = lancedb.connect("db://client-will-be-injected", api_key="fake")
|
||||||
|
setattr(conn, "_client", FakeLanceDBClient())
|
||||||
|
|
||||||
|
table = conn["test"]
|
||||||
|
table.schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), 2))])
|
||||||
|
print(table.query([0, 0], fast_search=True).select(["vector"]).where("foo == bar").to_arrow())
|
||||||
|
|||||||
@@ -735,7 +735,7 @@ def test_create_scalar_index(db):
|
|||||||
indices = table.to_lance().list_indices()
|
indices = table.to_lance().list_indices()
|
||||||
assert len(indices) == 1
|
assert len(indices) == 1
|
||||||
scalar_index = indices[0]
|
scalar_index = indices[0]
|
||||||
assert scalar_index["type"] == "Scalar"
|
assert scalar_index["type"] == "BTree"
|
||||||
|
|
||||||
# Confirm that prefiltering still works with the scalar index column
|
# Confirm that prefiltering still works with the scalar index column
|
||||||
results = table.search().where("x = 'c'").to_arrow()
|
results = table.search().where("x = 'c'").to_arrow()
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "lancedb-node"
|
name = "lancedb-node"
|
||||||
version = "0.5.2"
|
version = "0.5.2-final.1"
|
||||||
description = "Serverless, low-latency vector database for AI applications"
|
description = "Serverless, low-latency vector database for AI applications"
|
||||||
license.workspace = true
|
license.workspace = true
|
||||||
edition.workspace = true
|
edition.workspace = true
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "lancedb"
|
name = "lancedb"
|
||||||
version = "0.5.2"
|
version = "0.5.2-final.1"
|
||||||
edition.workspace = true
|
edition.workspace = true
|
||||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||||
license.workspace = true
|
license.workspace = true
|
||||||
|
|||||||
Reference in New Issue
Block a user