Compare commits

...

47 Commits

Author SHA1 Message Date
Lance Release
38321fa226 [python] Bump version: 0.3.3 → 0.3.4 2023-11-19 00:24:01 +00:00
Lance Release
22749c3fa2 Updating package-lock.json 2023-11-19 00:04:08 +00:00
Lance Release
123a49df77 Bump version: 0.3.7 → 0.3.8 2023-11-19 00:03:58 +00:00
Will Jones
a57aa4b142 chore: upgrade lance to v0.8.17 (#656)
Readying for the next Lance release.
2023-11-18 15:57:23 -08:00
Rok Mihevc
d8e3e54226 feat(python): expose index cache size (#655)
This is to enable https://github.com/lancedb/lancedb/issues/641.
Should be merged after https://github.com/lancedb/lance/pull/1587 is
released.
2023-11-18 14:17:40 -08:00
Ayush Chaurasia
ccfdf4853a [Docs]: Add Instructor embeddings and rate limit handler docs (#651) 2023-11-18 06:08:26 +05:30
Ayush Chaurasia
87e5d86e90 [Docs][SEO] Add sitemap and robots.txt (#645)
Sitemap improves SEO by ranking pages and tracking updates.
2023-11-18 06:08:13 +05:30
Aidan
1cf8a3e4e0 SaaS create_index API (#649) 2023-11-15 19:12:52 -05:00
Lance Release
5372843281 Updating package-lock.json 2023-11-15 03:15:10 +00:00
Lance Release
54677b8f0b Updating package-lock.json 2023-11-15 02:42:38 +00:00
Lance Release
ebcf9bf6ae Bump version: 0.3.6 → 0.3.7 2023-11-15 02:42:25 +00:00
Bert
797514bcbf fix: node remote implement table.countRows (#648) 2023-11-13 17:43:20 -05:00
Rok Mihevc
1c872ce501 feat: add RemoteTable.version in Python (#644)
Please note: this is not tested as we don't have a server here and
testing against a mock object wouldn't be that interesting.
2023-11-13 21:43:48 +01:00
Bert
479f471c14 fix: node send db header for GET requests (#646) 2023-11-11 16:33:25 -05:00
Ayush Chaurasia
ae0d2f2599 fix: Pydantic 1.x compat for weak_lru caching in embeddings API (#643)
Colab has pydantic 1.x by default and pydantic 1.x BaseModel objects
don't support weakref creation by default that we use to cache embedding
models
https://github.com/lancedb/lancedb/blob/main/python/lancedb/embeddings/utils.py#L206
. It needs to be added to slot.
2023-11-10 15:02:38 +05:30
Ayush Chaurasia
1e8678f11a Multi-task instructor model with quantization support & weak_lru cache for embedding function models (#612)
resolves #608
2023-11-09 12:34:18 +05:30
QianZhu
662968559d fix saas open_table and table_names issues (#640)
- added check whether a table exists in SaaS open_table
- remove prefilter not supported warning in SaaS search
- fixed issues for SaaS table_names
2023-11-07 17:34:38 -08:00
Rob Meng
9d895801f2 upgrade lance to 0.8.14 (#636)
upgrade lance
2023-11-07 19:01:29 -05:00
Rob Meng
80613a40fd skip missing file on mirrored dir when deleting (#635)
mirrored store is not garueeteed to have all the files. Ignore the ones
that doesn't exist.
2023-11-07 12:33:32 -05:00
Lei Xu
d43ef7f11e chore: apple silicon runner (#633)
Close #632
2023-11-06 21:04:32 -08:00
Lei Xu
554e068917 chore: improve create_table API consistency between local and remote SDK (#627) 2023-11-03 13:15:11 -07:00
Bert
567734dd6e fix: node remote connection handles non http errors (#624)
https://github.com/lancedb/lancedb/issues/623

Fixes issue trying to print response status when using remote client. If
the error is not an HTTP error (e.g. dns/network failure), there won't
be a response.
2023-11-03 10:24:56 -04:00
Ayush Chaurasia
1589499f89 Exponential standoff retry support for handling rate limited embedding functions (#614)
Users ingesting data using rate limited apis don't need to manually make
the process sleep for counter rate limits
resolves #579
2023-11-02 19:20:10 +05:30
Lance Release
682e95fa83 Updating package-lock.json 2023-11-01 22:20:49 +00:00
Lance Release
1ad5e7f2f0 Updating package-lock.json 2023-11-01 21:16:20 +00:00
Lance Release
ddb3ef4ce5 Bump version: 0.3.5 → 0.3.6 2023-11-01 21:16:06 +00:00
Lance Release
ef20b2a138 [python] Bump version: 0.3.2 → 0.3.3 2023-11-01 21:15:55 +00:00
Lei Xu
2e0f251bfd chore: bump lance to 8.10 (#622) 2023-11-01 14:14:38 -07:00
Ayush Chaurasia
2cb91e818d Disable posthog on docs & reduce sentry trace factor (#607)
- posthog charges per event and docs events are registered very
frequently. We can keep tracking them on GA
- Reduced sentry trace factor
2023-11-02 01:13:16 +05:30
Chang She
2835c76336 doc: node sdk now supports windows (#616) 2023-11-01 10:04:18 -07:00
Bert
8068a2bbc3 ci: cancel in progress runs on new push (#620) 2023-11-01 11:33:48 -04:00
Bert
24111d543a fix!: sort table names (#619)
https://github.com/lancedb/lance/issues/1385
2023-11-01 10:50:09 -04:00
QianZhu
7eec2b8f9a Qian/query option doc (#615)
- API documentation improvement for queries (table.search)
- a small bug fix for the remote API on create_table

![image](https://github.com/lancedb/lancedb/assets/1305083/712e9bd3-deb8-4d81-8cd0-d8e98ef68f4e)

![image](https://github.com/lancedb/lancedb/assets/1305083/ba22125a-8c36-4e34-a07f-e39f0136e62c)
2023-10-31 19:50:05 -07:00
Will Jones
b2b70ea399 increment pylance (#618) 2023-10-31 18:07:03 -07:00
Bert
e50a3c1783 added api docs for prefilter flag (#617)
Added the prefilter flag argument to the `LanceQueryBuilder.where`.

This should make it display here:

https://lancedb.github.io/lancedb/python/python/#lancedb.query.LanceQueryBuilder.select

And also in intellisense like this:
<img width="848" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/e0c53f4f-96bc-411b-9159-680a6c4d0070">

Also adds some improved documentation about the `where` argument to this
method.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-10-31 16:39:32 -04:00
Weston Pace
b517134309 feat: allow prefiltering with index (#610)
Support for prefiltering with an index was added in lance version 0.8.7.
We can remove the lancedb check that prevents this. Closes #261
2023-10-31 13:11:03 -07:00
Lei Xu
6fb539b5bf doc: add doc to use GPU for indexing (#611) 2023-10-30 15:25:00 -07:00
Lance Release
f37fe120fd Updating package-lock.json 2023-10-26 22:30:16 +00:00
Lance Release
2e115acb9a Updating package-lock.json 2023-10-26 21:48:01 +00:00
Lance Release
27a638362d Bump version: 0.3.4 → 0.3.5 2023-10-26 21:47:44 +00:00
Bert
22a6695d7a fix conv version (#605) 2023-10-26 17:44:11 -04:00
Lance Release
57eff82ee7 Updating package-lock.json 2023-10-26 21:03:07 +00:00
Lance Release
7732f7d41c Bump version: 0.3.3 → 0.3.4 2023-10-26 21:02:52 +00:00
Bert
5ca98c326f feat: added dataset stats api to node (#604) 2023-10-26 17:00:48 -04:00
Bert
b55db397eb feat: added data stats apis (#596) 2023-10-26 13:10:17 -04:00
Rob Meng
c04d72ac8a expose remap index api (#603)
expose index remap options in `compact_files`
2023-10-25 22:10:37 -04:00
Rob Meng
28b02fb72a feat: expose optimize index api (#602)
expose `optimize_index` api.
2023-10-25 19:40:23 -04:00
53 changed files with 1331 additions and 299 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.3
current_version = 0.3.8
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

View File

@@ -11,6 +11,10 @@ on:
- .github/workflows/node.yml
- docker-compose.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.

