mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 21:39:57 +00:00
Compare commits
14 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1096da09da | ||
|
|
683824f1e9 | ||
|
|
db7bdefe77 | ||
|
|
e41894b071 | ||
|
|
e1ae2bcbd8 | ||
|
|
ababc3f8ec | ||
|
|
a1377afcaa | ||
|
|
a26c8f3316 | ||
|
|
88d8d7249e | ||
|
|
0eb7c9ea0c | ||
|
|
1db66c6980 | ||
|
|
c58da8fc8a | ||
|
|
448c4a835d | ||
|
|
850f80de99 |
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.2.6
|
||||
current_version = 0.3.0
|
||||
commit = True
|
||||
message = Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
@@ -5,8 +5,9 @@ exclude = ["python"]
|
||||
resolver = "2"
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.8.1", "features" = ["dynamodb"] }
|
||||
lance-linalg = { "version" = "=0.8.1" }
|
||||
lance = { "version" = "=0.8.3", "features" = ["dynamodb"] }
|
||||
lance-linalg = { "version" = "=0.8.3" }
|
||||
lance-testing = { "version" = "=0.8.3" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "43.0.0", optional = false }
|
||||
arrow-array = "43.0"
|
||||
@@ -16,6 +17,7 @@ arrow-ord = "43.0"
|
||||
arrow-schema = "43.0"
|
||||
arrow-arith = "43.0"
|
||||
arrow-cast = "43.0"
|
||||
chrono = "0.4.23"
|
||||
half = { "version" = "=2.2.1", default-features = false, features = [
|
||||
"num-traits"
|
||||
] }
|
||||
|
||||
@@ -33,6 +33,8 @@ The key features of LanceDB include:
|
||||
|
||||
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
||||
|
||||
* GPU support in building vector index(*).
|
||||
|
||||
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
||||
|
||||
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
||||
@@ -52,8 +54,7 @@ const table = await db.createTable('vectors',
|
||||
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
||||
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
|
||||
|
||||
const query = table.search([0.1, 0.3]);
|
||||
query.limit = 20;
|
||||
const query = table.search([0.1, 0.3]).limit(2);
|
||||
const results = await query.execute();
|
||||
```
|
||||
|
||||
@@ -70,7 +71,7 @@ db = lancedb.connect(uri)
|
||||
table = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
result = table.search([100, 100]).limit(2).to_df()
|
||||
result = table.search([100, 100]).limit(2).to_pandas()
|
||||
```
|
||||
|
||||
## Blogs, Tutorials & Videos
|
||||
|
||||
@@ -21,6 +21,7 @@ theme:
|
||||
- navigation.tracking
|
||||
- navigation.instant
|
||||
- navigation.indexes
|
||||
- navigation.expand
|
||||
icon:
|
||||
repo: fontawesome/brands/github
|
||||
custom_dir: overrides
|
||||
@@ -68,7 +69,7 @@ nav:
|
||||
- 🏢 Home: index.md
|
||||
- 💡 Basics: basic.md
|
||||
- 📚 Guides:
|
||||
- Tables: guides/tables.md
|
||||
- Create Ingest Update Delete: guides/tables.md
|
||||
- Vector Search: search.md
|
||||
- SQL filters: sql.md
|
||||
- Indexing: ann_indexes.md
|
||||
@@ -96,9 +97,11 @@ nav:
|
||||
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
|
||||
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
|
||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||
- ⚙️ CLI & Config: cli_config.md
|
||||
|
||||
- Basics: basic.md
|
||||
- Guides:
|
||||
- Tables: guides/tables.md
|
||||
- Create Ingest Update Delete: guides/tables.md
|
||||
- Vector Search: search.md
|
||||
- SQL filters: sql.md
|
||||
- Indexing: ann_indexes.md
|
||||
|
||||
@@ -68,6 +68,12 @@ a single PQ code.
|
||||
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
|
||||
</figure>
|
||||
|
||||
### Use GPU to build vector index
|
||||
|
||||
Lance Python SDK has experimental GPU support for creating IVF index.
|
||||
You can specify the GPU device to train IVF partitions via
|
||||
|
||||
- **accelerator**: Specify to `"cuda"`` to enable GPU training.
|
||||
|
||||
## Querying an ANN Index
|
||||
|
||||
@@ -91,7 +97,7 @@ There are a couple of parameters that can be used to fine-tune the search:
|
||||
.limit(2) \
|
||||
.nprobes(20) \
|
||||
.refine_factor(10) \
|
||||
.to_df()
|
||||
.to_pandas()
|
||||
```
|
||||
```
|
||||
vector item _distance
|
||||
@@ -118,7 +124,7 @@ You can further filter the elements returned by a search using a where clause.
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_df()
|
||||
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
@@ -135,7 +141,7 @@ You can select the columns returned by the query using a select clause.
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search(np.random.random((1536))).select(["vector"]).to_df()
|
||||
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
|
||||
```
|
||||
```
|
||||
vector _distance
|
||||
|
||||
@@ -146,7 +146,7 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search([100, 100]).limit(2).to_df()
|
||||
tbl.search([100, 100]).limit(2).to_pandas()
|
||||
```
|
||||
|
||||
This returns a pandas DataFrame with the results.
|
||||
|
||||
37
docs/src/cli_config.md
Normal file
37
docs/src/cli_config.md
Normal file
@@ -0,0 +1,37 @@
|
||||
|
||||
## LanceDB CLI
|
||||
Once lanceDB is installed, you can access the CLI using `lancedb` command on the console
|
||||
```
|
||||
lancedb
|
||||
```
|
||||
This lists out all the various command-line options available. You can get the usage or help for a particular command
|
||||
```
|
||||
lancedb {command} --help
|
||||
```
|
||||
|
||||
## LanceDB config
|
||||
LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli.
|
||||
To view your config settings, you can use:
|
||||
```
|
||||
lancedb config
|
||||
```
|
||||
These config parameters can be tuned using the cli.
|
||||
```
|
||||
lancedb {config_name} --{argument}
|
||||
```
|
||||
|
||||
## LanceDB Opt-in Diagnostics
|
||||
When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests.
|
||||
These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default.
|
||||
Get usage help.
|
||||
```
|
||||
lancedb diagnostics --help
|
||||
```
|
||||
Disable diagnostics
|
||||
```
|
||||
lancedb diagnostics --disabled
|
||||
```
|
||||
Enable diagnostics
|
||||
```
|
||||
lancedb diagnostics --enabled
|
||||
```
|
||||
@@ -118,7 +118,7 @@ belong in the same latent space and your results will be nonsensical.
|
||||
```python
|
||||
query = "What's the best pizza topping?"
|
||||
query_vector = embed_func([query])[0]
|
||||
tbl.search(query_vector).limit(10).to_df()
|
||||
tbl.search(query_vector).limit(10).to_pandas()
|
||||
```
|
||||
|
||||
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
||||
|
||||
@@ -80,14 +80,14 @@ def handler(event, context):
|
||||
# Shape of SIFT is (128,1M), d=float32
|
||||
query_vector = np.array(event['query_vector'], dtype=np.float32)
|
||||
|
||||
rs = table.search(query_vector).limit(2).to_df()
|
||||
rs = table.search(query_vector).limit(2).to_list()
|
||||
|
||||
return {
|
||||
"statusCode": status_code,
|
||||
"headers": {
|
||||
"Content-Type": "application/json"
|
||||
},
|
||||
"body": rs.to_json()
|
||||
"body": json.dumps(rs)
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
@@ -43,7 +43,13 @@ table.create_fts_index("text")
|
||||
To search:
|
||||
|
||||
```python
|
||||
df = table.search("puppy").limit(10).select(["text"]).to_df()
|
||||
table.search("puppy").limit(10).select(["text"]).to_list()
|
||||
```
|
||||
|
||||
Which returns a list of dictionaries:
|
||||
|
||||
```python
|
||||
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
|
||||
```
|
||||
|
||||
LanceDB automatically looks for an FTS index if the input is str.
|
||||
|
||||
@@ -364,6 +364,48 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
|
||||
await tbl.countRows() // Returns 1
|
||||
```
|
||||
|
||||
### Updating a Table [Experimental]
|
||||
EXPERIMENTAL: Update rows in the table (not threadsafe).
|
||||
|
||||
This can be used to update zero to all rows depending on how many rows match the where clause.
|
||||
|
||||
| Parameter | Type | Description |
|
||||
|---|---|---|
|
||||
| `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. |
|
||||
| `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. |
|
||||
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
import pandas as pd
|
||||
|
||||
# Create a lancedb connection
|
||||
db = lancedb.connect("./.lancedb")
|
||||
|
||||
# Create a table from a pandas DataFrame
|
||||
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
|
||||
table = db.create_table("my_table", data)
|
||||
|
||||
# Update the table where x = 2
|
||||
table.update(where="x = 2", values={"vector": [10, 10]})
|
||||
|
||||
# Get the updated table as a pandas DataFrame
|
||||
df = table.to_pandas()
|
||||
|
||||
# Print the DataFrame
|
||||
print(df)
|
||||
```
|
||||
|
||||
Output
|
||||
```shell
|
||||
x vector
|
||||
0 1 [1.0, 2.0]
|
||||
1 3 [5.0, 6.0]
|
||||
2 2 [10.0, 10.0]
|
||||
```
|
||||
|
||||
## What's Next?
|
||||
|
||||
Learn how to Query your tables and create indices
|
||||
@@ -36,7 +36,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
|
||||
table = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
result = table.search([100, 100]).limit(2).to_df()
|
||||
result = table.search([100, 100]).limit(2).to_list()
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
|
||||
@@ -144,7 +144,7 @@
|
||||
"source": [
|
||||
"# Pre-processing and loading the documentation\n",
|
||||
"\n",
|
||||
"Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time yyou do it). We'll also add some more metadata to the docs here such as the title and version of the code:"
|
||||
"Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time you do it). We'll also add some more metadata to the docs here such as the title and version of the code:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -255,7 +255,7 @@
|
||||
"id": "28d93b85",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And thats it! We're all setup. The next step is to run some queries, let's try a few:"
|
||||
"And that's it! We're all set up. The next step is to run some queries, let's try a few:"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -19,11 +19,11 @@
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
|
||||
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
|
||||
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
|
||||
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -39,6 +39,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import io\n",
|
||||
"\n",
|
||||
"import PIL\n",
|
||||
"import duckdb\n",
|
||||
"import lancedb"
|
||||
@@ -158,18 +159,18 @@
|
||||
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||
" f\"embedding = embed_func('{query}')\\n\"\n",
|
||||
" \"tbl.search(embedding).limit(9).to_df()\"\n",
|
||||
" \"tbl.search(embedding).limit(9).to_pandas()\"\n",
|
||||
" )\n",
|
||||
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
|
||||
" return (_extract(tbl.search(emb).limit(9).to_pandas()), code)\n",
|
||||
"\n",
|
||||
"def find_image_keywords(query):\n",
|
||||
" code = (\n",
|
||||
" \"import lancedb\\n\"\n",
|
||||
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
|
||||
" f\"tbl.search('{query}').limit(9).to_pandas()\"\n",
|
||||
" )\n",
|
||||
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
|
||||
" return (_extract(tbl.search(query).limit(9).to_pandas()), code)\n",
|
||||
"\n",
|
||||
"def find_image_sql(query):\n",
|
||||
" code = (\n",
|
||||
|
||||
@@ -27,11 +27,11 @@
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
|
||||
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
|
||||
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
|
||||
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -184,7 +184,7 @@
|
||||
"df = (contextualize(data.to_pandas())\n",
|
||||
" .groupby(\"title\").text_col(\"text\")\n",
|
||||
" .window(20).stride(4)\n",
|
||||
" .to_df())\n",
|
||||
" .to_pandas())\n",
|
||||
"df.head(1)"
|
||||
]
|
||||
},
|
||||
@@ -603,7 +603,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Use LanceDB to get top 3 most relevant context\n",
|
||||
"context = tbl.search(emb).limit(3).to_df()"
|
||||
"context = tbl.search(emb).limit(3).to_pandas()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -74,7 +74,7 @@ table = db.open_table("pd_table")
|
||||
|
||||
query_vector = [100, 100]
|
||||
# Pandas DataFrame
|
||||
df = table.search(query_vector).limit(1).to_df()
|
||||
df = table.search(query_vector).limit(1).to_pandas()
|
||||
print(df)
|
||||
```
|
||||
|
||||
@@ -89,12 +89,12 @@ If you have more complex criteria, you can always apply the filter to the result
|
||||
```python
|
||||
|
||||
# Apply the filter via LanceDB
|
||||
results = table.search([100, 100]).where("price < 15").to_df()
|
||||
results = table.search([100, 100]).where("price < 15").to_pandas()
|
||||
assert len(results) == 1
|
||||
assert results["item"].iloc[0] == "foo"
|
||||
|
||||
# Apply the filter via Pandas
|
||||
df = results = table.search([100, 100]).to_df()
|
||||
df = results = table.search([100, 100]).to_pandas()
|
||||
results = df[df.price < 15]
|
||||
assert len(results) == 1
|
||||
assert results["item"].iloc[0] == "foo"
|
||||
|
||||
@@ -67,7 +67,7 @@ await db_setup.createTable('my_vectors', data)
|
||||
|
||||
df = tbl.search(np.random.random((1536))) \
|
||||
.limit(10) \
|
||||
.to_df()
|
||||
.to_list()
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
@@ -92,7 +92,7 @@ as well.
|
||||
df = tbl.search(np.random.random((1536))) \
|
||||
.metric("cosine") \
|
||||
.limit(10) \
|
||||
.to_df()
|
||||
.to_list()
|
||||
```
|
||||
|
||||
|
||||
|
||||
@@ -1,5 +1,8 @@
|
||||
lancedb @ git+https://github.com/lancedb/lancedb.git#egg=subdir&subdirectory=python
|
||||
-e ../../python
|
||||
numpy
|
||||
pandas
|
||||
pylance
|
||||
duckdb
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
torch
|
||||
|
||||
|
||||
74
node/package-lock.json
generated
74
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.2.6",
|
||||
"version": "0.3.0",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.2.6",
|
||||
"version": "0.3.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -53,11 +53,11 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.2.6",
|
||||
"@lancedb/vectordb-darwin-x64": "0.2.6",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.2.6",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.2.6",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.2.6"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.3.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.3.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.3.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.3.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.3.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@apache-arrow/ts": {
|
||||
@@ -317,9 +317,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.6.tgz",
|
||||
"integrity": "sha512-9KCUvDmhVMuGIhleib/Gq43QhrRXjy2QJz21S85HDwL3DTH4J9n00A0V6eyLTBUyctnvMTcp3XZijosYUy1A8Q==",
|
||||
"version": "0.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.0.tgz",
|
||||
"integrity": "sha512-Fg+k/cSnqmNQlSWyDp0PpaAJ67kAISfZAD+zZ3mcE8/3ml2I/wM/GVjPy2zeiQX9aR93lG1mZXFSNTDUc74tWQ==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -329,9 +329,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.6.tgz",
|
||||
"integrity": "sha512-WCYRFV9w13STgVYn4WSYne39mp+g8ET6TgMLvSSQBYJKp3xEggpSCtACetaDfmNpkml9DK/b5R95Jc7PBbmYgA==",
|
||||
"version": "0.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.0.tgz",
|
||||
"integrity": "sha512-CXp4b/brMbnBPZuGzKIOskd9uD90R73rWubaJ0du/Kt6fcyQX1dM1wEhWTLxI6eKf8IDL/R9QLL2cIahm1J86w==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -341,9 +341,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.6.tgz",
|
||||
"integrity": "sha512-SE9OUgsOT6dG1q9v3nFr9ew+kwPTA4ktvNiHiyQstNz9BniuLNldF/Wtxzk/Z7DhbkPci4MfkR6RdsPTHBatHg==",
|
||||
"version": "0.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.0.tgz",
|
||||
"integrity": "sha512-1bjaRzYcDsWIRUbO2K/f+ohNmNvCgKcrrOhmiXSHVlYY8kH1LUMFZj+BhqBC0Ea0Stt7/1rsRLMRXRtaeVOEHw==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -353,9 +353,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.6.tgz",
|
||||
"integrity": "sha512-hvUsRQbaJiQnSjjKHIRhJM/eObJOqDJUXcpzz1fWw/MMSoy/CFaQwf9Uen2IWTgcngGkJAkeEKG7N5GxQxVbBQ==",
|
||||
"version": "0.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.0.tgz",
|
||||
"integrity": "sha512-BEDIJ6ReGAi+tLTS/RzxIw621yo1UUUiVNTzPGV2didyiJCr1chIGbES+39d/wiFQM43Xs3CBZLNzp+jKkv0/w==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -365,9 +365,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.6.tgz",
|
||||
"integrity": "sha512-XPIzbBPt28nsAa7INuyvYMZyJ78bgLfxjSyazlydzO10orIBHvR+sjcrdnCK4l48YmvPXcSYnKxlKMa1oUeIWQ==",
|
||||
"version": "0.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.0.tgz",
|
||||
"integrity": "sha512-7K2kbWbShuifQF/6L/tWSz2DhKfIreHKlBdVOuBTYYOReQMHn5cJxgwuFgQHqMubZ9zcagtHpmo+Wtqd034OKQ==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -4869,33 +4869,33 @@
|
||||
}
|
||||
},
|
||||
"@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.6.tgz",
|
||||
"integrity": "sha512-9KCUvDmhVMuGIhleib/Gq43QhrRXjy2QJz21S85HDwL3DTH4J9n00A0V6eyLTBUyctnvMTcp3XZijosYUy1A8Q==",
|
||||
"version": "0.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.0.tgz",
|
||||
"integrity": "sha512-Fg+k/cSnqmNQlSWyDp0PpaAJ67kAISfZAD+zZ3mcE8/3ml2I/wM/GVjPy2zeiQX9aR93lG1mZXFSNTDUc74tWQ==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.6.tgz",
|
||||
"integrity": "sha512-WCYRFV9w13STgVYn4WSYne39mp+g8ET6TgMLvSSQBYJKp3xEggpSCtACetaDfmNpkml9DK/b5R95Jc7PBbmYgA==",
|
||||
"version": "0.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.0.tgz",
|
||||
"integrity": "sha512-CXp4b/brMbnBPZuGzKIOskd9uD90R73rWubaJ0du/Kt6fcyQX1dM1wEhWTLxI6eKf8IDL/R9QLL2cIahm1J86w==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.6.tgz",
|
||||
"integrity": "sha512-SE9OUgsOT6dG1q9v3nFr9ew+kwPTA4ktvNiHiyQstNz9BniuLNldF/Wtxzk/Z7DhbkPci4MfkR6RdsPTHBatHg==",
|
||||
"version": "0.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.0.tgz",
|
||||
"integrity": "sha512-1bjaRzYcDsWIRUbO2K/f+ohNmNvCgKcrrOhmiXSHVlYY8kH1LUMFZj+BhqBC0Ea0Stt7/1rsRLMRXRtaeVOEHw==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.6.tgz",
|
||||
"integrity": "sha512-hvUsRQbaJiQnSjjKHIRhJM/eObJOqDJUXcpzz1fWw/MMSoy/CFaQwf9Uen2IWTgcngGkJAkeEKG7N5GxQxVbBQ==",
|
||||
"version": "0.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.0.tgz",
|
||||
"integrity": "sha512-BEDIJ6ReGAi+tLTS/RzxIw621yo1UUUiVNTzPGV2didyiJCr1chIGbES+39d/wiFQM43Xs3CBZLNzp+jKkv0/w==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.6.tgz",
|
||||
"integrity": "sha512-XPIzbBPt28nsAa7INuyvYMZyJ78bgLfxjSyazlydzO10orIBHvR+sjcrdnCK4l48YmvPXcSYnKxlKMa1oUeIWQ==",
|
||||
"version": "0.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.0.tgz",
|
||||
"integrity": "sha512-7K2kbWbShuifQF/6L/tWSz2DhKfIreHKlBdVOuBTYYOReQMHn5cJxgwuFgQHqMubZ9zcagtHpmo+Wtqd034OKQ==",
|
||||
"optional": true
|
||||
},
|
||||
"@neon-rs/cli": {
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.2.6",
|
||||
"version": "0.3.0",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
@@ -81,10 +81,10 @@
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.2.6",
|
||||
"@lancedb/vectordb-darwin-x64": "0.2.6",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.2.6",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.2.6",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.2.6"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.3.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.3.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.3.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.3.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.3.0"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -23,7 +23,7 @@ import { Query } from './query'
|
||||
import { isEmbeddingFunction } from './embedding/embedding_function'
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js')
|
||||
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles } = require('../native.js')
|
||||
|
||||
export { Query }
|
||||
export type { EmbeddingFunction }
|
||||
@@ -459,6 +459,111 @@ export class LocalTable<T = number[]> implements Table<T> {
|
||||
async delete (filter: string): Promise<void> {
|
||||
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
|
||||
}
|
||||
|
||||
/**
|
||||
* Clean up old versions of the table, freeing disk space.