View File

@@ -38,7 +38,7 @@ jobs:
node/vectordb-*.tgz
node-macos:
runs-on: macos-12
runs-on: macos-13
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:

View File

@@ -8,6 +8,11 @@ on:
paths:
- python/**
- .github/workflows/python.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
linux:
timeout-minutes: 30
@@ -32,18 +37,19 @@ jobs:
run: |
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
pip install pytest pytest-mock ruff
- name: Lint
run: ruff format --check .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
mac:
timeout-minutes: 30
runs-on: "macos-12"
strategy:
matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ]
runs-on: "${{ matrix.mac-runner }}"
defaults:
run:
shell: bash
@@ -62,8 +68,6 @@ jobs:
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black
- name: Black
run: black --check --diff --no-color --quiet .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
pydantic1x:

View File

@@ -10,6 +10,10 @@ on:
- rust/**
- .github/workflows/rust.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
@@ -44,8 +48,11 @@ jobs:
- name: Run tests
run: cargo test --all-features
macos:
runs-on: macos-12
timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ]
runs-on: "${{ matrix.mac-runner }}"
defaults:
run:
shell: bash

View File

@@ -5,9 +5,10 @@ exclude = ["python"]
resolver = "2"
[workspace.dependencies]
lance = { "version" = "=0.8.7", "features" = ["dynamodb"] }
lance-linalg = { "version" = "=0.8.7" }
lance-testing = { "version" = "=0.8.7" }
lance = { "version" = "=0.8.17", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.8.17" }
lance-linalg = { "version" = "=0.8.17" }
lance-testing = { "version" = "=0.8.17" }
# Note that this one does not include pyarrow
arrow = { version = "47.0.0", optional = false }
arrow-array = "47.0"
@@ -19,7 +20,7 @@ arrow-arith = "47.0"
arrow-cast = "47.0"
chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits"
"num-traits",
] }
log = "0.4"
object_store = "0.7.1"

View File

@@ -1,4 +1,5 @@
site_name: LanceDB Docs
site_url: https://lancedb.github.io/lancedb/
repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb
@@ -150,8 +151,6 @@ nav:
extra_css:
- styles/global.css
extra_javascript:
- scripts/posthog.js
extra:
analytics:

View File

@@ -71,9 +71,41 @@ a single PQ code.
### Use GPU to build vector index
Lance Python SDK has experimental GPU support for creating IVF index.
Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being installed.
You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to `"cuda"`` to enable GPU training.
- **accelerator**: Specify to ``cuda`` or ``mps`` (on Apple Silicon) to enable GPU training.
=== "Linux"
<!-- skip-test -->
``` { .python .copy }
# Create index using CUDA on Nvidia GPUs.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="cuda"
)
```
=== "Macos"
<!-- skip-test -->
```python
# Create index using MPS on Apple Silicon.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="mps"
)
```
Trouble shootings:
If you see ``AssertionError: Torch not compiled with CUDA enabled``, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
## Querying an ANN Index

View File

@@ -1,7 +1,9 @@
There are various Embedding functions available out of the box with lancedb. We're working on supporting other popular embedding APIs.
## Text Embedding Functions
Here are the text embedding functions registered by default
Here are the text embedding functions registered by default.
Embedding functions have inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential standoff.
Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the deafult value of 7.
### Sentence Transformers
Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values:
@@ -66,6 +68,56 @@ actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### Instructor Embeddings
Instructor is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) by simply providing the task instruction, without any finetuning
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc.
More information about the model can be found here - https://github.com/xlang-ai/instructor-embedding
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```
## Multi-modal embedding functions
Multi-modal embedding functions allow you query your table using both images and text.

View File

@@ -57,6 +57,19 @@ query_image = Image.open(p)
table.search(query_image)
```
### Rate limit Handling
`EmbeddingFunction` class wraps the calls for source and query embedding generation inside a rate limit handler that retries the requests with exponential backoff after successive failures. By default the maximum retires is set to 7. You can tune it by setting it to a different number or disable it by setting it to 0.
Example
----
```python
clip = registry.get("open-clip").create() # Defaults to 7 max retries
clip = registry.get("open-clip").create(max_retries=10) # Increase max retries to 10
clip = registry.get("open-clip").create(max_retries=0) # Retries disabled
````
NOTE:
Embedding functions can also fail due to other errors that have nothing to do with rate limits. This is why the error is also logged.
### A little fun with PyDantic
LanceDB is integrated with PyDantic. Infact we've used the integration in the above example to define the schema. It is also being used behing the scene by the embdding function API to ingest useful information as table metadata.

View File

@@ -22,8 +22,6 @@ pip install lancedb
::: lancedb.query.LanceQueryBuilder
::: lancedb.query.LanceFtsQueryBuilder
## Embeddings
::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
@@ -56,7 +54,7 @@ pip install lancedb
## Utilities
::: lancedb.vector
::: lancedb.schema.vector
## Integrations

1
docs/src/robots.txt Normal file
View File

@@ -0,0 +1 @@
User-agent: *

View File

@@ -18,20 +18,31 @@ python_file = ".py"
python_folder = "python"
files = glob.glob(glob_string, recursive=True)
excluded_files = [f for excluded_glob in excluded_globs for f in glob.glob(excluded_glob, recursive=True)]
excluded_files = [
f
for excluded_glob in excluded_globs
for f in glob.glob(excluded_glob, recursive=True)
]
def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
in_code_block = False
# Python code has strict indentation
strip_length = 0
skip_test = False
for line in lines:
if "skip-test" in line:
skip_test = True
if line.strip().startswith(prefix + python_prefix):
in_code_block = True
strip_length = len(line) - len(line.lstrip())
elif in_code_block and line.strip().startswith(suffix):
in_code_block = False
if not skip_test:
yield "\n"
skip_test = False
elif in_code_block:
if not skip_test:
yield line[strip_length:]
for file in filter(lambda file: file not in excluded_files, files):
@@ -39,7 +50,12 @@ for file in filter(lambda file: file not in excluded_files, files):
lines = list(yield_lines(iter(f), "```", "```"))
if len(lines) > 0:
out_path = Path(python_folder) / Path(file).name.strip(".md") / (Path(file).name.strip(".md") + python_file)
print(lines)
out_path = (
Path(python_folder)
/ Path(file).name.strip(".md")
/ (Path(file).name.strip(".md") + python_file)
)
print(out_path)
out_path.parent.mkdir(exist_ok=True, parents=True)
with open(out_path, "w") as out:

View File

@@ -10,7 +10,7 @@ npm install vectordb
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
yet support musl-based Linux (such as Alpine Linux).
## Usage

104
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.3.3",
"version": "0.3.8",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.3.3",
"version": "0.3.8",
"cpu": [
"x64",
"arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.3",
"@lancedb/vectordb-darwin-x64": "0.3.3",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.3",
"@lancedb/vectordb-linux-x64-gnu": "0.3.3",
"@lancedb/vectordb-win32-x64-msvc": "0.3.3"
"@lancedb/vectordb-darwin-arm64": "0.3.8",
"@lancedb/vectordb-darwin-x64": "0.3.8",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.8",
"@lancedb/vectordb-linux-x64-gnu": "0.3.8",
"@lancedb/vectordb-win32-x64-msvc": "0.3.8"
}
},
"node_modules/@apache-arrow/ts": {
@@ -316,66 +316,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.3.tgz",
"integrity": "sha512-nvyj7xNX2/wb/PH5TjyhLR/NQ1jVuoBw2B5UaSg7qf8Tnm5SSXWQ7F25RVKcKwh72fz1qB+CWW24ftZnRzbT/Q==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.3.tgz",
"integrity": "sha512-7CW+nILyPHp6cua0Rl0xaTDWw/vajEn/jCsEjFYgDmE+rtf5Z5Fum41FxR9C2TtIAvUK+nWb5mkYeOLqU6vRvg==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.3.tgz",
"integrity": "sha512-MmhwbacKxZPkLwwOqysVY8mUb8lFoyFIPlYhSLV4xS1C8X4HWALljIul1qMl1RYudp9Uc3PsOzRexl+OvCGfUw==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.3.tgz",
"integrity": "sha512-OrNlsKi/QPw59Po040oRKn8IuqFEk4upc/4FaFKqVkcmQjjZrMg5Kgy9ZfWIhHdAnWXXggZZIPArpt0X1B0ceA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.3.tgz",
"integrity": "sha512-lIT0A7a6eqX51IfGyhECtpXXgsr//kgbd+HZbcCdPy2GMmNezSch/7V22zExDSpF32hX8WfgcTLYCVWVilggDQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
@@ -4868,36 +4808,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"@lancedb/vectordb-darwin-arm64": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.3.tgz",
"integrity": "sha512-nvyj7xNX2/wb/PH5TjyhLR/NQ1jVuoBw2B5UaSg7qf8Tnm5SSXWQ7F25RVKcKwh72fz1qB+CWW24ftZnRzbT/Q==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.3.tgz",
"integrity": "sha512-7CW+nILyPHp6cua0Rl0xaTDWw/vajEn/jCsEjFYgDmE+rtf5Z5Fum41FxR9C2TtIAvUK+nWb5mkYeOLqU6vRvg==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.3.tgz",
"integrity": "sha512-MmhwbacKxZPkLwwOqysVY8mUb8lFoyFIPlYhSLV4xS1C8X4HWALljIul1qMl1RYudp9Uc3PsOzRexl+OvCGfUw==",
"optional": true
},
"@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.3.tgz",
"integrity": "sha512-OrNlsKi/QPw59Po040oRKn8IuqFEk4upc/4FaFKqVkcmQjjZrMg5Kgy9ZfWIhHdAnWXXggZZIPArpt0X1B0ceA==",
"optional": true
},
"@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.3.tgz",
"integrity": "sha512-lIT0A7a6eqX51IfGyhECtpXXgsr//kgbd+HZbcCdPy2GMmNezSch/7V22zExDSpF32hX8WfgcTLYCVWVilggDQ==",
"optional": true
},
"@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.3.3",
"version": "0.3.8",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -81,10 +81,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.3",
"@lancedb/vectordb-darwin-x64": "0.3.3",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.3",
"@lancedb/vectordb-linux-x64-gnu": "0.3.3",
"@lancedb/vectordb-win32-x64-msvc": "0.3.3"
"@lancedb/vectordb-darwin-arm64": "0.3.8",
"@lancedb/vectordb-darwin-x64": "0.3.8",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.8",
"@lancedb/vectordb-linux-x64-gnu": "0.3.8",
"@lancedb/vectordb-win32-x64-msvc": "0.3.8"
}
}

View File

@@ -23,7 +23,7 @@ import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles } = require('../native.js')
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js')
export { Query }
export type { EmbeddingFunction }
@@ -260,6 +260,27 @@ export interface Table<T = number[]> {
* ```
*/
delete: (filter: string) => Promise<void>
/**
* List the indicies on this table.
*/
listIndices: () => Promise<VectorIndex[]>
/**
* Get statistics about an index.
*/
indexStats: (indexUuid: string) => Promise<IndexStats>
}
export interface VectorIndex {
columns: string[]
name: string
uuid: string
}
export interface IndexStats {
numIndexedRows: number | null
numUnindexedRows: number | null
}
/**
@@ -502,6 +523,14 @@ export class LocalTable<T = number[]> implements Table<T> {
return res.metrics
})
}
async listIndices (): Promise<VectorIndex[]> {
return tableListIndices.call(this._tbl)
}
async indexStats (indexUuid: string): Promise<IndexStats> {
return tableIndexStats.call(this._tbl, indexUuid)
}
}
export interface CleanupStats {

View File

@@ -63,6 +63,9 @@ export class HttpLancedbClient {
}
).catch((err) => {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
if (response.status !== 200) {
@@ -86,13 +89,17 @@ export class HttpLancedbClient {
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey()
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
params,
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
if (response.status !== 200) {
@@ -128,6 +135,9 @@ export class HttpLancedbClient {
}
).catch((err) => {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
if (response.status !== 200) {

View File

@@ -14,7 +14,9 @@
import {
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
type ConnectionOptions, type CreateTableOptions, type WriteOptions
type ConnectionOptions, type CreateTableOptions, type VectorIndex,
type WriteOptions,
type IndexStats
} from '../index'
import { Query } from '../query'
@@ -235,10 +237,28 @@ export class RemoteTable<T = number[]> implements Table<T> {
}
async countRows (): Promise<number> {
throw new Error('Not implemented')
const result = await this._client.post(`/v1/table/${this._name}/describe/`)
return result.data?.stats?.num_rows
}
async delete (filter: string): Promise<void> {
await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
}
async listIndices (): Promise<VectorIndex[]> {
const results = await this._client.post(`/v1/table/${this._name}/index/list/`)
return results.data.indexes?.map((index: any) => ({
columns: index.columns,
name: index.index_name,
uuid: index.index_uuid
}))
}
async indexStats (indexUuid: string): Promise<IndexStats> {
const results = await this._client.post(`/v1/table/${this._name}/index/${indexUuid}/stats/`)
return {
numIndexedRows: results.data.num_indexed_rows,
numUnindexedRows: results.data.num_unindexed_rows
}
}
}

View File

@@ -282,7 +282,8 @@ describe('LanceDB client', function () {
)
const table = await con.createTable({ name: 'vectors', schema })
await table.add([{ vector: Array(128).fill(0.1) }])
await table.delete('vector IS NOT NULL')
// https://github.com/lancedb/lance/issues/1635
await table.delete('true')
const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result)
})
@@ -328,6 +329,24 @@ describe('LanceDB client', function () {
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
})
it('should be able to list index and stats', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
const indices = await table.listIndices()
expect(indices).to.have.lengthOf(1)
expect(indices[0].name).to.equal('vector_idx')
expect(indices[0].uuid).to.not.be.equal(undefined)
expect(indices[0].columns).to.have.lengthOf(1)
expect(indices[0].columns[0]).to.equal('vector')
const stats = await table.indexStats(indices[0].uuid)
expect(stats.numIndexedRows).to.equal(300)
expect(stats.numUnindexedRows).to.equal(0)
}).timeout(50_000)
})
describe('when using a custom embedding function', function () {
@@ -378,6 +397,40 @@ describe('LanceDB client', function () {
})
})
describe('Remote LanceDB client', function () {
describe('when the server is not reachable', function () {
it('produces a network error', async function () {
const con = await lancedb.connect({
uri: 'db://test-1234',
region: 'asdfasfasfdf',
apiKey: 'some-api-key'
})
// GET
try {
await con.tableNames()
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
// POST
try {
await con.createTable({ name: 'vectors', schema: new Schema([]) })
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
// Search
const table = await con.openTable('vectors')
try {
await table.search([0.1, 0.3]).execute()
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
})
})
})
describe('Query object', function () {
it('sets custom parameters', async function () {
const query = new Query([0.1, 0.3])

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.2
current_version = 0.3.4
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -16,10 +16,11 @@ from typing import Optional
__version__ = importlib.metadata.version("lancedb")
from .db import URI, DBConnection, LanceDBConnection
from .common import URI
from .db import DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection
from .schema import vector
from .utils import sentry_log
from .schema import vector # noqa: F401
from .utils import sentry_log # noqa: F401
def connect(

View File

@@ -1,4 +1,6 @@
import os
import time
from typing import Any
import numpy as np
import pytest
@@ -38,3 +40,26 @@ class MockTextEmbeddingFunction(TextEmbeddingFunction):
def ndims(self):
return 10
class RateLimitedAPI:
rate_limit = 0.1 # 1 request per 0.1 second
last_request_time = 0
@staticmethod
def make_request():
current_time = time.time()
if current_time - RateLimitedAPI.last_request_time < RateLimitedAPI.rate_limit:
raise Exception("Rate limit exceeded. Please try again later.")
# Simulate a successful request
RateLimitedAPI.last_request_time = current_time
return "Request successful"
@registry.register("test-rate-limited")
class MockRateLimitedEmbeddingFunction(MockTextEmbeddingFunction):
def generate_embeddings(self, texts):
RateLimitedAPI.make_request()
return [self._compute_one_embedding(row) for row in texts]

View File

@@ -84,7 +84,9 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
context windows that don't cross document boundaries. In this case, we can
pass ``document_id`` as the group by.
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_pandas()
>>> (contextualize(data)
... .window(4).stride(2).text_col('token').groupby('document_id')
... .to_pandas())
token document_id
0 The quick brown fox 1
2 brown fox jumped over 1
@@ -92,18 +94,24 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
6 the lazy dog 1
9 I love sandwiches 2
``min_window_size`` determines the minimum size of the context windows that are generated
This can be used to trim the last few context windows which have size less than
``min_window_size``. By default context windows of size 1 are skipped.
``min_window_size`` determines the minimum size of the context windows
that are generated.This can be used to trim the last few context windows
which have size less than ``min_window_size``.
By default context windows of size 1 are skipped.
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_pandas()
>>> (contextualize(data)
... .window(6).stride(3).text_col('token').groupby('document_id')
... .to_pandas())
token document_id
0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1
6 the lazy dog 1
9 I love sandwiches 2
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_pandas()
>>> (contextualize(data)
... .window(6).stride(3).min_window_size(4).text_col('token')
... .groupby('document_id')
... .to_pandas())
token document_id
0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1
@@ -113,7 +121,9 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
class Contextualizer:
"""Create context windows from a DataFrame. See [lancedb.context.contextualize][]."""
"""Create context windows from a DataFrame.
See [lancedb.context.contextualize][].
"""
def __init__(self, raw_df):
self._text_col = None
@@ -183,7 +193,7 @@ class Contextualizer:
deprecated_in="0.3.1",
removed_in="0.4.0",
current_version=__version__,
details="Use the bar function instead",
details="Use to_pandas() instead",
)
def to_df(self) -> "pd.DataFrame":
return self.to_pandas()