|
||||
*
|
||||
* @param olderThan The minimum age in minutes of the versions to delete. If not
|
||||
* provided, defaults to two weeks.
|
||||
* @param deleteUnverified Because they may be part of an in-progress
|
||||
* transaction, uncommitted files newer than 7 days old are
|
||||
* not deleted by default. This means that failed transactions
|
||||
* can leave around data that takes up disk space for up to
|
||||
* 7 days. You can override this safety mechanism by setting
|
||||
* this option to `true`, only if you promise there are no
|
||||
* in progress writes while you run this operation. Failure to
|
||||
* uphold this promise can lead to corrupted tables.
|
||||
* @returns
|
||||
*/
|
||||
async cleanupOldVersions (olderThan?: number, deleteUnverified?: boolean): Promise<CleanupStats> {
|
||||
return tableCleanupOldVersions.call(this._tbl, olderThan, deleteUnverified)
|
||||
.then((res: { newTable: any, metrics: CleanupStats }) => {
|
||||
this._tbl = res.newTable
|
||||
return res.metrics
|
||||
})
|
||||
}
|
||||
|
||||
/**
|
||||
* Run the compaction process on the table.
|
||||
*
|
||||
* This can be run after making several small appends to optimize the table
|
||||
* for faster reads.
|
||||
*
|
||||
* @param options Advanced options configuring compaction. In most cases, you
|
||||
* can omit this arguments, as the default options are sensible
|
||||
* for most tables.
|
||||
* @returns Metrics about the compaction operation.
|
||||
*/
|
||||
async compactFiles (options?: CompactionOptions): Promise<CompactionMetrics> {
|
||||
const optionsArg = options ?? {}
|
||||
return tableCompactFiles.call(this._tbl, optionsArg)
|
||||
.then((res: { newTable: any, metrics: CompactionMetrics }) => {
|
||||
this._tbl = res.newTable
|
||||
return res.metrics
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
export interface CleanupStats {
|
||||
/**
|
||||
* The number of bytes removed from disk.
|
||||
*/
|
||||
bytesRemoved: number
|
||||
/**
|
||||
* The number of old table versions removed.
|
||||
*/
|
||||
oldVersions: number
|
||||
}
|
||||
|
||||
export interface CompactionOptions {
|
||||
/**
|
||||
* The number of rows per fragment to target. Fragments that have fewer rows
|
||||
* will be compacted into adjacent fragments to produce larger fragments.
|
||||
* Defaults to 1024 * 1024.
|
||||
*/
|
||||
targetRowsPerFragment?: number
|
||||
/**
|
||||
* The maximum number of rows per group. Defaults to 1024.
|
||||
*/
|
||||
maxRowsPerGroup?: number
|
||||
/**
|
||||
* If true, fragments that have rows that are deleted may be compacted to
|
||||
* remove the deleted rows. This can improve the performance of queries.
|
||||
* Default is true.
|
||||
*/
|
||||
materializeDeletions?: boolean
|
||||
/**
|
||||
* A number between 0 and 1, representing the proportion of rows that must be
|
||||
* marked deleted before a fragment is a candidate for compaction to remove
|
||||
* the deleted rows. Default is 10%.
|
||||
*/
|
||||
materializeDeletionsThreshold?: number
|
||||
/**
|
||||
* The number of threads to use for compaction. If not provided, defaults to
|
||||
* the number of cores on the machine.
|
||||
*/
|
||||
numThreads?: number
|
||||
}
|
||||
|
||||
export interface CompactionMetrics {
|
||||
/**
|
||||
* The number of fragments that were removed.
|
||||
*/
|
||||
fragmentsRemoved: number
|
||||
/**
|
||||
* The number of new fragments that were created.
|
||||
*/
|
||||
fragmentsAdded: number
|
||||
/**
|
||||
* The number of files that were removed. Each fragment may have more than one
|
||||
* file.
|
||||
*/
|
||||
filesRemoved: number
|
||||
/**
|
||||
* The number of files added. This is typically equal to the number of
|
||||
* fragments added.
|
||||
*/
|
||||
filesAdded: number
|
||||
}
|
||||
|
||||
/// Config to build IVF_PQ index.
|
||||
|
||||
@@ -18,6 +18,9 @@ import * as chaiAsPromised from 'chai-as-promised'
|
||||
import { v4 as uuidv4 } from 'uuid'
|
||||
|
||||
import * as lancedb from '../index'
|
||||
import { tmpdir } from 'os'
|
||||
import * as fs from 'fs'
|
||||
import * as path from 'path'
|
||||
|
||||
const assert = chai.assert
|
||||
chai.use(chaiAsPromised)
|
||||
@@ -41,3 +44,130 @@ describe('LanceDB AWS Integration test', function () {
|
||||
assert.equal(await table.countRows(), 6)
|
||||
})
|
||||
})
|
||||
|
||||
describe('LanceDB Mirrored Store Integration test', function () {
|
||||
it('s3://...?mirroredStore=... param is processed correctly', async function () {
|
||||
this.timeout(600000)
|
||||
|
||||
const dir = tmpdir()
|
||||
console.log(dir)
|
||||
const conn = await lancedb.connect(`s3://lancedb-integtest?mirroredStore=${dir}`)
|
||||
const data = Array(200).fill({ vector: Array(128).fill(1.0), id: 0 })
|
||||
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 1 }))
|
||||
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 2 }))
|
||||
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 3 }))
|
||||
|
||||
const tableName = uuidv4()
|
||||
|
||||
// try create table and check if it's mirrored
|
||||
const t = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
|
||||
|
||||
const mirroredPath = path.join(dir, `${tableName}.lance`)
|
||||
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
// there should be two dirs
|
||||
assert.equal(files.length, 2)
|
||||
assert.isTrue(files[0].isDirectory())
|
||||
assert.isTrue(files[1].isDirectory())
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].name.endsWith('.txn'))
|
||||
})
|
||||
|
||||
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].name.endsWith('.lance'))
|
||||
})
|
||||
})
|
||||
|
||||
// try create index and check if it's mirrored
|
||||
await t.createIndex({ column: 'vector', type: 'ivf_pq' })
|
||||
|
||||
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
// there should be two dirs
|
||||
assert.equal(files.length, 3)
|
||||
assert.isTrue(files[0].isDirectory())
|
||||
assert.isTrue(files[1].isDirectory())
|
||||
assert.isTrue(files[2].isDirectory())
|
||||
|
||||
// Two TXs now
|
||||
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 2)
|
||||
assert.isTrue(files[0].name.endsWith('.txn'))
|
||||
assert.isTrue(files[1].name.endsWith('.txn'))
|
||||
})
|
||||
|
||||
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].name.endsWith('.lance'))
|
||||
})
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].isDirectory())
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].isFile())
|
||||
assert.isTrue(files[0].name.endsWith('.idx'))
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
// try delete and check if it's mirrored
|
||||
await t.delete('id = 0')
|
||||
|
||||
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
// there should be two dirs
|
||||
assert.equal(files.length, 4)
|
||||
assert.isTrue(files[0].isDirectory())
|
||||
assert.isTrue(files[1].isDirectory())
|
||||
assert.isTrue(files[2].isDirectory())
|
||||
assert.isTrue(files[3].isDirectory())
|
||||
|
||||
// Three TXs now
|
||||
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 3)
|
||||
assert.isTrue(files[0].name.endsWith('.txn'))
|
||||
assert.isTrue(files[1].name.endsWith('.txn'))
|
||||
})
|
||||
|
||||
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].name.endsWith('.lance'))
|
||||
})
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].isDirectory())
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].isFile())
|
||||
assert.isTrue(files[0].name.endsWith('.idx'))
|
||||
})
|
||||
})
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].name.endsWith('.arrow'))
|
||||
})
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
@@ -18,7 +18,7 @@ import * as chai from 'chai'
|
||||
import * as chaiAsPromised from 'chai-as-promised'
|
||||
|
||||
import * as lancedb from '../index'
|
||||
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions } from '../index'
|
||||
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions, type LocalTable } from '../index'
|
||||
import { FixedSizeList, Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray, Float32 } from 'apache-arrow'
|
||||
|
||||
const expect = chai.expect
|
||||
@@ -446,3 +446,45 @@ describe('WriteOptions', function () {
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
describe('Compact and cleanup', function () {
|
||||
it('can cleanup after compaction', async function () {
|
||||
const dir = await track().mkdir('lancejs')
|
||||
const con = await lancedb.connect(dir)
|
||||
|
||||
const data = [
|
||||
{ price: 10, name: 'foo', vector: [1, 2, 3] },
|
||||
{ price: 50, name: 'bar', vector: [4, 5, 6] }
|
||||
]
|
||||
const table = await con.createTable('t1', data) as LocalTable
|
||||
|
||||
const newData = [
|
||||
{ price: 30, name: 'baz', vector: [7, 8, 9] }
|
||||
]
|
||||
await table.add(newData)
|
||||
|
||||
const compactionMetrics = await table.compactFiles({
|
||||
numThreads: 2
|
||||
})
|
||||
assert.equal(compactionMetrics.fragmentsRemoved, 2)
|
||||
assert.equal(compactionMetrics.fragmentsAdded, 1)
|
||||
assert.equal(await table.countRows(), 3)
|
||||
|
||||
await table.cleanupOldVersions()
|
||||
assert.equal(await table.countRows(), 3)
|
||||
|
||||
// should have no effect, but this validates the arguments are parsed.
|
||||
await table.compactFiles({
|
||||
targetRowsPerFragment: 1024 * 10,
|
||||
maxRowsPerGroup: 1024,
|
||||
materializeDeletions: true,
|
||||
materializeDeletionsThreshold: 0.5,
|
||||
numThreads: 2
|
||||
})
|
||||
|
||||
const cleanupMetrics = await table.cleanupOldVersions(0, true)
|
||||
assert.isAtLeast(cleanupMetrics.bytesRemoved, 1)
|
||||
assert.isAtLeast(cleanupMetrics.oldVersions, 1)
|
||||
assert.equal(await table.countRows(), 3)
|
||||
})
|
||||
})
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.3.0
|
||||
current_version = 0.3.1
|
||||
commit = True
|
||||
message = [python] Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
@@ -16,7 +16,7 @@ pip install lancedb
|
||||
import lancedb
|
||||
db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>')
|
||||
table = db.open_table('my_table')
|
||||
results = table.search([0.1, 0.3]).limit(20).to_df()
|
||||
results = table.search([0.1, 0.3]).limit(20).to_list()
|
||||
print(results)
|
||||
```
|
||||
|
||||
|
||||
@@ -14,11 +14,12 @@
|
||||
import importlib.metadata
|
||||
from typing import Optional
|
||||
|
||||
__version__ = importlib.metadata.version("lancedb")
|
||||
|
||||
from .db import URI, DBConnection, LanceDBConnection
|
||||
from .remote.db import RemoteDBConnection
|
||||
from .schema import vector
|
||||
|
||||
__version__ = importlib.metadata.version("lancedb")
|
||||
from .utils import sentry_log
|
||||
|
||||
|
||||
def connect(
|
||||
|
||||
12
python/lancedb/cli/__init__.py
Normal file
12
python/lancedb/cli/__init__.py
Normal file
@@ -0,0 +1,12 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
46
python/lancedb/cli/cli.py
Normal file
46
python/lancedb/cli/cli.py
Normal file
@@ -0,0 +1,46 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import click
|
||||
|
||||
from lancedb.utils import CONFIG
|
||||
|
||||
|
||||
@click.group()
|
||||
@click.version_option(help="LanceDB command line interface entry point")
|
||||
def cli():
|
||||
"LanceDB command line interface"
|
||||
|
||||
|
||||
diagnostics_help = """
|
||||
Enable or disable LanceDB diagnostics. When enabled, LanceDB will send anonymous events to help us improve LanceDB.
|
||||
These diagnostics are used only for error reporting and no data is collected. You can find more about diagnosis on
|
||||
our docs: https://lancedb.github.io/lancedb/cli_config/
|
||||
"""
|
||||
|
||||
|
||||
@cli.command(help=diagnostics_help)
|
||||
@click.option("--enabled/--disabled", default=True)
|
||||
def diagnostics(enabled):
|
||||
CONFIG.update({"diagnostics": True if enabled else False})
|
||||
click.echo("LanceDB diagnostics is %s" % ("enabled" if enabled else "disabled"))
|
||||
|
||||
|
||||
@cli.command(help="Show current LanceDB configuration")
|
||||
def config():
|
||||
# TODO: pretty print as table with colors and formatting
|
||||
click.echo("Current LanceDB configuration:")
|
||||
cfg = CONFIG.copy()
|
||||
cfg.pop("uuid") # Don't show uuid as it is not configurable
|
||||
for item, amount in cfg.items():
|
||||
click.echo("{} ({})".format(item, amount))
|
||||
@@ -12,6 +12,9 @@
|
||||
# limitations under the License.
|
||||
from __future__ import annotations
|
||||
|
||||
import deprecation
|
||||
|
||||
from . import __version__
|
||||
from .exceptions import MissingColumnError, MissingValueError
|
||||
from .util import safe_import_pandas
|
||||
|
||||
@@ -43,7 +46,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
|
||||
this how many tokens, but depending on the input data, it could be sentences,
|
||||
paragraphs, messages, etc.
|
||||
|
||||
>>> contextualize(data).window(3).stride(1).text_col('token').to_df()
|
||||
>>> contextualize(data).window(3).stride(1).text_col('token').to_pandas()
|
||||
token document_id
|
||||
0 The quick brown 1
|
||||
1 quick brown fox 1
|
||||
@@ -56,7 +59,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
|
||||
8 dog I love 1
|
||||
9 I love sandwiches 2
|
||||
10 love sandwiches 2
|
||||
>>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_df()
|
||||
>>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_pandas()
|
||||
token document_id
|
||||
0 The quick brown fox jumped over the 1
|
||||
1 quick brown fox jumped over the lazy 1
|
||||
@@ -68,7 +71,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
|
||||
``stride`` determines how many rows to skip between each window start. This can
|
||||
be used to reduce the total number of windows generated.
|
||||
|
||||
>>> contextualize(data).window(4).stride(2).text_col('token').to_df()
|
||||
>>> contextualize(data).window(4).stride(2).text_col('token').to_pandas()
|
||||
token document_id
|
||||
0 The quick brown fox 1
|
||||
2 brown fox jumped over 1
|
||||
@@ -81,7 +84,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
|
||||
context windows that don't cross document boundaries. In this case, we can
|
||||
pass ``document_id`` as the group by.
|
||||
|
||||
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_df()
|
||||
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_pandas()
|
||||
token document_id
|
||||
0 The quick brown fox 1
|
||||
2 brown fox jumped over 1
|
||||
@@ -93,14 +96,14 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
|
||||
This can be used to trim the last few context windows which have size less than
|
||||
``min_window_size``. By default context windows of size 1 are skipped.
|
||||
|
||||
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_df()
|
||||
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_pandas()
|
||||
token document_id
|
||||
0 The quick brown fox jumped over 1
|
||||
3 fox jumped over the lazy dog 1
|
||||
6 the lazy dog 1
|
||||
9 I love sandwiches 2
|
||||
|
||||
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_df()
|
||||
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_pandas()
|
||||
token document_id
|
||||
0 The quick brown fox jumped over 1
|
||||
3 fox jumped over the lazy dog 1
|
||||
@@ -176,7 +179,16 @@ class Contextualizer:
|
||||
self._min_window_size = min_window_size
|
||||
return self
|
||||
|
||||
@deprecation.deprecated(
|
||||
deprecated_in="0.3.1",
|
||||
removed_in="0.4.0",
|
||||
current_version=__version__,
|
||||
details="Use the bar function instead",
|
||||
)
|
||||
def to_df(self) -> "pd.DataFrame":
|
||||
return self.to_pandas()
|
||||
|
||||
def to_pandas(self) -> "pd.DataFrame":
|
||||
"""Create the context windows and return a DataFrame."""
|
||||
if pd is None:
|
||||
raise ImportError(
|
||||
|
||||
@@ -12,6 +12,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from .cohere import CohereEmbeddingFunction
|
||||
from .functions import (
|
||||
EmbeddingFunction,
|
||||
EmbeddingFunctionConfig,
|
||||
|
||||
86
python/lancedb/embeddings/cohere.py
Normal file
86
python/lancedb/embeddings/cohere.py
Normal file
@@ -0,0 +1,86 @@
|
||||
# Copyright (c) 2023. LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from typing import ClassVar, List, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .functions import TextEmbeddingFunction, register
|
||||
from .utils import api_key_not_found_help
|
||||
|
||||
|
||||
@register("cohere")
|
||||
class CohereEmbeddingFunction(TextEmbeddingFunction):
|
||||
"""
|
||||
An embedding function that uses the Cohere API
|
||||
|
||||
https://docs.cohere.com/docs/multilingual-language-models
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name: str, default "embed-multilingual-v2.0"
|
||||
The name of the model to use. See the Cohere documentation for a list of available models.
|
||||
|
||||
Examples
|
||||
--------
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||
|
||||
cohere = EmbeddingFunctionRegistry.get_instance().get("cohere").create(name="embed-multilingual-v2.0")
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = cohere.SourceField()
|
||||
vector: Vector(cohere.ndims()) = cohere.VectorField()
|
||||
|
||||
data = [ { "text": "hello world" },
|
||||
{ "text": "goodbye world" }]
|
||||
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(data)
|
||||
|
||||
"""
|
||||
|
||||
name: str = "embed-multilingual-v2.0"
|
||||
client: ClassVar = None
|
||||
|
||||
def ndims(self):
|
||||
# TODO: fix hardcoding
|
||||
return 768
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> List[np.array]:
|
||||
"""
|
||||
Get the embeddings for the given texts
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts: list[str] or np.ndarray (of str)
|
||||
The texts to embed
|
||||
"""
|
||||
# TODO retry, rate limit, token limit
|
||||
self._init_client()
|
||||
rs = CohereEmbeddingFunction.client.embed(texts=texts, model=self.name)
|
||||
|
||||
return [emb for emb in rs.embeddings]
|
||||
|
||||
def _init_client(self):
|
||||
cohere = self.safe_import("cohere")
|
||||
if CohereEmbeddingFunction.client is None:
|
||||
if os.environ.get("COHERE_API_KEY") is None:
|
||||
api_key_not_found_help("cohere")
|
||||
CohereEmbeddingFunction.client = cohere.Client(os.environ["COHERE_API_KEY"])
|
||||
@@ -21,6 +21,7 @@ from lance.vector import vec_to_table
|
||||
from retry import retry
|
||||
|
||||
from ..util import safe_import_pandas
|
||||
from ..utils.general import LOGGER
|
||||
|
||||
pd = safe_import_pandas()
|
||||
DATA = Union[pa.Table, "pd.DataFrame"]
|
||||
@@ -152,3 +153,8 @@ class FunctionWrapper:
|
||||
yield from tqdm(_chunker(arr), total=math.ceil(length / self._batch_size))
|
||||
else:
|
||||
yield from _chunker(arr)
|
||||
|
||||
|
||||
def api_key_not_found_help(provider):
|
||||
LOGGER.error(f"Could not find API key for {provider}.")
|
||||
raise ValueError(f"Please set the {provider.upper()}_API_KEY environment variable.")
|
||||
|
||||
@@ -16,10 +16,12 @@ from __future__ import annotations
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Literal, Optional, Type, Union
|
||||
|
||||
import deprecation
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
import pydantic
|
||||
|
||||
from . import __version__
|
||||
from .common import VECTOR_COLUMN_NAME
|
||||
from .pydantic import LanceModel
|
||||
from .util import safe_import_pandas
|
||||
@@ -127,7 +129,24 @@ class LanceQueryBuilder(ABC):
|
||||
self._columns = None
|
||||
self._where = None
|
||||
|
||||
@deprecation.deprecated(
|
||||
deprecated_in="0.3.1",
|
||||
removed_in="0.4.0",
|
||||
current_version=__version__,
|
||||
details="Use the bar function instead",
|
||||
)
|
||||
def to_df(self) -> "pd.DataFrame":
|
||||
"""
|
||||
Deprecated alias for `to_pandas()`. Please use `to_pandas()` instead.
|
||||
|
||||
Execute the query and return the results as a pandas DataFrame.
|
||||
In addition to the selected columns, LanceDB also returns a vector
|
||||
and also the "_distance" column which is the distance between the query
|
||||
vector and the returned vector.
|
||||
"""
|
||||
return self.to_pandas()
|
||||
|
||||
def to_pandas(self) -> "pd.DataFrame":
|
||||
"""
|
||||
Execute the query and return the results as a pandas DataFrame.
|
||||
In addition to the selected columns, LanceDB also returns a vector
|
||||
@@ -148,6 +167,16 @@ class LanceQueryBuilder(ABC):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def to_list(self) -> List[dict]:
|
||||
"""
|
||||
Execute the query and return the results as a list of dictionaries.
|
||||
|
||||
Each list entry is a dictionary with the selected column names as keys,
|
||||
or all table columns if `select` is not called. The vector and the "_distance"
|
||||
fields are returned whether or not they're explicitly selected.
|
||||
"""
|
||||
return self.to_arrow().to_pylist()
|
||||
|
||||
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
|
||||
"""Return the table as a list of pydantic models.
|
||||
|
||||
@@ -232,7 +261,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
... .where("b < 10")
|
||||
... .select(["b"])
|
||||
... .limit(2)
|
||||
... .to_df())
|
||||
... .to_pandas())
|
||||
b vector _distance
|
||||
0 6 [0.4, 0.4] 0.0
|
||||
"""
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
|
||||
import uuid
|
||||
from functools import cached_property
|
||||
from typing import Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import pyarrow as pa
|
||||
from lance import json_to_schema
|
||||
@@ -62,6 +62,7 @@ class RemoteTable(Table):
|
||||
num_sub_vectors=96,
|
||||
vector_column_name: str = VECTOR_COLUMN_NAME,
|
||||
replace: bool = True,
|
||||
accelerator: Optional[str] = None,
|
||||
):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@@ -16,6 +16,7 @@ from __future__ import annotations
|
||||
import inspect
|
||||
import os
|
||||
from abc import ABC, abstractmethod
|
||||
from datetime import timedelta
|
||||
from functools import cached_property
|
||||
from typing import Any, Iterable, List, Optional, Union
|
||||
|
||||
@@ -24,7 +25,7 @@ import numpy as np
|
||||
import pyarrow as pa
|
||||
import pyarrow.compute as pc
|
||||
from lance import LanceDataset
|
||||
from lance.dataset import ReaderLike
|
||||
from lance.dataset import CleanupStats, ReaderLike
|
||||
from lance.vector import vec_to_table
|
||||
|
||||
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||
@@ -33,6 +34,7 @@ from .embeddings.functions import EmbeddingFunctionConfig
|
||||
from .pydantic import LanceModel
|
||||
from .query import LanceQueryBuilder, Query
|
||||
from .util import fs_from_uri, safe_import_pandas
|
||||
from .utils.events import register_event
|
||||
|
||||
pd = safe_import_pandas()
|
||||
|
||||
@@ -136,7 +138,7 @@ class Table(ABC):
|
||||
|
||||
Can query the table with [Table.search][lancedb.table.Table.search].
|
||||
|
||||
>>> table.search([0.4, 0.4]).select(["b"]).to_df()
|
||||
>>> table.search([0.4, 0.4]).select(["b"]).to_pandas()
|
||||
b vector _distance
|
||||
0 4 [0.5, 1.3] 0.82
|
||||
1 2 [1.1, 1.2] 1.13
|
||||
@@ -180,6 +182,7 @@ class Table(ABC):
|
||||
num_sub_vectors=96,
|
||||
vector_column_name: str = VECTOR_COLUMN_NAME,
|
||||
replace: bool = True,
|
||||
accelerator: Optional[str] = None,
|
||||
):
|
||||
"""Create an index on the table.
|
||||
|
||||
@@ -200,6 +203,9 @@ class Table(ABC):
|
||||
replace: bool, default True
|
||||
If True, replace the existing index if it exists.
|
||||
If False, raise an error if duplicate index exists.
|
||||
accelerator: str, default None
|
||||
If set, use the given accelerator to create the index.
|
||||
Only support "cuda" for now.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -390,6 +396,17 @@ class LanceTable(Table):
|
||||
raise ValueError(f"Invalid version {version}")
|
||||
self._reset_dataset(version=version)
|
||||
|
||||
try:
|
||||
# Accessing the property updates the cached value
|
||||
_ = self._dataset
|
||||
except Exception as e:
|
||||
if "not found" in str(e):
|
||||
raise ValueError(
|
||||
f"Version {version} no longer exists. Was it cleaned up?"
|
||||
)
|
||||
else:
|
||||
raise e
|
||||
|
||||
def restore(self, version: int = None):
|
||||
"""Restore a version of the table. This is an in-place operation.
|
||||
|
||||
@@ -479,6 +496,7 @@ class LanceTable(Table):
|
||||
num_sub_vectors=96,
|
||||
vector_column_name=VECTOR_COLUMN_NAME,
|
||||
replace: bool = True,
|
||||
accelerator: Optional[str] = None,
|
||||
):
|
||||
"""Create an index on the table."""
|
||||
self._dataset.create_index(
|
||||
@@ -488,8 +506,10 @@ class LanceTable(Table):
|
||||
num_partitions=num_partitions,
|
||||
num_sub_vectors=num_sub_vectors,
|
||||
replace=replace,
|
||||
accelerator=accelerator,
|
||||
)
|
||||
self._reset_dataset()
|
||||
register_event("create_index")
|
||||
|
||||
def create_fts_index(self, field_names: Union[str, List[str]]):
|
||||
"""Create a full-text search index on the table.
|
||||
@@ -508,6 +528,7 @@ class LanceTable(Table):
|
||||
field_names = [field_names]
|
||||
index = create_index(self._get_fts_index_path(), field_names)
|
||||
populate_index(index, self, field_names)
|
||||
register_event("create_fts_index")
|
||||
|
||||
def _get_fts_index_path(self):
|
||||
return os.path.join(self._dataset_uri, "_indices", "tantivy")
|
||||
@@ -560,6 +581,7 @@ class LanceTable(Table):
|
||||
)
|
||||
lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode)
|
||||
self._reset_dataset()
|
||||
register_event("add")
|
||||
|
||||
def merge(
|
||||
self,
|
||||
@@ -623,6 +645,7 @@ class LanceTable(Table):
|
||||
other_table, left_on=left_on, right_on=right_on, schema=schema
|
||||
)
|
||||
self._reset_dataset()
|
||||
register_event("merge")
|
||||
|
||||
@cached_property
|
||||
def embedding_functions(self) -> dict:
|
||||
@@ -673,6 +696,7 @@ class LanceTable(Table):
|
||||
and also the "_distance" column which is the distance between the query
|
||||
vector and the returned vector.
|
||||
"""
|
||||
register_event("search")
|
||||
return LanceQueryBuilder.create(
|
||||
self, query, query_type, vector_column_name=vector_column_name
|
||||
)
|
||||
@@ -776,6 +800,7 @@ class LanceTable(Table):
|
||||
if data is not None:
|
||||
table.add(data)
|
||||
|
||||
register_event("create_table")
|
||||
return table
|
||||
|
||||
@classmethod
|
||||
@@ -841,6 +866,7 @@ class LanceTable(Table):
|
||||
self.delete(where)
|
||||
self.add(orig_data, mode="append")
|
||||
self._reset_dataset()
|
||||
register_event("update")
|
||||
|
||||
def _execute_query(self, query: Query) -> pa.Table:
|
||||
ds = self.to_lance()
|
||||
@@ -864,6 +890,48 @@ class LanceTable(Table):
|
||||
},
|
||||
)
|
||||
|
||||
def cleanup_old_versions(
|
||||
self,
|
||||
older_than: Optional[timedelta] = None,
|
||||
*,
|
||||
delete_unverified: bool = False,
|
||||
) -> CleanupStats:
|
||||
"""
|
||||
Clean up old versions of the table, freeing disk space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
older_than: timedelta, default None
|
||||
The minimum age of the version to delete. If None, then this defaults
|
||||
to two weeks.
|
||||
delete_unverified: bool, default False
|
||||
Because they may be part of an in-progress transaction, files newer
|
||||
than 7 days old are not deleted by default. If you are sure that
|
||||
there are no in-progress transactions, then you can set this to True
|
||||
to delete all files older than `older_than`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
CleanupStats
|
||||
The stats of the cleanup operation, including how many bytes were
|
||||
freed.
|
||||
"""
|
||||
return self.to_lance().cleanup_old_versions(
|
||||
older_than, delete_unverified=delete_unverified
|
||||
)
|
||||
|
||||
def compact_files(self, *args, **kwargs):
|
||||
"""
|
||||
Run the compaction process on the table.
|
||||
|
||||
This can be run after making several small appends to optimize the table
|
||||
for faster reads.
|
||||
|
||||
Arguments are passed onto :meth:`lance.dataset.DatasetOptimizer.compact_files`.
|
||||
For most cases, the default should be fine.
|
||||
"""
|
||||
return self.to_lance().optimize.compact_files(*args, **kwargs)
|
||||
|
||||
|
||||
def _sanitize_schema(
|
||||
data: pa.Table,
|
||||
|
||||
15
python/lancedb/utils/__init__.py
Normal file
15
python/lancedb/utils/__init__.py
Normal file
@@ -0,0 +1,15 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .config import Config
|
||||
|
||||
CONFIG = Config()
|
||||
116
python/lancedb/utils/config.py
Normal file
116
python/lancedb/utils/config.py
Normal file
@@ -0,0 +1,116 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import copy
|
||||
import hashlib
|
||||
import os
|
||||
import platform
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
|
||||
from .general import LOGGER, is_dir_writeable, yaml_load, yaml_save
|
||||
|
||||
|
||||
def get_user_config_dir(sub_dir="lancedb"):
|
||||
"""
|
||||
Get the user config directory.
|
||||
|
||||
Args:
|
||||
sub_dir (str): The name of the subdirectory to create.
|
||||
|
||||
Returns:
|
||||
(Path): The path to the user config directory.
|
||||
"""
|
||||
# Return the appropriate config directory for each operating system
|
||||
if platform.system() == "Windows":
|
||||
path = Path.home() / "AppData" / "Roaming" / sub_dir
|
||||
elif platform.system() == "Darwin":
|
||||
path = Path.home() / "Library" / "Application Support" / sub_dir
|
||||
elif platform.system() == "Linux":
|
||||
path = Path.home() / ".config" / sub_dir
|
||||
else:
|
||||
raise ValueError(f"Unsupported operating system: {platform.system()}")
|
||||
|
||||
# GCP and AWS lambda fix, only /tmp is writeable
|
||||
if not is_dir_writeable(path.parent):
|
||||
LOGGER.warning(
|
||||
f"WARNING ⚠️ user config directory '{path}' is not writeable, defaulting to '/tmp' or CWD."