View File

@@ -14,26 +14,39 @@
from __future__ import annotations
import os
from abc import ABC, abstractmethod
from abc import abstractmethod
from pathlib import Path
from typing import List, Optional, Union
from typing import TYPE_CHECKING, Iterable, List, Optional, Union
import pyarrow as pa
from overrides import EnforceOverrides, override
from pyarrow import fs
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme
if TYPE_CHECKING:
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
class DBConnection(ABC):
class DBConnection(EnforceOverrides):
"""An active LanceDB connection interface."""
@abstractmethod
def table_names(self) -> list[str]:
"""List all table names in the database."""
def table_names(
self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""List all table in this database
Parameters
----------
page_token: str, optional
The token to use for pagination. If not present, start from the beginning.
limit: int, default 10
The size of the page to return.
"""
pass
@abstractmethod
@@ -45,6 +58,7 @@ class DBConnection(ABC):
mode: str = "create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
@@ -52,12 +66,24 @@ class DBConnection(ABC):
----------
name: str
The name of the table.
data: list, tuple, dict, pd.DataFrame; optional
The data to initialize the table. User must provide at least one of `data` or `schema`.
schema: pyarrow.Schema or LanceModel; optional
The schema of the table.
data: The data to initialize the table, *optional*
User must provide at least one of `data` or `schema`.
Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
schema: The schema of the table, *optional*
Acceptable types are:
- pyarrow.Schema
- [LanceModel][lancedb.pydantic.LanceModel]
mode: str; default "create"
The mode to use when creating the table. Can be either "create" or "overwrite".
The mode to use when creating the table.
Can be either "create" or "overwrite".
By default, if the table already exists, an exception is raised.
If you want to overwrite the table, use mode="overwrite".
on_bad_vectors: str, default "error"
@@ -150,7 +176,8 @@ class DBConnection(ABC):
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]], pa.list_(pa.float32(), 2)),
... pa.array([[3.1, 4.1], [5.9, 26.5]],
... pa.list_(pa.float32(), 2)),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
@@ -249,12 +276,15 @@ class LanceDBConnection(DBConnection):
def uri(self) -> str:
return self._uri
def table_names(self) -> list[str]:
"""Get the names of all tables in the database.
@override
def table_names(
self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""Get the names of all tables in the database. The names are sorted.
Returns
-------
list of str
Iterator of str.
A list of table names.
"""
try:
@@ -274,6 +304,7 @@ class LanceDBConnection(DBConnection):
for file_info in paths
if file_info.extension == "lance"
]
tables.sort()
return tables
def __len__(self) -> int:
@@ -282,6 +313,7 @@ class LanceDBConnection(DBConnection):
def __contains__(self, name: str) -> bool:
return name in self.table_names()
@override
def create_table(
self,
name: str,
@@ -313,6 +345,7 @@ class LanceDBConnection(DBConnection):
)
return tbl
@override
def open_table(self, name: str) -> LanceTable:
"""Open a table in the database.
@@ -327,6 +360,7 @@ class LanceDBConnection(DBConnection):
"""
return LanceTable.open(self, name)
@override
def drop_table(self, name: str, ignore_missing: bool = False):
"""Drop a table from the database.
@@ -345,6 +379,7 @@ class LanceDBConnection(DBConnection):
if not ignore_missing:
raise
@override
def drop_database(self):
filesystem, path = fs_from_uri(self.uri)
filesystem.delete_dir(path)

View File

@@ -11,8 +11,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ruff: noqa: F401
from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction
from .cohere import CohereEmbeddingFunction
from .instructor import InstructorEmbeddingFunction
from .open_clip import OpenClipEmbeddings
from .openai import OpenAIEmbeddings
from .registry import EmbeddingFunctionRegistry, get_registry

View File

@@ -1,3 +1,15 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from abc import ABC, abstractmethod
from typing import List, Union
@@ -6,7 +18,7 @@ import numpy as np
import pyarrow as pa
from pydantic import BaseModel, Field, PrivateAttr
from .utils import TEXT
from .utils import TEXT, retry_with_exponential_backoff
class EmbeddingFunction(BaseModel, ABC):
@@ -21,6 +33,10 @@ class EmbeddingFunction(BaseModel, ABC):
3. ndims method which returns the number of dimensions of the vector column
"""
__slots__ = ("__weakref__",) # pydantic 1.x compatibility
max_retries: int = (
7 # Setitng 0 disables retires. Maybe this should not be enabled by default,
)
_ndims: int = PrivateAttr()
@classmethod
@@ -44,6 +60,25 @@ class EmbeddingFunction(BaseModel, ABC):
"""
pass
def compute_query_embeddings_with_retry(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for a given user query with retries
"""
return retry_with_exponential_backoff(
self.compute_query_embeddings, max_retries=self.max_retries
)(
*args,
**kwargs,
)
def compute_source_embeddings_with_retry(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for the source column in the database with retries
"""
return retry_with_exponential_backoff(
self.compute_source_embeddings, max_retries=self.max_retries
)(*args, **kwargs)
def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]:
"""
Sanitize the input to the embedding function.
@@ -103,6 +138,14 @@ class EmbeddingFunction(BaseModel, ABC):
"""
return Field(json_schema_extra={"vector_column_for": self}, **kwargs)
def __eq__(self, __value: object) -> bool:
if not hasattr(__value, "__dict__"):
return False
return vars(self) == vars(__value)
def __hash__(self) -> int:
return hash(frozenset(vars(self).items()))
class EmbeddingFunctionConfig(BaseModel):
"""

View File

@@ -31,7 +31,8 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
Parameters
----------
name: str, default "embed-multilingual-v2.0"
The name of the model to use. See the Cohere documentation for a list of available models.
The name of the model to use. See the Cohere documentation for
a list of available models.
Examples
--------
@@ -39,7 +40,10 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry.get_instance().get("cohere").create(name="embed-multilingual-v2.0")
cohere = EmbeddingFunctionRegistry
.get_instance()
.get("cohere")
.create(name="embed-multilingual-v2.0")
class TextModel(LanceModel):
text: str = cohere.SourceField()

View File

@@ -0,0 +1,137 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import numpy as np
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT, weak_lru
@register("instructor")
class InstructorEmbeddingFunction(TextEmbeddingFunction):
"""
An embedding function that uses the InstructorEmbedding library. Instructor models support multi-task learning, and can be used for a
variety of tasks, including text classification, sentence similarity, and document retrieval.
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
"Represent the `domain` `text_type` for `task_objective`":
* domain is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc.
* text_type is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc.
* task_objective is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc.
For example, if you want to calculate embeddings for a document, you may write the instruction as follows:
"Represent the document for retreival"
Parameters
----------
name: str
The name of the model to use. Available models are listed at https://github.com/xlang-ai/instructor-embedding#model-list;
The default model is hkunlp/instructor-base
batch_size: int, default 32
The batch size to use when generating embeddings
device: str, default "cpu"
The device to use when generating embeddings
show_progress_bar: bool, default True
Whether to show a progress bar when generating embeddings
normalize_embeddings: bool, default True
Whether to normalize the embeddings
quantize: bool, default False
Whether to quantize the model
source_instruction: str, default "represent the docuement for retreival"
The instruction for the source column
query_instruction: str, default "represent the document for retreiving the most similar documents"
The instruction for the query
Examples
--------
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
"""
name: str = "hkunlp/instructor-base"
batch_size: int = 32
device: str = "cpu"
show_progress_bar: bool = True
normalize_embeddings: bool = True
quantize: bool = False
# convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly
source_instruction: str = "represent the document for retrieval"
query_instruction: str = (
"represent the document for retrieving the most similar documents"
)
@weak_lru(maxsize=1)
def ndims(self):
model = self.get_model()
return model.encode("foo").shape[0]
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.generate_embeddings([[self.query_instruction, query]])
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
texts = self.sanitize_input(texts)
texts_formatted = []
for text in texts:
texts_formatted.append([self.source_instruction, text])
return self.generate_embeddings(texts_formatted)
def generate_embeddings(self, texts: List) -> List:
model = self.get_model()
res = model.encode(
texts,
batch_size=self.batch_size,
show_progress_bar=self.show_progress_bar,
normalize_embeddings=self.normalize_embeddings,
).tolist()
return res
@weak_lru(maxsize=1)
def get_model(self):
instructor_embedding = self.safe_import(
"InstructorEmbedding", "InstructorEmbedding"
)
torch = self.safe_import("torch", "torch")
model = instructor_embedding.INSTRUCTOR(self.name)
if self.quantize:
if (
"qnnpack" in torch.backends.quantized.supported_engines
): # fix for https://github.com/pytorch/pytorch/issues/29327
torch.backends.quantized.engine = "qnnpack"
model = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=torch.qint8
)
return model

View File

@@ -1,3 +1,15 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import concurrent.futures
import io
import os

View File

@@ -1,3 +1,15 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
import numpy as np

View File

@@ -1,3 +1,15 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
import numpy as np
@@ -5,6 +17,7 @@ from cachetools import cached
from .base import TextEmbeddingFunction
from .registry import register
from .utils import weak_lru
@register("sentence-transformers")
@@ -30,7 +43,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name and device. This is cached so that the model is only loaded
once per process.
"""
return self.__class__.get_embedding_model(self.name, self.device)
return self.get_embedding_model()
def ndims(self):
if self._ndims is None:
@@ -54,9 +67,8 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
normalize_embeddings=self.normalize,
).tolist()
@classmethod
@cached(cache={})
def get_embedding_model(cls, name, device):
@weak_lru(maxsize=1)
def get_embedding_model(self):
"""
Get the sentence-transformers embedding model specified by the
name and device. This is cached so that the model is only loaded
@@ -71,7 +83,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
TODO: use lru_cache instead with a reasonable/configurable maxsize
"""
sentence_transformers = cls.safe_import(
sentence_transformers = self.safe_import(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(name, device=device)
return sentence_transformers.SentenceTransformer(self.name, device=self.device)

View File

@@ -11,10 +11,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import math
import random
import socket
import sys
import time
import urllib.error
import weakref
from typing import Callable, List, Union
import numpy as np
@@ -162,6 +166,99 @@ class FunctionWrapper:
yield from _chunker(arr)
def weak_lru(maxsize=128):
"""
LRU cache that keeps weak references to the objects it caches. Only caches the latest instance of the objects to make sure memory usage
is bounded.
Parameters
----------
maxsize : int, default 128
The maximum number of objects to cache.
Returns
-------
Callable
A decorator that can be applied to a method.
Examples
--------
>>> class Foo:
... @weak_lru()
... def bar(self, x):
... return x
>>> foo = Foo()
>>> foo.bar(1)
1
>>> foo.bar(2)
2
>>> foo.bar(1)
1
"""
def wrapper(func):
@functools.lru_cache(maxsize)
def _func(_self, *args, **kwargs):
return func(_self(), *args, **kwargs)
@functools.wraps(func)
def inner(self, *args, **kwargs):
return _func(weakref.ref(self), *args, **kwargs)
return inner
return wrapper
def retry_with_exponential_backoff(
func,
initial_delay: float = 1,
exponential_base: float = 2,
jitter: bool = True,
max_retries: int = 7,
# errors: tuple = (),
):
"""Retry a function with exponential backoff.
Args:
func (function): The function to be retried.
initial_delay (float): Initial delay in seconds (default is 1).
exponential_base (float): The base for exponential backoff (default is 2).
jitter (bool): Whether to add jitter to the delay (default is True).
max_retries (int): Maximum number of retries (default is 10).
errors (tuple): Tuple of specific exceptions to retry on (default is (openai.error.RateLimitError,)).
Returns:
function: The decorated function.
"""
def wrapper(*args, **kwargs):
num_retries = 0
delay = initial_delay
# Loop until a successful response or max_retries is hit or an exception is raised
while True:
try:
return func(*args, **kwargs)
# Currently retrying on all exceptions as there is no way to know the format of the error msgs used by different APIs
# We'll log the error and say that it is assumed that if this portion errors out, it's due to rate limit but the user
# should check the error message to be sure
except Exception as e:
num_retries += 1
if num_retries > max_retries:
raise Exception(
f"Maximum number of retries ({max_retries}) exceeded."
)
delay *= exponential_base * (1 + jitter * random.random())
LOGGER.info(f"Retrying in {delay:.2f} seconds due to {e}")
time.sleep(delay)
return wrapper
def url_retrieve(url: str):
"""
Parameters

View File

@@ -14,7 +14,7 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import List, Literal, Optional, Type, Union
from typing import TYPE_CHECKING, List, Literal, Optional, Type, Union
import deprecation
import numpy as np
@@ -23,14 +23,49 @@ import pydantic
from . import __version__
from .common import VECTOR_COLUMN_NAME
from .pydantic import LanceModel
from .util import safe_import_pandas
if TYPE_CHECKING:
from .pydantic import LanceModel
pd = safe_import_pandas()
class Query(pydantic.BaseModel):
"""A Query"""
"""The LanceDB Query
Attributes
----------
vector : List[float]
the vector to search for
filter : Optional[str]
sql filter to refine the query with, optional
prefilter : bool
if True then apply the filter before vector search
k : int
top k results to return
metric : str
the distance metric between a pair of vectors,
can support L2 (default), Cosine and Dot.
[metric definitions][search]
columns : Optional[List[str]]
which columns to return in the results
nprobes : int
The number of probes used - optional
- A higher number makes search more accurate but also slower.
- See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice.
refine_factor : Optional[int]
Refine the results by reading extra elements and re-ranking them in memory - optional
- A higher number makes search more accurate but also slower.
- See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice.
"""
vector_column: str = VECTOR_COLUMN_NAME
@@ -61,6 +96,10 @@ class Query(pydantic.BaseModel):
class LanceQueryBuilder(ABC):
"""Build LanceDB query based on specific query type:
vector or full text search.
"""
@classmethod
def create(
cls,
@@ -103,7 +142,7 @@ class LanceQueryBuilder(ABC):
if not isinstance(query, (list, np.ndarray)):
conf = table.embedding_functions.get(vector_column_name)
if conf is not None:
query = conf.function.compute_query_embeddings(query)[0]
query = conf.function.compute_query_embeddings_with_retry(query)[0]
else:
msg = f"No embedding function for {vector_column_name}"
raise ValueError(msg)
@@ -114,7 +153,7 @@ class LanceQueryBuilder(ABC):
else:
conf = table.embedding_functions.get(vector_column_name)
if conf is not None:
query = conf.function.compute_query_embeddings(query)[0]
query = conf.function.compute_query_embeddings_with_retry(query)[0]
return query, "vector"
else:
return query, "fts"
@@ -133,11 +172,11 @@ class LanceQueryBuilder(ABC):
deprecated_in="0.3.1",
removed_in="0.4.0",
current_version=__version__,
details="Use the bar function instead",
details="Use to_pandas() instead",
)
def to_df(self) -> "pd.DataFrame":
"""
Deprecated alias for `to_pandas()`. Please use `to_pandas()` instead.
*Deprecated alias for `to_pandas()`. Please use `to_pandas()` instead.*
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
@@ -226,13 +265,20 @@ class LanceQueryBuilder(ABC):
self._columns = columns
return self
def where(self, where) -> LanceQueryBuilder:
def where(self, where: str, prefilter: bool = False) -> LanceQueryBuilder:
"""Set the where clause.
Parameters
----------
where: str
The where clause.
The where clause which is a valid SQL where clause. See
`Lance filter pushdown <https://lancedb.github.io/lance/read_and_write.html#filter-push-down>`_
for valid SQL expressions.
prefilter: bool, default False
If True, apply the filter before vector search, otherwise the
filter is applied on the result of vector search.
This feature is **EXPERIMENTAL** and may be removed and modified
without warning in the future.
Returns
-------
@@ -240,13 +286,12 @@ class LanceQueryBuilder(ABC):
The LanceQueryBuilder object.
"""
self._where = where
self._prefilter = prefilter
return self
class LanceVectorQueryBuilder(LanceQueryBuilder):
"""
A builder for nearest neighbor queries for LanceDB.
Examples
--------
>>> import lancedb
@@ -302,7 +347,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
Higher values will yield better recall (more likely to find vectors if
they exist) at the expense of latency.
See discussion in [Querying an ANN Index][../querying-an-ann-index] for
See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice.
Parameters
@@ -369,14 +414,14 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
Parameters
----------
where: str
The where clause.
The where clause which is a valid SQL where clause. See
`Lance filter pushdown <https://lancedb.github.io/lance/read_and_write.html#filter-push-down>`_
for valid SQL expressions.
prefilter: bool, default False
If True, apply the filter before vector search, otherwise the
filter is applied on the result of vector search.
This feature is **EXPERIMENTAL** and may be removed and modified
without warning in the future. Currently this is only supported
in OSS and can only be used with a table that does not have an ANN
index.
without warning in the future.
Returns
-------
@@ -389,6 +434,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
class LanceFtsQueryBuilder(LanceQueryBuilder):
"""A builder for full text search for LanceDB."""
def __init__(self, table: "lancedb.table.Table", query: str):
super().__init__(table)
self._query = query

View File

@@ -13,7 +13,7 @@
import functools
from typing import Any, Callable, Dict, Optional, Union
from typing import Any, Callable, Dict, Iterable, Optional, Union
import aiohttp
import attrs
@@ -151,15 +151,14 @@ class RestfulLanceDBClient:
return await deserialize(resp)
@_check_not_closed
async def list_tables(self, limit: int, page_token: str):
async def list_tables(
self, limit: int, page_token: Optional[str] = None
) -> Iterable[str]:
"""List all tables in the database."""
try:
json = await self.get(
"/v1/table/", {"limit": limit, "page_token": page_token}
)
if page_token is None:
page_token = ""
json = await self.get("/v1/table/", {"limit": limit, "page_token": page_token})
return json["tables"]
except StopAsyncIteration:
return []
@_check_not_closed
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:

View File

@@ -12,14 +12,19 @@
# limitations under the License.
import asyncio
import inspect
import logging
import uuid
from typing import Iterator, Optional
from typing import Iterable, List, Optional, Union
from urllib.parse import urlparse
import pyarrow as pa
from overrides import override
from ..common import DATA
from ..db import DBConnection
from ..embeddings import EmbeddingFunctionConfig
from ..pydantic import LanceModel
from ..table import Table, _sanitize_data
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
@@ -52,11 +57,13 @@ class RemoteDBConnection(DBConnection):
def __repr__(self) -> str:
return f"RemoveConnect(name={self.db_name})"
def table_names(self, last_token: str, limit=10) -> Iterator[str]:
@override
def table_names(self, page_token: Optional[str] = None, limit=10) -> Iterable[str]:
"""List the names of all tables in the database.
Parameters
----------
last_token: str
page_token: str
The last token to start the new page.
Returns
@@ -65,15 +72,16 @@ class RemoteDBConnection(DBConnection):
"""
while True:
result = self._loop.run_until_complete(
self._client.list_tables(limit, last_token)
self._client.list_tables(limit, page_token)
)
if len(result) > 0:
last_token = result[len(result) - 1]
page_token = result[len(result) - 1]
else:
break
for item in result:
yield result
yield item
@override
def open_table(self, name: str) -> Table:
"""Open a Lance Table in the database.
@@ -88,23 +96,50 @@ class RemoteDBConnection(DBConnection):
"""
from .table import RemoteTable
# TODO: check if table exists
# check if table exists
try:
self._loop.run_until_complete(
self._client.post(f"/v1/table/{name}/describe/")
)
except Exception:
logging.error(
"Table {name} does not exist."
"Please first call db.create_table({name}, data)"
)
return RemoteTable(self, name)
@override
def create_table(
self,
name: str,
data: DATA = None,
schema: pa.Schema = None,
schema: Optional[Union[pa.Schema, LanceModel]] = None,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table:
if data is None and schema is None:
raise ValueError("Either data or schema must be provided.")
if embedding_functions is not None:
raise NotImplementedError(
"embedding_functions is not supported for remote databases."
"Please vote https://github.com/lancedb/lancedb/issues/626 "
"for this feature."
)
if inspect.isclass(schema) and issubclass(schema, LanceModel):
# convert LanceModel to pyarrow schema
# note that it's possible this contains
# embedding function metadata already
schema = schema.to_arrow_schema()
if data is not None:
data = _sanitize_data(
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
data,
schema,
metadata=None,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
else:
if schema is None:
@@ -126,6 +161,7 @@ class RemoteDBConnection(DBConnection):
)
return RemoteTable(self, name)
@override
def drop_table(self, name: str):
"""Drop a table from the database.