|
||||
"Alternatively you can define a LANCEDB_CONFIG_DIR environment variable for this path."
|
||||
)
|
||||
path = (
|
||||
Path("/tmp") / sub_dir
|
||||
if is_dir_writeable("/tmp")
|
||||
else Path().cwd() / sub_dir
|
||||
)
|
||||
|
||||
# Create the subdirectory if it does not exist
|
||||
path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
return path
|
||||
|
||||
|
||||
USER_CONFIG_DIR = Path(os.getenv("LANCEDB_CONFIG_DIR") or get_user_config_dir())
|
||||
CONFIG_FILE = USER_CONFIG_DIR / "config.yaml"
|
||||
|
||||
|
||||
class Config(dict):
|
||||
"""
|
||||
Manages lancedb config stored in a YAML file.
|
||||
|
||||
Args:
|
||||
file (str | Path): Path to the lancedb config YAML file. Default is USER_CONFIG_DIR / 'config.yaml'.
|
||||
"""
|
||||
|
||||
def __init__(self, file=CONFIG_FILE):
|
||||
self.file = Path(file)
|
||||
self.defaults = { # Default global config values
|
||||
"diagnostics": True,
|
||||
"uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(),
|
||||
}
|
||||
|
||||
super().__init__(copy.deepcopy(self.defaults))
|
||||
|
||||
if not self.file.exists():
|
||||
self.save()
|
||||
|
||||
self.load()
|
||||
correct_keys = self.keys() == self.defaults.keys()
|
||||
correct_types = all(
|
||||
type(a) is type(b) for a, b in zip(self.values(), self.defaults.values())
|
||||
)
|
||||
if not (correct_keys and correct_types):
|
||||
LOGGER.warning(
|
||||
"WARNING ⚠️ LanceDB settings reset to default values. This may be due to a possible problem "
|
||||
"with your settings or a recent package update. "
|
||||
f"\nView settings & usage with 'lancedb settings' or at '{self.file}'"
|
||||
)
|
||||
self.reset()
|
||||
|
||||
def load(self):
|
||||
"""Loads settings from the YAML file."""
|
||||
super().update(yaml_load(self.file))
|
||||
|
||||
def save(self):
|
||||
"""Saves the current settings to the YAML file."""
|
||||
yaml_save(self.file, dict(self))
|
||||
|
||||
def update(self, *args, **kwargs):
|
||||
"""Updates a setting value in the current settings."""
|
||||
super().update(*args, **kwargs)
|
||||
self.save()
|
||||
|
||||
def reset(self):
|
||||
"""Resets the settings to default and saves them."""
|
||||
self.clear()
|
||||
self.update(self.defaults)
|
||||
self.save()
|
||||
161
python/lancedb/utils/events.py
Normal file
161
python/lancedb/utils/events.py
Normal file
@@ -0,0 +1,161 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import datetime
|
||||
import importlib.metadata
|
||||
import platform
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
|
||||
from lancedb.utils import CONFIG
|
||||
from lancedb.utils.general import TryExcept
|
||||
|
||||
from .general import (
|
||||
PLATFORMS,
|
||||
get_git_origin_url,
|
||||
is_git_dir,
|
||||
is_github_actions_ci,
|
||||
is_online,
|
||||
is_pip_package,
|
||||
is_pytest_running,
|
||||
threaded_request,
|
||||
)
|
||||
|
||||
|
||||
class _Events:
|
||||
"""
|
||||
A class for collecting anonymous event analytics. Event analytics are enabled when ``diagnostics=True`` in config and
|
||||
disabled when ``diagnostics=False``.
|
||||
|
||||
You can enable or disable diagnostics by running ``lancedb diagnostics --enabled`` or ``lancedb diagnostics --disabled``.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
url : str
|
||||
The URL to send anonymous events.
|
||||
rate_limit : float
|
||||
The rate limit in seconds for sending events.
|
||||
metadata : dict
|
||||
A dictionary containing metadata about the environment.
|
||||
enabled : bool
|
||||
A flag to enable or disable Events based on certain conditions.
|
||||
"""
|
||||
|
||||
_instance = None
|
||||
|
||||
url = "https://app.posthog.com/capture/"
|
||||
headers = {"Content-Type": "application/json"}
|
||||
api_key = "phc_oENDjGgHtmIDrV6puUiFem2RB4JA8gGWulfdulmMdZP"
|
||||
# This api-key is write only and is safe to expose in the codebase.
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Initializes the Events object with default values for events, rate_limit, and metadata.
|
||||
"""
|
||||
self.events = [] # events list
|
||||
self.max_events = 25 # max events to store in memory
|
||||
self.rate_limit = 60.0 # rate limit (seconds)
|
||||
self.time = 0.0
|
||||
|
||||
if is_git_dir():
|
||||
install = "git"
|
||||
elif is_pip_package():
|
||||
install = "pip"
|
||||
else:
|
||||
install = "other"
|
||||
self.metadata = {
|
||||
"cli": sys.argv[0],
|
||||
"install": install,
|
||||
"python": ".".join(platform.python_version_tuple()[:2]),
|
||||
"version": importlib.metadata.version("lancedb"),
|
||||
"platforms": PLATFORMS,
|
||||
"session_id": round(random.random() * 1e15),
|
||||
# 'engagement_time_msec': 1000 # TODO: In future we might be interested in this metric
|
||||
}
|
||||
|
||||
TESTS_RUNNING = is_pytest_running() or is_github_actions_ci()
|
||||
ONLINE = is_online()
|
||||
self.enabled = (
|
||||
CONFIG["diagnostics"]
|
||||
and not TESTS_RUNNING
|
||||
and ONLINE
|
||||
and (
|
||||
is_pip_package()
|
||||
or get_git_origin_url() == "https://github.com/lancedb/lancedb.git"
|
||||
)
|
||||
)
|
||||
|
||||
def __call__(self, event_name, params={}):
|
||||
"""
|
||||
Attempts to add a new event to the events list and send events if the rate limit is reached.
|
||||
|
||||
Args
|
||||
----
|
||||
event_name : str
|
||||
The name of the event to be logged.
|
||||
params : dict, optional
|
||||
A dictionary of additional parameters to be logged with the event.
|
||||
"""
|
||||
### NOTE: We might need a way to tag a session with a label to check usage from a source. Setting label should be exposed to the user.
|
||||
if not self.enabled:
|
||||
return
|
||||
if (
|
||||
len(self.events) < self.max_events
|
||||
): # Events list limited to 25 events (drop any events past this)
|
||||
params.update(self.metadata)
|
||||
self.events.append(
|
||||
{
|
||||
"event": event_name,
|
||||
"properties": params,
|
||||
"timestamp": datetime.datetime.now(
|
||||
tz=datetime.timezone.utc
|
||||
).isoformat(),
|
||||
"distinct_id": CONFIG["uuid"],
|
||||
}
|
||||
)
|
||||
|
||||
# Check rate limit
|
||||
t = time.time()
|
||||
if (t - self.time) < self.rate_limit:
|
||||
return
|
||||
# Time is over rate limiter, send now
|
||||
data = {
|
||||
"api_key": self.api_key,
|
||||
"distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event
|
||||
"batch": self.events,
|
||||
}
|
||||
|
||||
# POST equivalent to requests.post(self.url, json=data).
|
||||
# threaded request is used to avoid blocking, retries are disabled, and verbose is disabled
|
||||
# to avoid any possible disruption in the console.
|
||||
threaded_request(
|
||||
method="post",
|
||||
url=self.url,
|
||||
headers=self.headers,
|
||||
json=data,
|
||||
retry=0,
|
||||
verbose=False,
|
||||
)
|
||||
|
||||
# Flush & Reset
|
||||
self.events = []
|
||||
self.time = t
|
||||
|
||||
|
||||
@TryExcept(verbose=False)
|
||||
def register_event(name: str, **kwargs):
|
||||
if _Events._instance is None:
|
||||
_Events._instance = _Events()
|
||||
|
||||
_Events._instance(name, **kwargs)
|
||||
445
python/lancedb/utils/general.py
Normal file
445
python/lancedb/utils/general.py
Normal file
@@ -0,0 +1,445 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import contextlib
|
||||
import importlib
|
||||
import logging.config
|
||||
import os
|
||||
import platform
|
||||
import subprocess
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import requests
|
||||
import yaml
|
||||
|
||||
LOGGING_NAME = "lancedb"
|
||||
VERBOSE = (
|
||||
str(os.getenv("LANCEDB_VERBOSE", True)).lower() == "true"
|
||||
) # global verbose mode
|
||||
|
||||
|
||||
def set_logging(name=LOGGING_NAME, verbose=True):
|
||||
"""Sets up logging for the given name.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str, optional
|
||||
The name of the logger. Default is 'lancedb'.
|
||||
verbose : bool, optional
|
||||
Whether to enable verbose logging. Default is True.
|
||||
"""
|
||||
|
||||
rank = int(os.getenv("RANK", -1)) # rank in world for Multi-GPU trainings
|
||||
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
|
||||
logging.config.dictConfig(
|
||||
{
|
||||
"version": 1,
|
||||
"disable_existing_loggers": False,
|
||||
"formatters": {name: {"format": "%(message)s"}},
|
||||
"handlers": {
|
||||
name: {
|
||||
"class": "logging.StreamHandler",
|
||||
"formatter": name,
|
||||
"level": level,
|
||||
}
|
||||
},
|
||||
"loggers": {name: {"level": level, "handlers": [name], "propagate": False}},
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
set_logging(LOGGING_NAME, verbose=VERBOSE)
|
||||
LOGGER = logging.getLogger(LOGGING_NAME)
|
||||
|
||||
|
||||
def is_pip_package(filepath: str = __name__) -> bool:
|
||||
"""Determines if the file at the given filepath is part of a pip package.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filepath : str, optional
|
||||
The filepath to check. Default is the current file.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if the file is part of a pip package, False otherwise.
|
||||
"""
|
||||
# Get the spec for the module
|
||||
spec = importlib.util.find_spec(filepath)
|
||||
|
||||
# Return whether the spec is not None and the origin is not None (indicating it is a package)
|
||||
return spec is not None and spec.origin is not None
|
||||
|
||||
|
||||
def is_pytest_running():
|
||||
"""Determines whether pytest is currently running or not.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if pytest is running, False otherwise.
|
||||
"""
|
||||
return (
|
||||
("PYTEST_CURRENT_TEST" in os.environ)
|
||||
or ("pytest" in sys.modules)
|
||||
or ("pytest" in Path(sys.argv[0]).stem)
|
||||
)
|
||||
|
||||
|
||||
def is_github_actions_ci() -> bool:
|
||||
"""
|
||||
Determine if the current environment is a GitHub Actions CI Python runner.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if the current environment is a GitHub Actions CI Python runner, False otherwise.
|
||||
"""
|
||||
|
||||
return (
|
||||
"GITHUB_ACTIONS" in os.environ
|
||||
and "RUNNER_OS" in os.environ
|
||||
and "RUNNER_TOOL_CACHE" in os.environ
|
||||
)
|
||||
|
||||
|
||||
def is_git_dir():
|
||||
"""
|
||||
Determines whether the current file is part of a git repository.
|
||||
If the current file is not part of a git repository, returns None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if current file is part of a git repository.
|
||||
"""
|
||||
return get_git_dir() is not None
|
||||
|
||||
|
||||
def is_online() -> bool:
|
||||
"""
|
||||
Check internet connectivity by attempting to connect to a known online host.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if connection is successful, False otherwise.
|
||||
"""
|
||||
import socket
|
||||
|
||||
for host in "1.1.1.1", "8.8.8.8", "223.5.5.5": # Cloudflare, Google, AliDNS:
|
||||
try:
|
||||
test_connection = socket.create_connection(address=(host, 53), timeout=2)
|
||||
except (socket.timeout, socket.gaierror, OSError):
|
||||
continue
|
||||
else:
|
||||
# If the connection was successful, close it to avoid a ResourceWarning
|
||||
test_connection.close()
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def is_dir_writeable(dir_path: Union[str, Path]) -> bool:
|
||||
"""Check if a directory is writeable.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dir_path : Union[str, Path]
|
||||
The path to the directory.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if the directory is writeable, False otherwise.
|
||||
"""
|
||||
return os.access(str(dir_path), os.W_OK)
|
||||
|
||||
|
||||
def is_colab():
|
||||
"""Check if the current script is running inside a Google Colab notebook.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if running inside a Colab notebook, False otherwise.
|
||||
"""
|
||||
return "COLAB_RELEASE_TAG" in os.environ or "COLAB_BACKEND_VERSION" in os.environ
|
||||
|
||||
|
||||
def is_kaggle():
|
||||
"""Check if the current script is running inside a Kaggle kernel.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if running inside a Kaggle kernel, False otherwise.
|
||||
"""
|
||||
return (
|
||||
os.environ.get("PWD") == "/kaggle/working"
|
||||
and os.environ.get("KAGGLE_URL_BASE") == "https://www.kaggle.com"
|
||||
)
|
||||
|
||||
|
||||
def is_jupyter():
|
||||
"""Check if the current script is running inside a Jupyter Notebook.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if running inside a Jupyter Notebook, False otherwise.
|
||||
"""
|
||||
with contextlib.suppress(Exception):
|
||||
from IPython import get_ipython
|
||||
|
||||
return get_ipython() is not None
|
||||
return False
|
||||
|
||||
|
||||
def is_docker() -> bool:
|
||||
"""Determine if the script is running inside a Docker container.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if the script is running inside a Docker container, False otherwise.
|
||||
"""
|
||||
file = Path("/proc/self/cgroup")
|
||||
if file.exists():
|
||||
with open(file) as f:
|
||||
return "docker" in f.read()
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def get_git_dir():
|
||||
"""Determine whether the current file is part of a git repository and if so, returns the repository root directory.
|
||||
If the current file is not part of a git repository, returns None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Path | None
|
||||
Git root directory if found or None if not found.
|
||||
"""
|
||||
for d in Path(__file__).parents:
|
||||
if (d / ".git").is_dir():
|
||||
return d
|
||||
|
||||
|
||||
def get_git_origin_url():
|
||||
"""Retrieve the origin URL of a git repository.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str | None
|
||||
The origin URL of the git repository or None if not git directory.
|
||||
"""
|
||||
if is_git_dir():
|
||||
with contextlib.suppress(subprocess.CalledProcessError):
|
||||
origin = subprocess.check_output(
|
||||
["git", "config", "--get", "remote.origin.url"]
|
||||
)
|
||||
return origin.decode().strip()
|
||||
|
||||
|
||||
def yaml_save(file="data.yaml", data=None, header=""):
|
||||
"""Save YAML data to a file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file : str, optional
|
||||
File name, by default 'data.yaml'.
|
||||
data : dict, optional
|
||||
Data to save in YAML format, by default None.
|
||||
header : str, optional
|
||||
YAML header to add, by default "".
|
||||
"""
|
||||
if data is None:
|
||||
data = {}
|
||||
file = Path(file)
|
||||
if not file.parent.exists():
|
||||
# Create parent directories if they don't exist
|
||||
file.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Convert Path objects to strings
|
||||
for k, v in data.items():
|
||||
if isinstance(v, Path):
|
||||
data[k] = str(v)
|
||||
|
||||
# Dump data to file in YAML format
|
||||
with open(file, "w", errors="ignore", encoding="utf-8") as f:
|
||||
if header:
|
||||
f.write(header)
|
||||
yaml.safe_dump(data, f, sort_keys=False, allow_unicode=True)
|
||||
|
||||
|
||||
def yaml_load(file="data.yaml", append_filename=False):
|
||||
"""
|
||||
Load YAML data from a file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file : str, optional
|
||||
File name. Default is 'data.yaml'.
|
||||
append_filename : bool, optional
|
||||
Add the YAML filename to the YAML dictionary. Default is False.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
YAML data and file name.
|
||||
"""
|
||||
assert Path(file).suffix in (
|
||||
".yaml",
|
||||
".yml",
|
||||
), f"Attempting to load non-YAML file {file} with yaml_load()"
|
||||
with open(file, errors="ignore", encoding="utf-8") as f:
|
||||
s = f.read() # string
|
||||
|
||||
# Add YAML filename to dict and return
|
||||
data = (
|
||||
yaml.safe_load(s) or {}
|
||||
) # always return a dict (yaml.safe_load() may return None for empty files)
|
||||
if append_filename:
|
||||
data["yaml_file"] = str(file)
|
||||
return data
|
||||
|
||||
|
||||
def yaml_print(yaml_file: Union[str, Path, dict]) -> None:
|
||||
"""
|
||||
Pretty prints a YAML file or a YAML-formatted dictionary.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
yaml_file : Union[str, Path, dict]
|
||||
The file path of the YAML file or a YAML-formatted dictionary.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
yaml_dict = (
|
||||
yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file
|
||||
)
|
||||
dump = yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True)
|
||||
LOGGER.info(f"Printing '{yaml_file}'\n\n{dump}")
|
||||
|
||||
|
||||
PLATFORMS = [platform.system()]
|
||||
if is_colab():
|
||||
PLATFORMS.append("Colab")
|
||||
if is_kaggle():
|
||||
PLATFORMS.append("Kaggle")
|
||||
if is_jupyter():
|
||||
PLATFORMS.append("Jupyter")
|
||||
if is_docker():
|
||||
PLATFORMS.append("Docker")
|
||||
|
||||
PLATFORMS = "|".join(PLATFORMS)
|
||||
|
||||
|
||||
class TryExcept(contextlib.ContextDecorator):
|
||||
"""
|
||||
TryExcept context manager.
|
||||
Usage: @TryExcept() decorator or 'with TryExcept():' context manager.
|
||||
"""
|
||||
|
||||
def __init__(self, msg="", verbose=True):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
msg : str, optional
|
||||
Custom message to display in case of exception, by default "".
|
||||
verbose : bool, optional
|
||||
Whether to display the message, by default True.
|
||||
"""
|
||||
self.msg = msg
|
||||
self.verbose = verbose
|
||||
|
||||
def __enter__(self):
|
||||
pass
|
||||
|
||||
def __exit__(self, exc_type, value, traceback):
|
||||
if self.verbose and value:
|
||||
LOGGER.info(f"{self.msg}{': ' if self.msg else ''}{value}")
|
||||
return True
|
||||
|
||||
|
||||
def threaded_request(
|
||||
method, url, retry=3, timeout=30, thread=True, code=-1, verbose=True, **kwargs
|
||||
):
|
||||
"""
|
||||
Makes an HTTP request using the 'requests' library, with exponential backoff retries up to a specified timeout.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
method : str
|
||||
The HTTP method to use for the request. Choices are 'post' and 'get'.
|
||||
url : str
|
||||
The URL to make the request to.
|
||||
retry : int, optional
|
||||
Number of retries to attempt before giving up, by default 3.
|
||||
timeout : int, optional
|
||||
Timeout in seconds after which the function will give up retrying, by default 30.
|
||||
thread : bool, optional
|
||||
Whether to execute the request in a separate daemon thread, by default True.
|
||||
code : int, optional
|
||||
An identifier for the request, used for logging purposes, by default -1.
|
||||
verbose : bool, optional
|
||||
A flag to determine whether to print out to console or not, by default True.
|
||||
|
||||
Returns
|
||||
-------
|
||||
requests.Response
|
||||
The HTTP response object. If the request is executed in a separate thread, returns the thread itself.
|
||||
"""
|
||||
retry_codes = () # retry only these codes TODO: add codes if needed in future (500, 408)
|
||||
|
||||
@TryExcept(verbose=verbose)
|
||||
def func(method, url, **kwargs):
|
||||
"""Make HTTP requests with retries and timeouts, with optional progress tracking."""
|
||||
response = None
|
||||
t0 = time.time()
|
||||
for i in range(retry + 1):
|
||||
if (time.time() - t0) > timeout:
|
||||
break
|
||||
response = requests.request(method, url, **kwargs)
|
||||
if response.status_code < 300: # good return codes in the 2xx range
|
||||
break
|
||||
try:
|
||||
m = response.json().get("message", "No JSON message.")
|
||||
except AttributeError:
|
||||
m = "Unable to read JSON."
|
||||
if i == 0:
|
||||
if response.status_code in retry_codes:
|
||||
m += f" Retrying {retry}x for {timeout}s." if retry else ""
|
||||
elif response.status_code == 429: # rate limit
|
||||
m = f"Rate limit reached"
|
||||
if verbose:
|
||||
LOGGER.warning(f"{response.status_code} #{code}")
|
||||
if response.status_code not in retry_codes:
|
||||
return response
|
||||
time.sleep(2**i) # exponential standoff
|
||||
return response
|
||||
|
||||
args = method, url
|
||||
if thread:
|
||||
return threading.Thread(
|
||||
target=func, args=args, kwargs=kwargs, daemon=True
|
||||
).start()
|
||||
else:
|
||||
return func(*args, **kwargs)
|
||||
112
python/lancedb/utils/sentry_log.py
Normal file
112
python/lancedb/utils/sentry_log.py
Normal file
@@ -0,0 +1,112 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import bdb
|
||||
import importlib.metadata
|
||||
import logging
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from lancedb.utils import CONFIG
|
||||
|
||||
from .general import (
|
||||
PLATFORMS,
|
||||
TryExcept,
|
||||
is_git_dir,
|
||||
is_github_actions_ci,
|
||||
is_online,
|
||||
is_pip_package,
|
||||
is_pytest_running,
|
||||
)
|
||||
|
||||
|
||||
@TryExcept(verbose=False)
|
||||
def set_sentry():
|
||||
"""
|
||||
Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and
|
||||
sync=True in settings. Run 'lancedb settings' to see and update settings YAML file.
|
||||
|
||||
Conditions required to send errors (ALL conditions must be met or no errors will be reported):
|
||||
- sentry_sdk package is installed
|
||||
- sync=True in settings
|
||||
- pytest is not running
|
||||
- running in a pip package installation
|
||||
- running in a non-git directory
|
||||
- online environment
|
||||
|
||||
The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError
|
||||
exceptions for now.
|
||||
|
||||
Additionally, the function sets custom tags and user information for Sentry events.
|
||||
"""
|
||||
|
||||
def before_send(event, hint):
|
||||
"""
|
||||
Modify the event before sending it to Sentry based on specific exception types and messages.
|
||||
|
||||
Args:
|
||||
event (dict): The event dictionary containing information about the error.
|
||||
hint (dict): A dictionary containing additional information about the error.
|
||||
|
||||
Returns:
|
||||
dict: The modified event or None if the event should not be sent to Sentry.
|
||||
"""
|
||||
if "exc_info" in hint:
|
||||
exc_type, exc_value, tb = hint["exc_info"]
|
||||
if "out of memory" in str(exc_value).lower():
|
||||
return None
|
||||
|
||||
if is_git_dir():
|
||||
install = "git"
|
||||
elif is_pip_package():
|
||||
install = "pip"
|
||||
else:
|
||||
install = "other"
|
||||
|
||||
event["tags"] = {
|
||||
"sys_argv": sys.argv[0],
|
||||
"sys_argv_name": Path(sys.argv[0]).name,
|
||||
"install": install,
|
||||
"platforms": PLATFORMS,
|
||||
"version": importlib.metadata.version("lancedb"),
|
||||
}
|
||||
return event
|
||||
|
||||
TESTS_RUNNING = is_pytest_running() or is_github_actions_ci()
|
||||
ONLINE = is_online()
|
||||
if CONFIG["diagnostics"] and not TESTS_RUNNING and ONLINE and is_pip_package():
|
||||
# and not is_git_dir(): # not running inside a git dir. Maybe too restrictive?
|
||||
|
||||
# If sentry_sdk package is not installed then return and do not use Sentry
|
||||
try:
|
||||
import sentry_sdk # noqa
|
||||
except ImportError:
|
||||
return
|
||||
|
||||
sentry_sdk.init(
|
||||
dsn="https://c63ef8c64e05d1aa1a96513361f3ca2f@o4505950840946688.ingest.sentry.io/4505950933614592",
|
||||
debug=False,
|
||||
include_local_variables=False,
|
||||
traces_sample_rate=1.0,
|
||||
environment="production", # 'dev' or 'production'
|
||||
before_send=before_send,
|
||||
ignore_errors=[KeyboardInterrupt, FileNotFoundError, bdb.BdbQuit],
|
||||
)
|
||||
sentry_sdk.set_user({"id": CONFIG["uuid"]}) # SHA-256 anonymized UUID hash
|
||||
|
||||
# Disable all sentry logging
|
||||
for logger in "sentry_sdk", "sentry_sdk.errors":
|
||||
logging.getLogger(logger).setLevel(logging.CRITICAL)
|
||||
|
||||
|
||||
set_sentry()
|
||||
@@ -1,8 +1,9 @@
|
||||
[project]
|
||||
name = "lancedb"
|
||||
version = "0.3.0"
|
||||
version = "0.3.1"
|
||||
dependencies = [
|
||||
"pylance==0.8.1",
|
||||
"deprecation",
|
||||
"pylance==0.8.3",
|
||||
"ratelimiter~=1.0",
|
||||
"retry>=0.9.2",
|
||||
"tqdm>=4.1.0",
|
||||
@@ -10,7 +11,10 @@ dependencies = [
|
||||
"pydantic>=1.10",
|
||||
"attrs>=21.3.0",
|
||||
"semver>=3.0",
|
||||
"cachetools"
|
||||
"cachetools",
|
||||
"pyyaml>=6.0",
|
||||
"click>=8.1.7",
|
||||
"requests>=2.31.0"
|
||||
]
|
||||
description = "lancedb"
|
||||
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
|
||||
@@ -48,7 +52,10 @@ tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests"]
|
||||
dev = ["ruff", "pre-commit", "black"]
|
||||
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
|
||||
clip = ["torch", "pillow", "open-clip"]
|
||||
embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip"]
|
||||
embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip", "cohere"]
|
||||
|
||||
[project.scripts]
|
||||
lancedb = "lancedb.cli.cli:cli"
|
||||
|
||||
[build-system]
|
||||
requires = ["setuptools", "wheel"]
|
||||
|
||||
35
python/tests/test_cli.py
Normal file
35
python/tests/test_cli.py
Normal file
@@ -0,0 +1,35 @@
|
||||
from click.testing import CliRunner
|
||||
|
||||
from lancedb.cli.cli import cli
|
||||
from lancedb.utils import CONFIG
|
||||
|
||||
|
||||
def test_entry():
|
||||
runner = CliRunner()
|
||||
result = runner.invoke(cli)
|
||||
assert result.exit_code == 0 # Main check
|
||||
assert "lancedb" in result.output.lower() # lazy check
|
||||
|
||||
|
||||
def test_diagnostics():
|
||||
runner = CliRunner()
|
||||
result = runner.invoke(cli, ["diagnostics", "--disabled"])
|
||||
assert result.exit_code == 0 # Main check
|
||||
assert CONFIG["diagnostics"] == False
|
||||
|
||||
result = runner.invoke(cli, ["diagnostics", "--enabled"])
|
||||
assert result.exit_code == 0 # Main check
|
||||
assert CONFIG["diagnostics"] == True
|
||||
|
||||
|
||||
def test_config():
|
||||
runner = CliRunner()
|
||||
result = runner.invoke(cli, ["config"])
|
||||
assert result.exit_code == 0 # Main check
|
||||
cfg = CONFIG.copy()
|
||||
cfg.pop("uuid")
|
||||
for (
|
||||
item,
|
||||
_,
|
||||
) in cfg.items(): # check for keys only as formatting is subject to change
|
||||
assert item in result.output
|
||||
@@ -47,7 +47,7 @@ def test_contextualizer(raw_df: pd.DataFrame):
|
||||
.stride(3)
|
||||
.text_col("token")
|
||||
.groupby("document_id")
|
||||
.to_df()["token"]
|
||||
.to_pandas()["token"]
|
||||
.to_list()
|
||||
)
|
||||
|
||||
@@ -67,7 +67,7 @@ def test_contextualizer_with_threshold(raw_df: pd.DataFrame):
|
||||
.text_col("token")
|
||||
.groupby("document_id")
|
||||
.min_window_size(4)
|
||||
.to_df()["token"]
|
||||
.to_pandas()["token"]
|
||||
.to_list()
|
||||
)
|
||||
|
||||
|
||||
@@ -33,11 +33,11 @@ def test_basic(tmp_path):
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||
],
|
||||
)
|
||||
rs = table.search([100, 100]).limit(1).to_df()
|
||||
rs = table.search([100, 100]).limit(1).to_pandas()
|
||||
assert len(rs) == 1
|
||||
assert rs["item"].iloc[0] == "bar"
|
||||
|
||||
rs = table.search([100, 100]).where("price < 15").limit(2).to_df()
|
||||
rs = table.search([100, 100]).where("price < 15").limit(2).to_pandas()
|
||||
assert len(rs) == 1
|
||||
assert rs["item"].iloc[0] == "foo"
|
||||
|
||||
@@ -62,11 +62,11 @@ def test_ingest_pd(tmp_path):
|
||||
}
|
||||
)
|
||||
table = db.create_table("test", data=data)
|
||||
rs = table.search([100, 100]).limit(1).to_df()
|
||||
rs = table.search([100, 100]).limit(1).to_pandas()
|
||||
assert len(rs) == 1
|
||||
assert rs["item"].iloc[0] == "bar"
|
||||
|
||||
rs = table.search([100, 100]).where("price < 15").limit(2).to_df()
|
||||
rs = table.search([100, 100]).where("price < 15").limit(2).to_pandas()
|
||||
assert len(rs) == 1
|
||||
assert rs["item"].iloc[0] == "foo"
|
||||
|
||||
@@ -137,8 +137,8 @@ def test_ingest_iterator(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
tbl = db.create_table("table2", make_batches(), schema=schema, mode="overwrite")
|
||||
tbl.to_pandas()
|
||||
assert tbl.search([3.1, 4.1]).limit(1).to_df()["_distance"][0] == 0.0
|
||||
assert tbl.search([5.9, 26.5]).limit(1).to_df()["_distance"][0] == 0.0
|
||||
assert tbl.search([3.1, 4.1]).limit(1).to_pandas()["_distance"][0] == 0.0
|
||||
assert tbl.search([5.9, 26.5]).limit(1).to_pandas()["_distance"][0] == 0.0
|
||||
tbl_len = len(tbl)
|
||||
tbl.add(make_batches())
|
||||
assert tbl_len == 50
|
||||
|
||||
@@ -23,5 +23,5 @@ from lancedb import LanceDBConnection
|
||||
def test_against_local_server():
|
||||
conn = LanceDBConnection("lancedb+http://localhost:10024")
|
||||
table = conn.open_table("sift1m_ivf1024_pq16")
|
||||
df = table.search(np.random.rand(128)).to_df()
|
||||
df = table.search(np.random.rand(128)).to_pandas()
|
||||
assert len(df) == 10
|
||||
|
||||
@@ -11,6 +11,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import io
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@@ -123,3 +124,26 @@ def test_openclip(tmp_path):
|
||||
arrow_table["vector"].combine_chunks().values.to_numpy(),
|
||||
arrow_table["vec_from_bytes"].combine_chunks().values.to_numpy(),
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set"
|
||||
) # also skip if cohere not installed
|
||||
def test_cohere_embedding_function():
|
||||
cohere = (
|
||||
EmbeddingFunctionRegistry.get_instance()
|
||||
.get("cohere")
|
||||
.create(name="embed-multilingual-v2.0")
|
||||
)
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = cohere.SourceField()
|
||||
vector: Vector(cohere.ndims()) = cohere.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("~/lancedb")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
assert len(tbl.to_pandas()["vector"][0]) == cohere.ndims()
|
||||
|
||||
@@ -71,14 +71,14 @@ def test_search_index(tmp_path, table):
|
||||
|
||||
def test_create_index_from_table(tmp_path, table):
|
||||
table.create_fts_index("text")
|
||||
df = table.search("puppy").limit(10).select(["text"]).to_df()
|
||||
df = table.search("puppy").limit(10).select(["text"]).to_pandas()
|
||||
assert len(df) == 10
|
||||
assert "text" in df.columns
|
||||
|
||||
|
||||
def test_create_index_multiple_columns(tmp_path, table):
|
||||
table.create_fts_index(["text", "text2"])
|
||||
df = table.search("puppy").limit(10).to_df()
|
||||
df = table.search("puppy").limit(10).to_pandas()
|
||||
assert len(df) == 10
|
||||
assert "text" in df.columns
|
||||
assert "text2" in df.columns
|
||||
@@ -87,5 +87,5 @@ def test_create_index_multiple_columns(tmp_path, table):