View File

@@ -44,6 +44,14 @@ class RemoteTable(Table):
schema = json_to_schema(resp["schema"])
return schema
@property
def version(self) -> int:
"""Get the current version of the table"""
resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/describe/")
)
return resp["version"]
def to_arrow(self) -> pa.Table:
"""Return the table as an Arrow table."""
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
@@ -63,8 +71,62 @@ class RemoteTable(Table):
vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True,
accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
):
raise NotImplementedError
"""Create an index on the table.
Currently, the only parameters that matter are
the metric and the vector column name.
Parameters
----------
metric : str
The metric to use for the index. Default is "L2".
num_partitions : int
The number of partitions to use for the index. Default is 256.
num_sub_vectors : int
The number of sub-vectors to use for the index. Default is 96.
vector_column_name : str
The name of the vector column. Default is "vector".
replace : bool
Whether to replace the existing index. Default is True.
accelerator : str, optional
If set, use the given accelerator to create the index.
Default is None. Currently not supported.
index_cache_size : int, optional
The size of the index cache in number of entries. Default value is 256.
Examples
--------
import lancedb
import uuid
from lancedb.schema import vector
conn = lancedb.connect("db://...", api_key="...", region="...")
table_name = uuid.uuid4().hex
schema = pa.schema(
[
pa.field("id", pa.uint32(), False),
pa.field("vector", vector(128), False),
pa.field("s", pa.string(), False),
]
)
table = conn.create_table(
table_name,
schema=schema,
)
table.create_index()
"""
index_type = "vector"
data = {
"column": vector_column_name,
"index_type": index_type,
"metric_type": metric,
"index_cache_size": index_cache_size,
}
resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/create_index/", data=data)
)
return resp
def add(
self,
@@ -99,8 +161,6 @@ class RemoteTable(Table):
return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table:
if query.prefilter:
raise NotImplementedError("Cloud support for prefiltering is coming soon")
result = self._conn._client.query(self._name, query)
return self._conn._loop.run_until_complete(result).to_arrow()

View File

@@ -16,16 +16,14 @@ from __future__ import annotations
import inspect
import os
from abc import ABC, abstractmethod
from datetime import timedelta
from functools import cached_property
from typing import Any, Iterable, List, Optional, Union
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Union
import lance
import numpy as np
import pyarrow as pa
import pyarrow.compute as pc
from lance import LanceDataset
from lance.dataset import CleanupStats, ReaderLike
from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME
@@ -35,6 +33,12 @@ from .query import LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas
from .utils.events import register_event
if TYPE_CHECKING:
from datetime import timedelta
from lance.dataset import CleanupStats, ReaderLike
pd = safe_import_pandas()
@@ -86,7 +90,9 @@ def _append_vector_col(data: pa.Table, metadata: dict, schema: Optional[pa.Schem
for vector_column, conf in functions.items():
func = conf.function
if vector_column not in data.column_names:
col_data = func.compute_source_embeddings(data[conf.source_column])
col_data = func.compute_source_embeddings_with_retry(
data[conf.source_column]
)
if schema is not None:
dtype = schema.field(vector_column).type
else:
@@ -149,13 +155,13 @@ class Table(ABC):
@property
@abstractmethod
def schema(self) -> pa.Schema:
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of
this Table
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
of this Table
"""
raise NotImplementedError
def to_pandas(self):
def to_pandas(self) -> "pd.DataFrame":
"""Return the table as a pandas DataFrame.
Returns
@@ -182,6 +188,7 @@ class Table(ABC):
vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True,
accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
):
"""Create an index on the table.
@@ -191,20 +198,23 @@ class Table(ABC):
The distance metric to use when creating the index.
Valid values are "L2", "cosine", or "dot".
L2 is euclidean distance.
num_partitions: int
num_partitions: int, default 256
The number of IVF partitions to use when creating the index.
Default is 256.
num_sub_vectors: int
num_sub_vectors: int, default 96
The number of PQ sub-vectors to use when creating the index.
Default is 96.
vector_column_name: str, default "vector"
The vector column name to create the index.
replace: bool, default True
If True, replace the existing index if it exists.
If False, raise an error if duplicate index exists.
- If True, replace the existing index if it exists.
- If False, raise an error if duplicate index exists.
accelerator: str, default None
If set, use the given accelerator to create the index.
Only support "cuda" for now.
index_cache_size : int, optional
The size of the index cache in number of entries. Default value is 256.
"""
raise NotImplementedError
@@ -220,8 +230,14 @@ class Table(ABC):
Parameters
----------
data: list-of-dict, dict, pd.DataFrame
The data to insert into the table.
data: DATA
The data to insert into the table. Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
mode: str
The mode to use when writing the data. Valid values are
"append" and "overwrite".
@@ -242,31 +258,70 @@ class Table(ABC):
query_type: str = "auto",
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector.
of the given query vector. We currently support [vector search][search]
and [full-text search][experimental-full-text-search].
All query options are defined in [Query][lancedb.query.Query].
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> data = [
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector")
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
... .to_pandas())
caption original_width vector _distance
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
1 test 3000 [0.3, 6.2, 2.6] 23.089996
Parameters
----------
query: str, list, np.ndarray, PIL.Image.Image, default None
The query to search for. If None then
the select/where/limit clauses are applied to filter
query: list/np.ndarray/str/PIL.Image.Image, default None
The targetted vector to search for.
- *default None*.
Acceptable types are: list, np.ndarray, PIL.Image.Image
- If None then the select/where/limit clauses are applied to filter
the table
vector_column_name: str, default "vector"
vector_column_name: str
The name of the vector column to search.
query_type: str, default "auto"
"vector", "fts", or "auto"
If "auto" then the query type is inferred from the query;
If `query` is a list/np.ndarray then the query type is "vector";
If `query` is a PIL.Image.Image then either do vector search
*default "vector"*
query_type: str
*default "auto"*.
Acceptable types are: "vector", "fts", or "auto"
- If "auto" then the query type is inferred from the query;
- If `query` is a list/np.ndarray then the query type is
"vector";
- If `query` is a PIL.Image.Image then either do vector search,
or raise an error if no corresponding embedding function is found.
If `query` is a string, then the query type is "vector" if the
- If `query` is a string, then the query type is "vector" if the
table has embedding functions else the query type is "fts"
Returns
-------
LanceQueryBuilder
A query builder object representing the query.
Once executed, the query returns selected columns, the vector,
and also the "_distance" column which is the distance between the query
Once executed, the query returns
- selected columns
- the vector
- and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
raise NotImplementedError
@@ -285,14 +340,19 @@ class Table(ABC):
Parameters
----------
where: str
The SQL where clause to use when deleting rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
The SQL where clause to use when deleting rows.
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
The filter must not be empty, or it will error.
Examples
--------
>>> import lancedb
>>> data = [
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]}
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
@@ -377,7 +437,8 @@ class LanceTable(Table):
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}])
>>> table = db.create_table("my_table",
... [{"vector": [1.1, 0.9], "type": "vector"}])
>>> table.version
2
>>> table.to_pandas()
@@ -424,7 +485,8 @@ class LanceTable(Table):
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}])
>>> table = db.create_table("my_table", [
... {"vector": [1.1, 0.9], "type": "vector"}])
>>> table.version
2
>>> table.to_pandas()
@@ -497,6 +559,7 @@ class LanceTable(Table):
vector_column_name=VECTOR_COLUMN_NAME,
replace: bool = True,
accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
):
"""Create an index on the table."""
self._dataset.create_index(
@@ -507,6 +570,7 @@ class LanceTable(Table):
num_sub_vectors=num_sub_vectors,
replace=replace,
accelerator=accelerator,
index_cache_size=index_cache_size,
)
self._reset_dataset()
register_event("create_index")
@@ -669,14 +733,39 @@ class LanceTable(Table):
query_type: str = "auto",
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector.
of the given query vector. We currently support [vector search][search]
and [full-text search][search].
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> data = [
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector")
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
... .to_pandas())
caption original_width vector _distance
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
1 test 3000 [0.3, 6.2, 2.6] 23.089996
Parameters
----------
query: str, list, np.ndarray, a PIL Image or None
The query to search for. If None then
the select/where/limit clauses are applied to filter
the table
query: list/np.ndarray/str/PIL.Image.Image, default None
The targetted vector to search for.
- *default None*.
Acceptable types are: list, np.ndarray, PIL.Image.Image
- If None then the select/[where][sql]/limit clauses are applied
to filter the table
vector_column_name: str, default "vector"
The name of the vector column to search.
query_type: str, default "auto"
@@ -685,7 +774,7 @@ class LanceTable(Table):
If `query` is a list/np.ndarray then the query type is "vector";
If `query` is a PIL.Image.Image then either do vector search
or raise an error if no corresponding embedding function is found.
If the query is a string, then the query type is "vector" if the
If the `query` is a string, then the query type is "vector" if the
table has embedding functions, else the query type is "fts"
Returns
@@ -720,7 +809,9 @@ class LanceTable(Table):
--------
>>> import lancedb
>>> data = [
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]}
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
@@ -740,7 +831,8 @@ class LanceTable(Table):
The data to insert into the table.
At least one of `data` or `schema` must be provided.
schema: pa.Schema or LanceModel, optional
The schema of the table. If not provided, the schema is inferred from the data.
The schema of the table. If not provided,
the schema is inferred from the data.
At least one of `data` or `schema` must be provided.
mode: str, default "create"
The mode to use when writing the data. Valid values are
@@ -811,7 +903,8 @@ class LanceTable(Table):
file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory:
raise FileNotFoundError(
f"Table {name} does not exist. Please first call db.create_table({name}, data)"
f"Table {name} does not exist."
f"Please first call db.create_table({name}, data)"
)
return tbl
@@ -838,7 +931,9 @@ class LanceTable(Table):
--------
>>> import lancedb
>>> data = [
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]}
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
@@ -872,12 +967,6 @@ class LanceTable(Table):
def _execute_query(self, query: Query) -> pa.Table:
ds = self.to_lance()
if query.prefilter:
for idx in ds.list_indices():
if query.vector_column in idx["fields"]:
raise NotImplementedError(
"Prefiltering for indexed vector column is coming soon."
)
return ds.to_table(
columns=query.columns,
filter=query.filter,
@@ -1019,7 +1108,8 @@ def _sanitize_vector_column(
# ChunkedArray is annoying to work with, so we combine chunks here
vec_arr = data[vector_column_name].combine_chunks()
if pa.types.is_list(data[vector_column_name].type):
# if it's a variable size list array we make sure the dimensions are all the same
# if it's a variable size list array,
# we make sure the dimensions are all the same
has_jagged_ndims = len(vec_arr.values) % len(data) != 0
if has_jagged_ndims:
data = _sanitize_jagged(