|
||||
def test_empty_rs(tmp_path, table, mocker):
|
||||
table.create_fts_index(["text", "text2"])
|
||||
mocker.patch("lancedb.fts.search_index", return_value=([], []))
|
||||
df = table.search("puppy").limit(10).to_df()
|
||||
df = table.search("puppy").limit(10).to_pandas()
|
||||
assert len(df) == 0
|
||||
|
||||
@@ -36,11 +36,11 @@ def test_s3_io():
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||
],
|
||||
)
|
||||
rs = table.search([100, 100]).limit(1).to_df()
|
||||
rs = table.search([100, 100]).limit(1).to_pandas()
|
||||
assert len(rs) == 1
|
||||
assert rs["item"].iloc[0] == "bar"
|
||||
|
||||
rs = table.search([100, 100]).where("price < 15").limit(2).to_df()
|
||||
rs = table.search([100, 100]).where("price < 15").limit(2).to_pandas()
|
||||
assert len(rs) == 1
|
||||
assert rs["item"].iloc[0] == "foo"
|
||||
|
||||
|
||||
@@ -85,17 +85,20 @@ def test_cast(table):
|
||||
|
||||
|
||||
def test_query_builder(table):
|
||||
df = (
|
||||
LanceVectorQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df()
|
||||
rs = (
|
||||
LanceVectorQueryBuilder(table, [0, 0], "vector")
|
||||
.limit(1)
|
||||
.select(["id"])
|
||||
.to_list()
|
||||
)
|
||||
assert df["id"].values[0] == 1
|
||||
assert all(df["vector"].values[0] == [1, 2])
|
||||
assert rs[0]["id"] == 1
|
||||
assert all(np.array(rs[0]["vector"]) == [1, 2])
|
||||
|
||||
|
||||
def test_query_builder_with_filter(table):
|
||||
df = LanceVectorQueryBuilder(table, [0, 0], "vector").where("id = 2").to_df()
|
||||
assert df["id"].values[0] == 2
|
||||
assert all(df["vector"].values[0] == [3, 4])
|
||||
rs = LanceVectorQueryBuilder(table, [0, 0], "vector").where("id = 2").to_list()
|
||||
assert rs[0]["id"] == 2
|
||||
assert all(np.array(rs[0]["vector"]) == [3, 4])
|
||||
|
||||
|
||||
def test_query_builder_with_prefilter(table):
|
||||
@@ -103,7 +106,7 @@ def test_query_builder_with_prefilter(table):
|
||||
LanceVectorQueryBuilder(table, [0, 0], "vector")
|
||||
.where("id = 2")
|
||||
.limit(1)
|
||||
.to_df()
|
||||
.to_pandas()
|
||||
)
|
||||
assert len(df) == 0
|
||||
|
||||
@@ -111,7 +114,7 @@ def test_query_builder_with_prefilter(table):
|
||||
LanceVectorQueryBuilder(table, [0, 0], "vector")
|
||||
.where("id = 2", prefilter=True)
|
||||
.limit(1)
|
||||
.to_df()
|
||||
.to_pandas()
|
||||
)
|
||||
assert df["id"].values[0] == 2
|
||||
assert all(df["vector"].values[0] == [3, 4])
|
||||
@@ -120,9 +123,11 @@ def test_query_builder_with_prefilter(table):
|
||||
def test_query_builder_with_metric(table):
|
||||
query = [4, 8]
|
||||
vector_column_name = "vector"
|
||||
df_default = LanceVectorQueryBuilder(table, query, vector_column_name).to_df()
|
||||
df_default = LanceVectorQueryBuilder(table, query, vector_column_name).to_pandas()
|
||||
df_l2 = (
|
||||
LanceVectorQueryBuilder(table, query, vector_column_name).metric("L2").to_df()
|
||||
LanceVectorQueryBuilder(table, query, vector_column_name)
|
||||
.metric("L2")
|
||||
.to_pandas()
|
||||
)
|
||||
tm.assert_frame_equal(df_default, df_l2)
|
||||
|
||||
@@ -130,7 +135,7 @@ def test_query_builder_with_metric(table):
|
||||
LanceVectorQueryBuilder(table, query, vector_column_name)
|
||||
.metric("cosine")
|
||||
.limit(1)
|
||||
.to_df()
|
||||
.to_pandas()
|
||||
)
|
||||
assert df_cosine._distance[0] == pytest.approx(
|
||||
cosine_distance(query, df_cosine.vector[0]),
|
||||
|
||||
@@ -86,7 +86,7 @@ async def test_e2e_with_mock_server():
|
||||
columns=["id", "vector"],
|
||||
),
|
||||
)
|
||||
).to_df()
|
||||
).to_pandas()
|
||||
|
||||
assert "vector" in df.columns
|
||||
assert "id" in df.columns
|
||||
|
||||
@@ -32,4 +32,4 @@ def test_remote_db():
|
||||
setattr(conn, "_client", FakeLanceDBClient())
|
||||
|
||||
table = conn["test"]
|
||||
table.search([1.0, 2.0]).to_df()
|
||||
table.search([1.0, 2.0]).to_pandas()
|
||||
|
||||
@@ -12,6 +12,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import functools
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from unittest.mock import PropertyMock, patch
|
||||
@@ -223,6 +224,7 @@ def test_create_index_method():
|
||||
num_partitions=256,
|
||||
num_sub_vectors=96,
|
||||
replace=True,
|
||||
accelerator=None,
|
||||
)
|
||||
|
||||
|
||||
@@ -426,8 +428,8 @@ def test_multiple_vector_columns(db):
|
||||
table.add(df)
|
||||
|
||||
q = np.random.randn(10)
|
||||
result1 = table.search(q, vector_column_name="vector1").limit(1).to_df()
|
||||
result2 = table.search(q, vector_column_name="vector2").limit(1).to_df()
|
||||
result1 = table.search(q, vector_column_name="vector1").limit(1).to_pandas()
|
||||
result2 = table.search(q, vector_column_name="vector2").limit(1).to_pandas()
|
||||
|
||||
assert result1["text"].iloc[0] != result2["text"].iloc[0]
|
||||
|
||||
@@ -438,6 +440,34 @@ def test_empty_query(db):
|
||||
"my_table",
|
||||
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
|
||||
)
|
||||
df = table.search().select(["id"]).where("text='bar'").limit(1).to_df()
|
||||
df = table.search().select(["id"]).where("text='bar'").limit(1).to_pandas()
|
||||
val = df.id.iloc[0]
|
||||
assert val == 1
|
||||
|
||||
|
||||
def test_compact_cleanup(db):
|
||||
table = LanceTable.create(
|
||||
db,
|
||||
"my_table",
|
||||
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
|
||||
)
|
||||
|
||||
table.add([{"text": "baz", "id": 2}])
|
||||
assert len(table) == 3
|
||||
assert table.version == 3
|
||||
|
||||
stats = table.compact_files()
|
||||
assert len(table) == 3
|
||||
assert table.version == 4
|
||||
assert stats.fragments_removed > 0
|
||||
assert stats.fragments_added == 1
|
||||
|
||||
stats = table.cleanup_old_versions()
|
||||
assert stats.bytes_removed == 0
|
||||
|
||||
stats = table.cleanup_old_versions(older_than=timedelta(0), delete_unverified=True)
|
||||
assert stats.bytes_removed > 0
|
||||
assert table.version == 4
|
||||
|
||||
with pytest.raises(Exception, match="Version 3 no longer exists"):
|
||||
table.checkout(3)
|
||||
|
||||
60
python/tests/test_telemetry.py
Normal file
60
python/tests/test_telemetry.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import json
|
||||
|
||||
import pytest
|
||||
|
||||
import lancedb
|
||||
from lancedb.utils.events import _Events
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def request_log_path(tmp_path):
|
||||
return tmp_path / "request.json"
|
||||
|
||||
|
||||
def mock_register_event(name: str, **kwargs):
|
||||
if _Events._instance is None:
|
||||
_Events._instance = _Events()
|
||||
|
||||
_Events._instance.enabled = True
|
||||
_Events._instance.rate_limit = 0
|
||||
_Events._instance(name, **kwargs)
|
||||
|
||||
|
||||
def test_event_reporting(monkeypatch, request_log_path, tmp_path) -> None:
|
||||
def mock_request(**kwargs):
|
||||
json_data = kwargs.get("json", {})
|
||||
with open(request_log_path, "w") as f:
|
||||
json.dump(json_data, f)
|
||||
|
||||
monkeypatch.setattr(
|
||||
lancedb.table, "register_event", mock_register_event
|
||||
) # Force enable registering events and strip exception handling
|
||||
monkeypatch.setattr(lancedb.utils.events, "threaded_request", mock_request)
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
db.create_table(
|
||||
"test",
|
||||
data=[
|
||||
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||
],
|
||||
mode="overwrite",
|
||||
)
|
||||
|
||||
assert request_log_path.exists() # test if event was registered
|
||||
|
||||
with open(request_log_path, "r") as f:
|
||||
json_data = json.load(f)
|
||||
|
||||
# TODO: don't hardcode these here. Instead create a module level json scehma in lancedb.utils.events for better evolvability
|
||||
batch_keys = ["api_key", "distinct_id", "batch"]
|
||||
event_keys = ["event", "properties", "timestamp", "distinct_id"]
|
||||
property_keys = ["cli", "install", "platforms", "version", "session_id"]
|
||||
|
||||
assert all([key in json_data for key in batch_keys])
|
||||
assert all([key in json_data["batch"][0] for key in event_keys])
|
||||
assert all([key in json_data["batch"][0]["properties"] for key in property_keys])
|
||||
|
||||
# cleanup & reset
|
||||
monkeypatch.undo()
|
||||
_Events._instance = None
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "vectordb-node"
|
||||
version = "0.2.6"
|
||||
version = "0.3.0"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
license = "Apache-2.0"
|
||||
edition = "2018"
|
||||
@@ -13,6 +13,7 @@ crate-type = ["cdylib"]
|
||||
arrow-array = { workspace = true }
|
||||
arrow-ipc = { workspace = true }
|
||||
arrow-schema = { workspace = true }
|
||||
chrono = { workspace = true }
|
||||
conv = "0.3.3"
|
||||
once_cell = "1"
|
||||
futures = "0.3"
|
||||
|
||||
@@ -78,9 +78,11 @@ fn get_index_params_builder(
|
||||
|
||||
num_partitions.map(|np| {
|
||||
let max_iters = max_iters.unwrap_or(50);
|
||||
let mut ivf_params = IvfBuildParams::default();
|
||||
ivf_params.num_partitions = np;
|
||||
ivf_params.max_iters = max_iters;
|
||||
let ivf_params = IvfBuildParams {
|
||||
num_partitions: np,
|
||||
max_iters,
|
||||
..Default::default()
|
||||
};
|
||||
index_builder.ivf_params(ivf_params)
|
||||
});
|
||||
|
||||
|
||||
@@ -195,7 +195,7 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||
|
||||
let (deferred, promise) = cx.promise();
|
||||
rt.spawn(async move {
|
||||
let table_rst = database.open_table_with_params(&table_name, ¶ms).await;
|
||||
let table_rst = database.open_table_with_params(&table_name, params).await;
|
||||
|
||||
deferred.settle_with(&channel, move |mut cx| {
|
||||
let js_table = JsTable::from(table_rst.or_throw(&mut cx)?);
|
||||
@@ -237,6 +237,8 @@ fn main(mut cx: ModuleContext) -> NeonResult<()> {
|
||||
cx.export_function("tableAdd", JsTable::js_add)?;
|
||||
cx.export_function("tableCountRows", JsTable::js_count_rows)?;
|
||||
cx.export_function("tableDelete", JsTable::js_delete)?;
|
||||
cx.export_function("tableCleanupOldVersions", JsTable::js_cleanup)?;
|
||||
cx.export_function("tableCompactFiles", JsTable::js_compact)?;
|
||||
cx.export_function(
|
||||
"tableCreateVectorIndex",
|
||||
index::vector::table_create_vector_index,
|
||||
|
||||
@@ -13,6 +13,7 @@
|
||||
// limitations under the License.
|
||||
|
||||
use arrow_array::RecordBatchIterator;
|
||||
use lance::dataset::optimize::CompactionOptions;
|
||||
use lance::dataset::{WriteMode, WriteParams};
|
||||
use lance::io::object_store::ObjectStoreParams;
|
||||
|
||||
@@ -163,4 +164,116 @@ impl JsTable {
|
||||
});
|
||||
Ok(promise)
|
||||
}
|
||||
|
||||
pub(crate) fn js_cleanup(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
||||
let rt = runtime(&mut cx)?;
|
||||
let (deferred, promise) = cx.promise();
|
||||
let table = js_table.table.clone();
|
||||
let channel = cx.channel();
|
||||
|
||||
let older_than: i64 = cx
|
||||
.argument_opt(0)
|
||||
.and_then(|val| val.downcast::<JsNumber, _>(&mut cx).ok())
|
||||
.map(|val| val.value(&mut cx) as i64)
|
||||
.unwrap_or_else(|| 2 * 7 * 24 * 60); // 2 weeks
|
||||
let older_than = chrono::Duration::minutes(older_than);
|
||||
let delete_unverified: bool = cx
|
||||
.argument_opt(1)
|
||||
.and_then(|val| val.downcast::<JsBoolean, _>(&mut cx).ok())
|
||||
.map(|val| val.value(&mut cx))
|
||||
.unwrap_or_default();
|
||||
|
||||
rt.spawn(async move {
|
||||
let stats = table
|
||||
.cleanup_old_versions(older_than, Some(delete_unverified))
|
||||
.await;
|
||||
|
||||
deferred.settle_with(&channel, move |mut cx| {
|
||||
let stats = stats.or_throw(&mut cx)?;
|
||||
|
||||
let output_metrics = JsObject::new(&mut cx);
|
||||
let bytes_removed = cx.number(stats.bytes_removed as f64);
|
||||
output_metrics.set(&mut cx, "bytesRemoved", bytes_removed)?;
|
||||
|
||||
let old_versions = cx.number(stats.old_versions as f64);
|
||||
output_metrics.set(&mut cx, "oldVersions", old_versions)?;
|
||||
|
||||
let output_table = cx.boxed(JsTable::from(table));
|
||||
|
||||
let output = JsObject::new(&mut cx);
|
||||
output.set(&mut cx, "metrics", output_metrics)?;
|
||||
output.set(&mut cx, "newTable", output_table)?;
|
||||
|
||||
Ok(output)
|
||||
})
|
||||
});
|
||||
Ok(promise)
|
||||
}
|
||||
|
||||
pub(crate) fn js_compact(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
||||
let rt = runtime(&mut cx)?;
|
||||
let (deferred, promise) = cx.promise();
|
||||
let mut table = js_table.table.clone();
|
||||
let channel = cx.channel();
|
||||
|
||||
let js_options = cx.argument::<JsObject>(0)?;
|
||||
let mut options = CompactionOptions::default();
|
||||
|
||||
if let Some(target_rows) =
|
||||
js_options.get_opt::<JsNumber, _, _>(&mut cx, "targetRowsPerFragment")?
|
||||
{
|
||||
options.target_rows_per_fragment = target_rows.value(&mut cx) as usize;
|
||||
}
|
||||
if let Some(max_per_group) =
|
||||
js_options.get_opt::<JsNumber, _, _>(&mut cx, "maxRowsPerGroup")?
|
||||
{
|
||||
options.max_rows_per_group = max_per_group.value(&mut cx) as usize;
|
||||
}
|
||||
if let Some(materialize_deletions) =
|
||||
js_options.get_opt::<JsBoolean, _, _>(&mut cx, "materializeDeletions")?
|
||||
{
|
||||
options.materialize_deletions = materialize_deletions.value(&mut cx);
|
||||
}
|
||||
if let Some(materialize_deletions_threshold) =
|
||||
js_options.get_opt::<JsNumber, _, _>(&mut cx, "materializeDeletionsThreshold")?
|
||||
{
|
||||
options.materialize_deletions_threshold =
|
||||
materialize_deletions_threshold.value(&mut cx) as f32;
|
||||
}
|
||||
if let Some(num_threads) = js_options.get_opt::<JsNumber, _, _>(&mut cx, "numThreads")? {
|
||||
options.num_threads = num_threads.value(&mut cx) as usize;
|
||||
}
|
||||
|
||||
rt.spawn(async move {
|
||||
let stats = table.compact_files(options).await;
|
||||
|
||||
deferred.settle_with(&channel, move |mut cx| {
|
||||
let stats = stats.or_throw(&mut cx)?;
|
||||
|
||||
let output_metrics = JsObject::new(&mut cx);
|
||||
let fragments_removed = cx.number(stats.fragments_removed as f64);
|
||||
output_metrics.set(&mut cx, "fragmentsRemoved", fragments_removed)?;
|
||||
|
||||
let fragments_added = cx.number(stats.fragments_added as f64);
|
||||
output_metrics.set(&mut cx, "fragmentsAdded", fragments_added)?;
|
||||
|
||||
let files_removed = cx.number(stats.files_removed as f64);
|
||||
output_metrics.set(&mut cx, "filesRemoved", files_removed)?;
|
||||
|
||||
let files_added = cx.number(stats.files_added as f64);
|
||||
output_metrics.set(&mut cx, "filesAdded", files_added)?;
|
||||
|
||||
let output_table = cx.boxed(JsTable::from(table));
|
||||
|
||||
let output = JsObject::new(&mut cx);
|
||||
output.set(&mut cx, "metrics", output_metrics)?;
|
||||
output.set(&mut cx, "newTable", output_table)?;
|
||||
|
||||
Ok(output)
|
||||
})
|
||||
});
|
||||
Ok(promise)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "vectordb"
|
||||
version = "0.2.6"
|
||||
version = "0.3.0"
|
||||
edition = "2021"
|
||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||
license = "Apache-2.0"
|
||||
@@ -16,16 +16,22 @@ arrow-data = { workspace = true }
|
||||
arrow-schema = { workspace = true }
|
||||
arrow-ord = { workspace = true }
|
||||
arrow-cast = { workspace = true }
|
||||
chrono = { workspace = true }
|
||||
object_store = { workspace = true }
|
||||
snafu = { workspace = true }
|
||||
half = { workspace = true }
|
||||
lance = { workspace = true }
|
||||
lance-linalg = { workspace = true }
|
||||
lance-testing = { workspace = true }
|
||||
tokio = { version = "1.23", features = ["rt-multi-thread"] }
|
||||
log = { workspace = true }
|
||||
async-trait = "0"
|
||||
bytes = "1"
|
||||
futures = "0"
|
||||
num-traits = "0"
|
||||
url = { workspace = true }
|
||||
|
||||
[dev-dependencies]
|
||||
tempfile = "3.5.0"
|
||||
rand = { version = "0.8.3", features = ["small_rng"] }
|
||||
walkdir = "2"
|
||||
@@ -14,13 +14,16 @@
|
||||
|
||||
use std::fs::create_dir_all;
|
||||
use std::path::Path;
|
||||
use std::sync::Arc;
|
||||
|
||||
use arrow_array::RecordBatchReader;
|
||||
use lance::dataset::WriteParams;
|
||||
use lance::io::object_store::ObjectStore;
|
||||
use lance::io::object_store::{ObjectStore, WrappingObjectStore};
|
||||
use object_store::local::LocalFileSystem;
|
||||
use snafu::prelude::*;
|
||||
|
||||
use crate::error::{CreateDirSnafu, InvalidTableNameSnafu, Result};
|
||||
use crate::error::{CreateDirSnafu, Error, InvalidTableNameSnafu, Result};
|
||||
use crate::io::object_store::MirroringObjectStoreWrapper;
|
||||
use crate::table::{ReadParams, Table};
|
||||
|
||||
pub const LANCE_FILE_EXTENSION: &str = "lance";
|
||||
@@ -31,10 +34,14 @@ pub struct Database {
|
||||
|
||||
pub(crate) uri: String,
|
||||
pub(crate) base_path: object_store::path::Path,
|
||||
|
||||
// the object store wrapper to use on write path
|
||||
pub(crate) store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
|
||||
}
|
||||
|
||||
const LANCE_EXTENSION: &str = "lance";
|
||||
const ENGINE: &str = "engine";
|
||||
const MIRRORED_STORE: &str = "mirroredStore";
|
||||
|
||||
/// A connection to LanceDB
|
||||
impl Database {
|
||||
@@ -55,6 +62,7 @@ impl Database {
|
||||
Ok(mut url) => {
|
||||
// iter thru the query params and extract the commit store param
|
||||
let mut engine = None;
|
||||
let mut mirrored_store = None;
|
||||
let mut filtered_querys = vec![];
|
||||
|
||||
// WARNING: specifying engine is NOT a publicly supported feature in lancedb yet
|
||||
@@ -62,6 +70,13 @@ impl Database {
|
||||
for (key, value) in url.query_pairs() {
|
||||
if key == ENGINE {
|
||||
engine = Some(value.to_string());
|
||||
} else if key == MIRRORED_STORE {
|
||||
if cfg!(windows) {
|
||||
return Err(Error::Lance {
|
||||
message: "mirrored store is not supported on windows".into(),
|
||||
});
|
||||
}
|
||||
mirrored_store = Some(value.to_string());
|
||||
} else {
|
||||
// to owned so we can modify the url
|
||||
filtered_querys.push((key.to_string(), value.to_string()));
|
||||
@@ -96,11 +111,21 @@ impl Database {
|
||||
Self::try_create_dir(&plain_uri).context(CreateDirSnafu { path: plain_uri })?;
|
||||
}
|
||||
|
||||
let write_store_wrapper = match mirrored_store {
|
||||
Some(path) => {
|
||||
let mirrored_store = Arc::new(LocalFileSystem::new_with_prefix(path)?);
|
||||
let wrapper = MirroringObjectStoreWrapper::new(mirrored_store);
|
||||
Some(Arc::new(wrapper) as Arc<dyn WrappingObjectStore>)
|
||||
}
|
||||
None => None,
|
||||
};
|
||||
|
||||
Ok(Database {
|
||||
uri: table_base_uri,
|
||||
query_string,
|
||||
base_path,
|
||||
object_store,
|
||||
store_wrapper: write_store_wrapper,
|
||||
})
|
||||
}
|
||||
Err(_) => Self::open_path(uri).await,
|
||||
@@ -117,6 +142,7 @@ impl Database {
|
||||
query_string: None,
|
||||
base_path,
|
||||
object_store,
|
||||
store_wrapper: None,
|
||||
})
|
||||
}
|
||||
|
||||
@@ -166,7 +192,15 @@ impl Database {
|
||||
params: Option<WriteParams>,
|
||||
) -> Result<Table> {
|
||||
let table_uri = self.table_uri(name)?;
|
||||
Table::create(&table_uri, name, batches, params).await
|
||||
|
||||
Table::create(
|
||||
&table_uri,
|
||||
name,
|
||||
batches,
|
||||
self.store_wrapper.clone(),
|
||||
params,
|
||||
)
|
||||
.await
|
||||
}
|
||||
|
||||
/// Open a table in the database.
|
||||
@@ -178,7 +212,7 @@ impl Database {
|
||||
///
|
||||
/// * A [Table] object.
|
||||
pub async fn open_table(&self, name: &str) -> Result<Table> {
|
||||
self.open_table_with_params(name, &ReadParams::default())
|
||||
self.open_table_with_params(name, ReadParams::default())
|
||||
.await
|
||||
}
|
||||
|
||||
@@ -191,9 +225,9 @@ impl Database {
|
||||
/// # Returns
|
||||
///
|
||||
/// * A [Table] object.
|
||||
pub async fn open_table_with_params(&self, name: &str, params: &ReadParams) -> Result<Table> {
|
||||
pub async fn open_table_with_params(&self, name: &str, params: ReadParams) -> Result<Table> {
|
||||
let table_uri = self.table_uri(name)?;
|
||||
Table::open_with_params(&table_uri, name, params).await
|
||||
Table::open_with_params(&table_uri, name, self.store_wrapper.clone(), params).await
|
||||
}
|
||||
|
||||
/// Drop a table in the database.
|
||||
|
||||
1
rust/vectordb/src/io.rs
Normal file
1
rust/vectordb/src/io.rs
Normal file
@@ -0,0 +1 @@
|
||||
pub mod object_store;
|
||||
396
rust/vectordb/src/io/object_store.rs
Normal file
396
rust/vectordb/src/io/object_store.rs
Normal file
@@ -0,0 +1,396 @@
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
//! A mirroring object store that mirror writes to a secondary object store
|
||||
|
||||
use std::{
|
||||
fmt::Formatter,
|
||||
pin::Pin,
|
||||
sync::Arc,
|
||||
task::{Context, Poll},
|
||||
};
|
||||
|
||||
use bytes::Bytes;
|
||||
use futures::{stream::BoxStream, FutureExt, StreamExt};
|
||||
use lance::io::object_store::WrappingObjectStore;
|
||||
use object_store::{
|
||||
path::Path, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore, Result,
|
||||
};
|
||||
|
||||
use async_trait::async_trait;
|
||||
use tokio::{
|
||||
io::{AsyncWrite, AsyncWriteExt},
|
||||
task::JoinHandle,
|
||||
};
|
||||
|
||||
#[derive(Debug)]
|
||||
struct MirroringObjectStore {
|
||||
primary: Arc<dyn ObjectStore>,
|
||||
secondary: Arc<dyn ObjectStore>,
|
||||
}
|
||||
|
||||
impl std::fmt::Display for MirroringObjectStore {
|
||||
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
|
||||
writeln!(f, "MirrowingObjectStore")?;
|
||||
writeln!(f, "primary:")?;
|
||||
self.primary.fmt(f)?;
|
||||
writeln!(f, "secondary:")?;
|
||||
self.secondary.fmt(f)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
trait PrimaryOnly {
|
||||
fn primary_only(&self) -> bool;
|
||||
}
|
||||
|
||||
impl PrimaryOnly for Path {
|
||||
fn primary_only(&self) -> bool {
|
||||
self.to_string().contains("manifest")
|
||||
}
|
||||
}
|
||||
|
||||
/// An object store that mirrors write to secondsry object store first
|
||||
/// and than commit to primary object store.
|
||||
///
|
||||
/// This is meant to mirrow writes to a less-durable but lower-latency
|
||||
/// store. We have primary store that is durable but slow, and a secondary
|
||||
/// store that is fast but not asdurable
|
||||
///
|
||||
/// Note: this object store does not mirror writes to *.manifest files
|
||||
#[async_trait]
|
||||
impl ObjectStore for MirroringObjectStore {
|
||||
async fn put(&self, location: &Path, bytes: Bytes) -> Result<()> {
|
||||
if location.primary_only() {
|
||||
self.primary.put(location, bytes).await
|
||||
} else {
|
||||
self.secondary.put(location, bytes.clone()).await?;
|
||||
self.primary.put(location, bytes).await?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
async fn put_multipart(
|
||||
&self,
|
||||
location: &Path,
|
||||
) -> Result<(MultipartId, Box<dyn AsyncWrite + Unpin + Send>)> {
|
||||
if location.primary_only() {
|
||||
return self.primary.put_multipart(location).await;
|
||||
}
|
||||
|
||||
let (id, stream) = self.secondary.put_multipart(location).await?;
|
||||
|
||||
let mirroring_upload = MirroringUpload::new(
|
||||
Pin::new(stream),
|
||||
self.primary.clone(),
|
||||
self.secondary.clone(),
|
||||
location.clone(),
|
||||
);
|
||||
|
||||
Ok((id, Box::new(mirroring_upload)))
|
||||
}
|
||||
|
||||
async fn abort_multipart(&self, location: &Path, multipart_id: &MultipartId) -> Result<()> {
|
||||
if location.primary_only() {
|
||||
return self.primary.abort_multipart(location, multipart_id).await;
|
||||
}
|
||||
|
||||
self.secondary.abort_multipart(location, multipart_id).await
|
||||
}
|
||||
|
||||
// Reads are routed to primary only
|
||||
async fn get_opts(&self, location: &Path, options: GetOptions) -> Result<GetResult> {
|
||||
self.primary.get_opts(location, options).await
|
||||
}
|
||||
|
||||
async fn head(&self, location: &Path) -> Result<ObjectMeta> {
|
||||
self.primary.head(location).await
|
||||
}
|
||||
|
||||
// garbage collection on secondary will happen async from other means
|
||||
async fn delete(&self, location: &Path) -> Result<()> {
|
||||
self.primary.delete(location).await
|
||||
}
|
||||
|
||||
async fn list(&self, prefix: Option<&Path>) -> Result<BoxStream<'_, Result<ObjectMeta>>> {
|
||||
self.primary.list(prefix).await
|
||||
}
|
||||
|
||||
async fn list_with_delimiter(&self, prefix: Option<&Path>) -> Result<ListResult> {
|
||||
self.primary.list_with_delimiter(prefix).await
|
||||
}
|
||||
|
||||
async fn copy(&self, from: &Path, to: &Path) -> Result<()> {
|
||||
if from.primary_only() {
|
||||
self.primary.copy(from, to).await
|
||||
} else {
|
||||
self.secondary.copy(from, to).await?;
|
||||
self.primary.copy(from, to).await?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
async fn copy_if_not_exists(&self, from: &Path, to: &Path) -> Result<()> {
|
||||
self.primary.copy_if_not_exists(from, to).await
|
||||
}
|
||||
}
|
||||
|
||||
struct MirroringUpload {
|
||||
secondary_stream: Pin<Box<dyn AsyncWrite + Unpin + Send>>,
|
||||
|
||||
primary_store: Arc<dyn ObjectStore>,
|
||||
secondary_store: Arc<dyn ObjectStore>,
|
||||
location: Path,
|
||||
|
||||
state: MirroringUploadShutdown,
|
||||
}
|
||||
|
||||
// The state goes from
|
||||
// None
|
||||
// -> (secondary)ShutingDown
|
||||
// -> (secondary)ShutdownDone
|
||||
// -> Uploading(to primary)
|
||||
// -> Done
|
||||
#[derive(Debug)]
|
||||
enum MirroringUploadShutdown {
|
||||
None,
|
||||
ShutingDown,
|
||||
ShutdownDone,
|
||||
Uploading(Pin<Box<JoinHandle<()>>>),
|
||||
Completed,
|
||||
}
|
||||
|
||||
impl MirroringUpload {
|
||||
pub fn new(
|
||||
secondary_stream: Pin<Box<dyn AsyncWrite + Unpin + Send>>,
|
||||
primary_store: Arc<dyn ObjectStore>,
|
||||
secondary_store: Arc<dyn ObjectStore>,
|
||||
location: Path,
|
||||
) -> Self {
|
||||
Self {
|
||||
secondary_stream,
|
||||
primary_store,
|
||||
secondary_store,
|
||||
location,
|
||||
state: MirroringUploadShutdown::None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl AsyncWrite for MirroringUpload {
|
||||
fn poll_write(
|
||||
self: Pin<&mut Self>,
|
||||
cx: &mut Context<'_>,
|
||||
buf: &[u8],
|
||||
) -> Poll<Result<usize, std::io::Error>> {
|
||||
if !matches!(self.state, MirroringUploadShutdown::None) {
|
||||
return Poll::Ready(Err(std::io::Error::new(
|
||||
std::io::ErrorKind::Other,
|
||||
"already shutdown",
|
||||
)));
|
||||
}
|
||||
// Write to secondary first
|
||||
let mut_self = self.get_mut();
|
||||
mut_self.secondary_stream.as_mut().poll_write(cx, buf)
|
||||
}
|
||||
|
||||
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), std::io::Error>> {
|
||||
if !matches!(self.state, MirroringUploadShutdown::None) {
|
||||
return Poll::Ready(Err(std::io::Error::new(
|
||||
std::io::ErrorKind::Other,
|
||||
"already shutdown",
|
||||
)));
|
||||
}
|
||||
|
||||
let mut_self = self.get_mut();
|
||||
mut_self.secondary_stream.as_mut().poll_flush(cx)
|
||||
}
|
||||
|
||||
fn poll_shutdown(
|
||||
self: Pin<&mut Self>,
|
||||
cx: &mut Context<'_>,
|
||||
) -> Poll<Result<(), std::io::Error>> {
|
||||
let mut_self = self.get_mut();
|
||||
|
||||
loop {
|
||||
// try to shutdown secondary first
|
||||
match &mut mut_self.state {
|
||||
MirroringUploadShutdown::None | MirroringUploadShutdown::ShutingDown => {
|
||||
match mut_self.secondary_stream.as_mut().poll_shutdown(cx) {
|
||||
Poll::Ready(Ok(())) => {
|
||||
mut_self.state = MirroringUploadShutdown::ShutdownDone;
|
||||
// don't return, no waker is setup
|
||||
}
|
||||
Poll::Ready(Err(e)) => return Poll::Ready(Err(e)),
|
||||
Poll::Pending => {
|
||||
mut_self.state = MirroringUploadShutdown::ShutingDown;
|
||||
return Poll::Pending;
|
||||
}
|
||||
}
|
||||
}
|
||||
MirroringUploadShutdown::ShutdownDone => {
|
||||
let primary_store = mut_self.primary_store.clone();
|
||||
let secondary_store = mut_self.secondary_store.clone();
|
||||
let location = mut_self.location.clone();
|
||||
|
||||
let upload_future =
|
||||
Box::pin(tokio::runtime::Handle::current().spawn(async move {
|
||||
let mut source =
|
||||
secondary_store.get(&location).await.unwrap().into_stream();
|
||||
let upload_stream = primary_store.put_multipart(&location).await;
|
||||
let (_, mut stream) = upload_stream.unwrap();
|
||||
|
||||
while let Some(buf) = source.next().await {
|
||||
let buf = buf.unwrap();
|
||||
stream.write_all(&buf).await.unwrap();
|
||||
}
|
||||
|
||||
stream.shutdown().await.unwrap();
|
||||
}));
|
||||
mut_self.state = MirroringUploadShutdown::Uploading(upload_future);
|
||||
// don't return, no waker is setup
|
||||
}
|
||||
MirroringUploadShutdown::Uploading(ref mut join_handle) => {
|
||||
match join_handle.poll_unpin(cx) {
|
||||
Poll::Ready(Ok(())) => {
|
||||
mut_self.state = MirroringUploadShutdown::Completed;
|
||||
return Poll::Ready(Ok(()));
|
||||
}
|
||||
Poll::Ready(Err(e)) => {
|
||||
mut_self.state = MirroringUploadShutdown::Completed;
|
||||
return Poll::Ready(Err(e.into()));
|
||||
}
|
||||
Poll::Pending => {
|
||||
return Poll::Pending;
|
||||
}
|
||||
}
|
||||
}
|
||||
MirroringUploadShutdown::Completed => {
|
||||
return Poll::Ready(Err(std::io::Error::new(
|
||||
std::io::ErrorKind::Other,
|
||||
"shutdown already completed",
|
||||
)))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct MirroringObjectStoreWrapper {
|
||||
secondary: Arc<dyn ObjectStore>,
|
||||
}
|
||||
|
||||
impl MirroringObjectStoreWrapper {
|
||||
pub fn new(secondary: Arc<dyn ObjectStore>) -> Self {
|
||||
Self { secondary }
|
||||
}
|
||||
}
|
||||
|
||||
impl WrappingObjectStore for MirroringObjectStoreWrapper {
|
||||
fn wrap(&self, primary: Arc<dyn ObjectStore>) -> Arc<dyn ObjectStore> {
|
||||
Arc::new(MirroringObjectStore {
|
||||
primary,
|
||||
secondary: self.secondary.clone(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// windows pathing can't be simply concatenated
|
||||
#[cfg(all(test, not(windows)))]
|
||||
mod test {
|
||||
use super::*;
|
||||
use crate::Database;
|
||||
use arrow_array::PrimitiveArray;
|
||||
use futures::TryStreamExt;
|
||||
use lance::{dataset::WriteParams, io::object_store::ObjectStoreParams};
|
||||
use lance_testing::datagen::{BatchGenerator, IncrementingInt32, RandomVector};
|
||||
use object_store::local::LocalFileSystem;
|
||||
use tempfile;
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_e2e() {
|
||||
let dir1 = tempfile::tempdir().unwrap().into_path();
|
||||
let dir2 = tempfile::tempdir().unwrap().into_path();
|
||||
|
||||
let secondary_store = LocalFileSystem::new_with_prefix(dir2.to_str().unwrap()).unwrap();
|
||||
let object_store_wrapper = Arc::new(MirroringObjectStoreWrapper {
|
||||
secondary: Arc::new(secondary_store),
|
||||
});
|
||||
|
||||
let db = Database::connect(dir1.to_str().unwrap()).await.unwrap();
|
||||
|
||||
let mut param = WriteParams::default();
|
||||
let mut store_params = ObjectStoreParams::default();
|
||||
store_params.object_store_wrapper = Some(object_store_wrapper);
|
||||
param.store_params = Some(store_params);
|
||||
|
||||
let mut datagen = BatchGenerator::new();
|
||||
datagen = datagen.col(Box::new(IncrementingInt32::default()));
|
||||
datagen = datagen.col(Box::new(RandomVector::default().named("vector".into())));
|
||||
|
||||
let res = db
|
||||
.create_table("test", datagen.batch(100), Some(param.clone()))
|
||||
.await;
|
||||
|
||||
// leave this here for easy debugging
|
||||
let t = res.unwrap();
|
||||
|
||||
assert_eq!(t.count_rows().await.unwrap(), 100);
|
||||
|
||||
let q = t
|
||||
.search(PrimitiveArray::from_iter_values(vec![0.1, 0.1, 0.1, 0.1]))
|
||||
.limit(10)
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let bateches = q.try_collect::<Vec<_>>().await.unwrap();
|
||||
assert_eq!(bateches.len(), 1);
|
||||
assert_eq!(bateches[0].num_rows(), 10);
|
||||
|
||||
use walkdir::WalkDir;
|
||||
|
||||
let primary_location = dir1.join("test.lance").canonicalize().unwrap();
|
||||
let secondary_location = dir2.join(primary_location.strip_prefix("/").unwrap());
|
||||
|
||||
let mut primary_iter = WalkDir::new(&primary_location).into_iter();
|
||||
let mut secondary_iter = WalkDir::new(&secondary_location).into_iter();
|
||||
|
||||
let mut primary_elem = primary_iter.next();
|
||||
let mut secondary_elem = secondary_iter.next();
|
||||
|
||||
loop {
|
||||
if primary_elem.is_none() && secondary_elem.is_none() {
|
||||
break;
|
||||
}
|
||||
// primary has more data then secondary, should not run out before secondary
|
||||
let primary_f = primary_elem.unwrap().unwrap();
|
||||
// hit manifest, skip, _versions contains all the manifest and should not exist on secondary
|
||||
let primary_raw_path = primary_f.file_name().to_str().unwrap();
|
||||
if primary_raw_path.contains("manifest") || primary_raw_path.contains("_versions") {
|
||||
primary_elem = primary_iter.next();
|
||||
continue;
|
||||
}
|
||||
let secondary_f = secondary_elem.unwrap().unwrap();
|
||||
assert_eq!(
|
||||
primary_f.path().strip_prefix(&primary_location),
|
||||
secondary_f.path().strip_prefix(&secondary_location)
|
||||
);
|
||||
|
||||
primary_elem = primary_iter.next();
|
||||
secondary_elem = secondary_iter.next();
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -16,8 +16,10 @@ pub mod data;
|
||||
pub mod database;
|
||||
pub mod error;
|
||||
pub mod index;
|
||||
pub mod io;
|
||||
pub mod query;
|
||||
pub mod table;
|
||||
pub mod utils;
|
||||
|
||||
pub use database::Database;
|
||||
pub use table::Table;
|
||||
|
||||
@@ -12,17 +12,22 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use chrono::Duration;
|
||||
use std::sync::Arc;
|
||||
|
||||
use arrow_array::{Float32Array, RecordBatchReader};
|
||||
use arrow_schema::SchemaRef;
|
||||
use lance::dataset::cleanup::RemovalStats;
|
||||
use lance::dataset::optimize::{compact_files, CompactionMetrics, CompactionOptions};
|
||||
use lance::dataset::{Dataset, WriteParams};
|
||||
use lance::index::IndexType;
|
||||
use lance::io::object_store::WrappingObjectStore;
|
||||
use std::path::Path;
|
||||
|
||||
use crate::error::{Error, Result};
|
||||
use crate::index::vector::VectorIndexBuilder;
|
||||
use crate::query::Query;
|
||||
use crate::utils::{PatchReadParam, PatchWriteParam};
|
||||
use crate::WriteMode;
|
||||
|
||||
pub use lance::dataset::ReadParams;
|
||||
@@ -35,6 +40,9 @@ pub struct Table {
|
||||
name: String,
|
||||
uri: String,
|
||||
dataset: Arc<Dataset>,
|
||||
|
||||
// the object store wrapper to use on write path
|
||||
store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
|
||||
}
|
||||
|
||||
impl std::fmt::Display for Table {
|
||||
@@ -56,12 +64,12 @@ impl Table {
|
||||
/// * A [Table] object.