View File

@@ -63,7 +63,8 @@ def set_sentry():
"""
if "exc_info" in hint:
exc_type, exc_value, tb = hint["exc_info"]
if "out of memory" in str(exc_value).lower():
ignored_errors = ["out of memory", "no space left on device", "testing"]
if any(error in str(exc_value).lower() for error in ignored_errors):
return None
if is_git_dir():
@@ -97,7 +98,7 @@ def set_sentry():
dsn="https://c63ef8c64e05d1aa1a96513361f3ca2f@o4505950840946688.ingest.sentry.io/4505950933614592",
debug=False,
include_local_variables=False,
traces_sample_rate=1.0,
traces_sample_rate=0.5,
environment="production", # 'dev' or 'production'
before_send=before_send,
ignore_errors=[KeyboardInterrupt, FileNotFoundError, bdb.BdbQuit],

View File

@@ -1,9 +1,9 @@
[project]
name = "lancedb"
version = "0.3.2"
version = "0.3.4"
dependencies = [
"deprecation",
"pylance==0.8.7",
"pylance==0.8.17",
"ratelimiter~=1.0",
"retry>=0.9.2",
"tqdm>=4.1.0",
@@ -14,7 +14,8 @@ dependencies = [
"cachetools",
"pyyaml>=6.0",
"click>=8.1.7",
"requests>=2.31.0"
"requests>=2.31.0",
"overrides>=0.7"
]
description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
@@ -52,7 +53,7 @@ tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests"]
dev = ["ruff", "pre-commit", "black"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
clip = ["torch", "pillow", "open-clip"]
embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere"]
embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere", "InstructorEmbedding"]
[project.scripts]
lancedb = "lancedb.cli.cli:cli"
@@ -64,6 +65,9 @@ build-backend = "setuptools.build_meta"
[tool.isort]
profile = "black"
[tool.ruff]
select = ["F", "E", "W", "I", "G", "TCH", "PERF"]
[tool.pytest.ini_options]
addopts = "--strict-markers"
markers = [

View File

@@ -129,7 +129,7 @@ def test_ingest_iterator(tmp_path):
[
PydanticSchema(vector=[3.1, 4.1], item="foo", price=10.0),
PydanticSchema(vector=[5.9, 26.5], item="bar", price=20.0),
]
],
# TODO: test pydict separately. it is unique column number and names contraint
]
@@ -150,6 +150,21 @@ def test_ingest_iterator(tmp_path):
run_tests(PydanticSchema)
def test_table_names(tmp_path):
db = lancedb.connect(tmp_path)
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
db.create_table("test2", data=data)
db.create_table("test1", data=data)
db.create_table("test3", data=data)
assert db.table_names() == ["test1", "test2", "test3"]
def test_create_mode(tmp_path):
db = lancedb.connect(tmp_path)
data = pd.DataFrame(
@@ -286,4 +301,29 @@ def test_replace_index(tmp_path):
num_partitions=2,
num_sub_vectors=4,
replace=True,
index_cache_size=10,
)
def test_prefilter_with_index(tmp_path):
db = lancedb.connect(uri=tmp_path)
data = [
{"vector": np.random.rand(128), "item": "foo", "price": float(i)}
for i in range(1000)
]
sample_key = data[100]["vector"]
table = db.create_table(
"test",
data,
)
table.create_index(
num_partitions=2,
num_sub_vectors=4,
)
table = (
table.search(sample_key)
.where("price == 500", prefilter=True)
.limit(5)
.to_arrow()
)
assert table.num_rows == 1

View File

@@ -15,13 +15,16 @@ import sys
import lance
import numpy as np
import pyarrow as pa
import pytest
from lancedb.conftest import MockTextEmbeddingFunction
import lancedb
from lancedb.conftest import MockRateLimitedEmbeddingFunction, MockTextEmbeddingFunction
from lancedb.embeddings import (
EmbeddingFunctionConfig,
EmbeddingFunctionRegistry,
with_embeddings,
)
from lancedb.pydantic import LanceModel, Vector
def mock_embed_func(input_data):
@@ -83,3 +86,29 @@ def test_embedding_function(tmp_path):
expected = func.compute_query_embeddings("hello world")
assert np.allclose(actual, expected)
def test_embedding_function_rate_limit(tmp_path):
def _get_schema_from_model(model):
class Schema(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
return Schema
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
model = registry.get("test-rate-limited").create(max_retries=0)
schema = _get_schema_from_model(model)
table = db.create_table("test", schema=schema, mode="overwrite")
table.add([{"text": "hello world"}])
with pytest.raises(Exception):
table.add([{"text": "hello world"}])
assert len(table) == 1
model = registry.get("test-rate-limited").create()
schema = _get_schema_from_model(model)
table = db.create_table("test", schema=schema, mode="overwrite")
table.add([{"text": "hello world"}])
table.add([{"text": "hello world"}])
assert len(table) == 2

View File

@@ -32,8 +32,8 @@ from lancedb.pydantic import LanceModel, Vector
def test_sentence_transformer(alias, tmp_path):
db = lancedb.connect(tmp_path)
registry = get_registry()
func = registry.get(alias).create()
func2 = registry.get(alias).create()
func = registry.get(alias).create(max_retries=0)
func2 = registry.get(alias).create(max_retries=0)
class Words(LanceModel):
text: str = func.SourceField()
@@ -150,7 +150,11 @@ def test_openclip(tmp_path):
os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set"
) # also skip if cohere not installed
def test_cohere_embedding_function():
cohere = get_registry().get("cohere").create(name="embed-multilingual-v2.0")
cohere = (
get_registry()
.get("cohere")
.create(name="embed-multilingual-v2.0", max_retries=0)
)
class TextModel(LanceModel):
text: str = cohere.SourceField()
@@ -162,3 +166,19 @@ def test_cohere_embedding_function():
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == cohere.ndims()
@pytest.mark.slow
def test_instructor_embedding(tmp_path):
model = get_registry().get("instructor").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()

View File

@@ -213,6 +213,7 @@ def test_create_index_method():
num_sub_vectors=96,
vector_column_name="vector",
replace=True,
index_cache_size=256,
)
# Check that the _dataset.create_index method was called
@@ -225,6 +226,7 @@ def test_create_index_method():
num_sub_vectors=96,
replace=True,
accelerator=None,
index_cache_size=256,
)

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb-node"
version = "0.3.3"
version = "0.3.8"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
edition = "2018"
@@ -19,6 +19,7 @@ once_cell = "1"
futures = "0.3"
half = { workspace = true }
lance = { workspace = true }
lance-index = { workspace = true }
lance-linalg = { workspace = true }
vectordb = { path = "../../vectordb" }
tokio = { version = "1.23", features = ["rt-multi-thread"] }

View File

@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use lance::index::vector::{ivf::IvfBuildParams, pq::PQBuildParams};
use lance_index::vector::{ivf::IvfBuildParams, pq::PQBuildParams};
use lance_linalg::distance::MetricType;
use neon::context::FunctionContext;
use neon::prelude::*;
@@ -70,7 +70,6 @@ fn get_index_params_builder(
.map(|mt| {
let metric_type = mt.unwrap();
index_builder.metric_type(metric_type);
pq_params.metric_type = metric_type;
});
let num_partitions = obj.get_opt_usize(cx, "num_partitions")?;