|
||||
pub async fn open(uri: &str) -> Result<Self> {
|
||||
let name = Self::get_table_name(uri)?;
|
||||
Self::open_with_params(uri, &name, &ReadParams::default()).await
|
||||
Self::open_with_params(uri, &name, None, ReadParams::default()).await
|
||||
}
|
||||
|
||||
/// Open an Table with a given name.
|
||||
pub async fn open_with_name(uri: &str, name: &str) -> Result<Self> {
|
||||
Self::open_with_params(uri, name, &ReadParams::default()).await
|
||||
Self::open_with_params(uri, name, None, ReadParams::default()).await
|
||||
}
|
||||
|
||||
/// Opens an existing Table
|
||||
@@ -75,8 +83,18 @@ impl Table {
|
||||
/// # Returns
|
||||
///
|
||||
/// * A [Table] object.
|
||||
pub async fn open_with_params(uri: &str, name: &str, params: &ReadParams) -> Result<Self> {
|
||||
let dataset = Dataset::open_with_params(uri, params)
|
||||
pub async fn open_with_params(
|
||||
uri: &str,
|
||||
name: &str,
|
||||
write_store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
|
||||
params: ReadParams,
|
||||
) -> Result<Self> {
|
||||
// patch the params if we have a write store wrapper
|
||||
let params = match write_store_wrapper.clone() {
|
||||
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
|
||||
None => params,
|
||||
};
|
||||
let dataset = Dataset::open_with_params(uri, ¶ms)
|
||||
.await
|
||||
.map_err(|e| match e {
|
||||
lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
|
||||
@@ -90,6 +108,7 @@ impl Table {
|
||||
name: name.to_string(),
|
||||
uri: uri.to_string(),
|
||||
dataset: Arc::new(dataset),
|
||||
store_wrapper: write_store_wrapper,
|
||||
})
|
||||
}
|
||||
|
||||
@@ -97,20 +116,26 @@ impl Table {
|
||||
///
|
||||
pub async fn checkout(uri: &str, version: u64) -> Result<Self> {
|
||||
let name = Self::get_table_name(uri)?;
|
||||
Self::checkout_with_params(uri, &name, version, &ReadParams::default()).await
|
||||
Self::checkout_with_params(uri, &name, version, None, ReadParams::default()).await
|
||||
}
|
||||
|
||||
pub async fn checkout_with_name(uri: &str, name: &str, version: u64) -> Result<Self> {
|
||||
Self::checkout_with_params(uri, name, version, &ReadParams::default()).await
|
||||
Self::checkout_with_params(uri, name, version, None, ReadParams::default()).await
|
||||
}
|
||||
|
||||
pub async fn checkout_with_params(
|
||||
uri: &str,
|
||||
name: &str,
|
||||
version: u64,
|
||||
params: &ReadParams,
|
||||
write_store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
|
||||
params: ReadParams,
|
||||
) -> Result<Self> {
|
||||
let dataset = Dataset::checkout_with_params(uri, version, params)
|
||||
// patch the params if we have a write store wrapper
|
||||
let params = match write_store_wrapper.clone() {
|
||||
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
|
||||
None => params,
|
||||
};
|
||||
let dataset = Dataset::checkout_with_params(uri, version, ¶ms)
|
||||
.await
|
||||
.map_err(|e| match e {
|
||||
lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
|
||||
@@ -124,6 +149,7 @@ impl Table {
|
||||
name: name.to_string(),
|
||||
uri: uri.to_string(),
|
||||
dataset: Arc::new(dataset),
|
||||
store_wrapper: write_store_wrapper,
|
||||
})
|
||||
}
|
||||
|
||||
@@ -157,8 +183,15 @@ impl Table {
|
||||
uri: &str,
|
||||
name: &str,
|
||||
batches: impl RecordBatchReader + Send + 'static,
|
||||
write_store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
|
||||
params: Option<WriteParams>,
|
||||
) -> Result<Self> {
|
||||
// patch the params if we have a write store wrapper
|
||||
let params = match write_store_wrapper.clone() {
|
||||
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
|
||||
None => params,
|
||||
};
|
||||
|
||||
let dataset = Dataset::write(batches, uri, params)
|
||||
.await
|
||||
.map_err(|e| match e {
|
||||
@@ -173,6 +206,7 @@ impl Table {
|
||||
name: name.to_string(),
|
||||
uri: uri.to_string(),
|
||||
dataset: Arc::new(dataset),
|
||||
store_wrapper: write_store_wrapper,
|
||||
})
|
||||
}
|
||||
|
||||
@@ -191,7 +225,8 @@ impl Table {
|
||||
use lance::index::DatasetIndexExt;
|
||||
|
||||
let mut dataset = self.dataset.as_ref().clone();
|
||||
dataset.create_index(
|
||||
dataset
|
||||
.create_index(
|
||||
&[index_builder
|
||||
.get_column()
|
||||
.unwrap_or(VECTOR_COLUMN_NAME.to_string())
|
||||
@@ -220,12 +255,18 @@ impl Table {
|
||||
batches: impl RecordBatchReader + Send + 'static,
|
||||
params: Option<WriteParams>,
|
||||
) -> Result<()> {
|
||||
let params = params.unwrap_or(WriteParams {
|
||||
let params = Some(params.unwrap_or(WriteParams {
|
||||
mode: WriteMode::Append,
|
||||
..WriteParams::default()
|
||||
});
|
||||
}));
|
||||
|
||||
self.dataset = Arc::new(Dataset::write(batches, &self.uri, Some(params)).await?);
|
||||
// patch the params if we have a write store wrapper
|
||||
let params = match self.store_wrapper.clone() {
|
||||
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
|
||||
None => params,
|
||||
};
|
||||
|
||||
self.dataset = Arc::new(Dataset::write(batches, &self.uri, params).await?);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -267,6 +308,41 @@ impl Table {
|
||||
self.dataset = Arc::new(dataset);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Remove old versions of the dataset from disk.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `older_than` - The duration of time to keep versions of the dataset.
|
||||
/// * `delete_unverified` - Because they may be part of an in-progress
|
||||
/// transaction, files newer than 7 days old are not deleted by default.
|
||||
/// If you are sure that there are no in-progress transactions, then you
|
||||
/// can set this to True to delete all files older than `older_than`.
|
||||
///
|
||||
/// This calls into [lance::dataset::Dataset::cleanup_old_versions] and
|
||||
/// returns the result.
|
||||
pub async fn cleanup_old_versions(
|
||||
&self,
|
||||
older_than: Duration,
|
||||
delete_unverified: Option<bool>,
|
||||
) -> Result<RemovalStats> {
|
||||
Ok(self
|
||||
.dataset
|
||||
.cleanup_old_versions(older_than, delete_unverified)
|
||||
.await?)
|
||||
}
|
||||
|
||||
/// Compact files in the dataset.
|
||||
///
|
||||
/// This can be run after making several small appends to optimize the table
|
||||
/// for faster reads.
|
||||
///
|
||||
/// This calls into [lance::dataset::optimize::compact_files].
|
||||
pub async fn compact_files(&mut self, options: CompactionOptions) -> Result<CompactionMetrics> {
|
||||
let mut dataset = self.dataset.as_ref().clone();
|
||||
let metrics = compact_files(&mut dataset, options).await?;
|
||||
self.dataset = Arc::new(dataset);
|
||||
Ok(metrics)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -329,10 +405,12 @@ mod tests {
|
||||
|
||||
let batches = make_test_batches();
|
||||
let _ = batches.schema().clone();
|
||||
Table::create(&uri, "test", batches, None).await.unwrap();
|
||||
Table::create(&uri, "test", batches, None, None)
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let batches = make_test_batches();
|
||||
let result = Table::create(&uri, "test", batches, None).await;
|
||||
let result = Table::create(&uri, "test", batches, None, None).await;
|
||||
assert!(matches!(
|
||||
result.unwrap_err(),
|
||||
Error::TableAlreadyExists { .. }
|
||||
@@ -346,7 +424,9 @@ mod tests {
|
||||
|
||||
let batches = make_test_batches();
|
||||
let schema = batches.schema().clone();
|
||||
let mut table = Table::create(&uri, "test", batches, None).await.unwrap();
|
||||
let mut table = Table::create(&uri, "test", batches, None, None)
|
||||
.await
|
||||
.unwrap();
|
||||
assert_eq!(table.count_rows().await.unwrap(), 10);
|
||||
|
||||
let new_batches = RecordBatchIterator::new(
|
||||
@@ -372,7 +452,9 @@ mod tests {
|
||||
|
||||
let batches = make_test_batches();
|
||||
let schema = batches.schema().clone();
|
||||
let mut table = Table::create(uri, "test", batches, None).await.unwrap();
|
||||
let mut table = Table::create(uri, "test", batches, None, None)
|
||||
.await
|
||||
.unwrap();
|
||||
assert_eq!(table.count_rows().await.unwrap(), 10);
|
||||
|
||||
let new_batches = RecordBatchIterator::new(
|
||||
@@ -455,7 +537,9 @@ mod tests {
|
||||
..Default::default()
|
||||
};
|
||||
assert!(!wrapper.called());
|
||||
let _ = Table::open_with_params(uri, "test", ¶m).await.unwrap();
|
||||
let _ = Table::open_with_params(uri, "test", None, param)
|
||||
.await
|
||||
.unwrap();
|
||||
assert!(wrapper.called());
|
||||
}
|
||||
|
||||
@@ -507,7 +591,9 @@ mod tests {
|
||||
schema,
|
||||
);
|
||||
|
||||
let mut table = Table::create(uri, "test", batches, None).await.unwrap();
|
||||
let mut table = Table::create(uri, "test", batches, None, None)
|
||||
.await
|
||||
.unwrap();
|
||||
let mut i = IvfPQIndexBuilder::new();
|
||||
|
||||
let index_builder = i
|
||||
|
||||
67
rust/vectordb/src/utils.rs
Normal file
67
rust/vectordb/src/utils.rs
Normal file
@@ -0,0 +1,67 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use lance::{
|
||||
dataset::{ReadParams, WriteParams},
|
||||
io::object_store::{ObjectStoreParams, WrappingObjectStore},
|
||||
};
|
||||
|
||||
use crate::error::{Error, Result};
|
||||
|
||||
pub trait PatchStoreParam {
|
||||
fn patch_with_store_wrapper(
|
||||
self,
|
||||
wrapper: Arc<dyn WrappingObjectStore>,
|
||||
) -> Result<Option<ObjectStoreParams>>;
|
||||
}
|
||||
|
||||
impl PatchStoreParam for Option<ObjectStoreParams> {
|
||||
fn patch_with_store_wrapper(
|
||||
self,
|
||||
wrapper: Arc<dyn WrappingObjectStore>,
|
||||
) -> Result<Option<ObjectStoreParams>> {
|
||||
let mut params = self.unwrap_or_default();
|
||||
if params.object_store_wrapper.is_some() {
|
||||
return Err(Error::Lance {
|
||||
message: "can not patch param because object store is already set".into(),
|
||||
});
|
||||
}
|
||||
params.object_store_wrapper = Some(wrapper);
|
||||
|
||||
Ok(Some(params))
|
||||
}
|
||||
}
|
||||
|
||||
pub trait PatchWriteParam {
|
||||
fn patch_with_store_wrapper(
|
||||
self,
|
||||
wrapper: Arc<dyn WrappingObjectStore>,
|
||||
) -> Result<Option<WriteParams>>;
|
||||
}
|
||||
|
||||
impl PatchWriteParam for Option<WriteParams> {
|
||||
fn patch_with_store_wrapper(
|
||||
self,
|
||||
wrapper: Arc<dyn WrappingObjectStore>,
|
||||
) -> Result<Option<WriteParams>> {
|
||||
let mut params = self.unwrap_or_default();
|
||||
params.store_params = params.store_params.patch_with_store_wrapper(wrapper)?;
|
||||
Ok(Some(params))
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: we have some API inconsistency here.
|
||||
// WriteParam is found in the form of Option<WriteParam> and ReadParam is found in the form of ReadParam
|
||||
|
||||
pub trait PatchReadParam {
|
||||
fn patch_with_store_wrapper(self, wrapper: Arc<dyn WrappingObjectStore>) -> Result<ReadParams>;
|
||||
}
|
||||
|
||||
impl PatchReadParam for ReadParams {
|
||||
fn patch_with_store_wrapper(
|
||||
mut self,
|
||||
wrapper: Arc<dyn WrappingObjectStore>,
|
||||
) -> Result<ReadParams> {
|
||||
self.store_options = self.store_options.patch_with_store_wrapper(wrapper)?;
|
||||
Ok(self)
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user