View File

@@ -239,6 +239,8 @@ fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("tableDelete", JsTable::js_delete)?;
cx.export_function("tableCleanupOldVersions", JsTable::js_cleanup)?;
cx.export_function("tableCompactFiles", JsTable::js_compact)?;
cx.export_function("tableListIndices", JsTable::js_list_indices)?;
cx.export_function("tableIndexStats", JsTable::js_index_stats)?;
cx.export_function(
"tableCreateVectorIndex",
index::vector::table_create_vector_index,

View File

@@ -247,7 +247,7 @@ impl JsTable {
}
rt.spawn(async move {
let stats = table.compact_files(options).await;
let stats = table.compact_files(options, None).await;
deferred.settle_with(&channel, move |mut cx| {
let stats = stats.or_throw(&mut cx)?;
@@ -276,4 +276,91 @@ impl JsTable {
});
Ok(promise)
}
pub(crate) fn js_list_indices(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
// let predicate = cx.argument::<JsString>(0)?.value(&mut cx);
let channel = cx.channel();
let table = js_table.table.clone();
rt.spawn(async move {
let indices = table.load_indices().await;
deferred.settle_with(&channel, move |mut cx| {
let indices = indices.or_throw(&mut cx)?;
let output = JsArray::new(&mut cx, indices.len() as u32);
for (i, index) in indices.iter().enumerate() {
let js_index = JsObject::new(&mut cx);
let index_name = cx.string(index.index_name.clone());
js_index.set(&mut cx, "name", index_name)?;
let index_uuid = cx.string(index.index_uuid.clone());
js_index.set(&mut cx, "uuid", index_uuid)?;
let js_index_columns = JsArray::new(&mut cx, index.columns.len() as u32);
for (j, column) in index.columns.iter().enumerate() {
let js_column = cx.string(column.clone());
js_index_columns.set(&mut cx, j as u32, js_column)?;
}
js_index.set(&mut cx, "columns", js_index_columns)?;
output.set(&mut cx, i as u32, js_index)?;
}
Ok(output)
})
});
Ok(promise)
}
pub(crate) fn js_index_stats(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let index_uuid = cx.argument::<JsString>(0)?.value(&mut cx);
let channel = cx.channel();
let table = js_table.table.clone();
rt.spawn(async move {
let load_stats = futures::try_join!(
table.count_indexed_rows(&index_uuid),
table.count_unindexed_rows(&index_uuid)
);
deferred.settle_with(&channel, move |mut cx| {
let (indexed_rows, unindexed_rows) = load_stats.or_throw(&mut cx)?;
let output = JsObject::new(&mut cx);
match indexed_rows {
Some(x) => {
let i = cx.number(x as f64);
output.set(&mut cx, "numIndexedRows", i)?;
}
None => {
let null = cx.null();
output.set(&mut cx, "numIndexedRows", null)?;
}
};
match unindexed_rows {
Some(x) => {
let i = cx.number(x as f64);
output.set(&mut cx, "numUnindexedRows", i)?;
}
None => {
let null = cx.null();
output.set(&mut cx, "numUnindexedRows", null)?;
}
};
Ok(output)
})
});
Ok(promise)
}
}

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb"
version = "0.3.3"
version = "0.3.8"
edition = "2021"
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
@@ -21,6 +21,7 @@ object_store = { workspace = true }
snafu = { workspace = true }
half = { workspace = true }
lance = { workspace = true }
lance-index = { workspace = true }
lance-linalg = { workspace = true }
lance-testing = { workspace = true }
tokio = { version = "1.23", features = ["rt-multi-thread"] }

View File

@@ -161,7 +161,7 @@ impl Database {
///
/// * A [Vec<String>] with all table names.
pub async fn table_names(&self) -> Result<Vec<String>> {
let f = self
let mut f = self
.object_store
.read_dir(self.base_path.clone())
.await?
@@ -175,7 +175,8 @@ impl Database {
is_lance.unwrap_or(false)
})
.filter_map(|p| p.file_stem().and_then(|s| s.to_str().map(String::from)))
.collect();
.collect::<Vec<String>>();
f.sort();
Ok(f)
}
@@ -312,8 +313,8 @@ mod tests {
let db = Database::connect(uri).await.unwrap();
let tables = db.table_names().await.unwrap();
assert_eq!(tables.len(), 2);
assert!(tables.contains(&String::from("table1")));
assert!(tables.contains(&String::from("table2")));
assert!(tables[0].eq(&String::from("table1")));
assert!(tables[1].eq(&String::from("table2")));
}
#[tokio::test]

View File

@@ -12,9 +12,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use lance::index::vector::ivf::IvfBuildParams;
use lance::format::{Index, Manifest};
use lance::index::vector::pq::PQBuildParams;
use lance::index::vector::VectorIndexParams;
use lance_index::vector::ivf::IvfBuildParams;
use lance_linalg::distance::MetricType;
pub trait VectorIndexBuilder {
@@ -98,7 +99,11 @@ impl VectorIndexBuilder for IvfPQIndexBuilder {
let ivf_params = self.ivf_params.clone().unwrap_or_default();
let pq_params = self.pq_params.clone().unwrap_or_default();
VectorIndexParams::with_ivf_pq_params(pq_params.metric_type, ivf_params, pq_params)
VectorIndexParams::with_ivf_pq_params(
self.metric_type.unwrap_or(MetricType::L2),
ivf_params,
pq_params,
)
}
fn get_replace(&self) -> bool {
@@ -106,13 +111,34 @@ impl VectorIndexBuilder for IvfPQIndexBuilder {
}
}
pub struct VectorIndex {
pub columns: Vec<String>,
pub index_name: String,
pub index_uuid: String,
}
impl VectorIndex {
pub fn new_from_format(manifest: &Manifest, index: &Index) -> VectorIndex {
let fields = index
.fields
.iter()
.map(|i| manifest.schema.fields[*i as usize].name.clone())
.collect();
VectorIndex {
columns: fields,
index_name: index.name.clone(),
index_uuid: index.uuid.to_string(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use lance::index::vector::StageParams;
use lance_index::vector::ivf::IvfBuildParams;
use lance_index::vector::pq::PQBuildParams;
use crate::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder};
@@ -158,7 +184,6 @@ mod tests {
pq_params.max_iters = 1;
pq_params.num_bits = 8;
pq_params.num_sub_vectors = 50;
pq_params.metric_type = MetricType::Cosine;
pq_params.max_opq_iters = 2;
index_builder.ivf_params(ivf_params);
index_builder.pq_params(pq_params);
@@ -176,7 +201,6 @@ mod tests {
assert_eq!(pq_params.max_iters, 1);
assert_eq!(pq_params.num_bits, 8);
assert_eq!(pq_params.num_sub_vectors, 50);
assert_eq!(pq_params.metric_type, MetricType::Cosine);
assert_eq!(pq_params.max_opq_iters, 2);
} else {
assert!(false, "Expected second stage to be pq")

View File

@@ -25,7 +25,8 @@ use bytes::Bytes;
use futures::{stream::BoxStream, FutureExt, StreamExt};
use lance::io::object_store::WrappingObjectStore;
use object_store::{
path::Path, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore, Result,
path::Path, Error, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore,
Result,
};
use async_trait::async_trait;
@@ -120,7 +121,10 @@ impl ObjectStore for MirroringObjectStore {
async fn delete(&self, location: &Path) -> Result<()> {
if !location.primary_only() {
self.secondary.delete(location).await?;
match self.secondary.delete(location).await {
Err(Error::NotFound { .. }) | Ok(_) => {}
Err(e) => return Err(e),
}
}
self.primary.delete(location).await
}

View File

@@ -13,19 +13,23 @@
// limitations under the License.
use chrono::Duration;
use lance::dataset::builder::DatasetBuilder;
use lance_index::IndexType;
use std::sync::Arc;
use arrow_array::{Float32Array, RecordBatchReader};
use arrow_schema::SchemaRef;
use lance::dataset::cleanup::RemovalStats;
use lance::dataset::optimize::{compact_files, CompactionMetrics, CompactionOptions};
use lance::dataset::optimize::{
compact_files, CompactionMetrics, CompactionOptions, IndexRemapperOptions,
};
use lance::dataset::{Dataset, WriteParams};
use lance::index::IndexType;
use lance::index::DatasetIndexExt;
use lance::io::object_store::WrappingObjectStore;
use std::path::Path;
use crate::error::{Error, Result};
use crate::index::vector::VectorIndexBuilder;
use crate::index::vector::{VectorIndex, VectorIndexBuilder};
use crate::query::Query;
use crate::utils::{PatchReadParam, PatchWriteParam};
use crate::WriteMode;
@@ -94,7 +98,10 @@ impl Table {
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
None => params,
};
let dataset = Dataset::open_with_params(uri, &params)
let dataset = DatasetBuilder::from_uri(uri)
.with_read_params(params)
.load()
.await
.map_err(|e| match e {
lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
@@ -238,8 +245,6 @@ impl Table {
/// Create index on the table.
pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> {
use lance::index::DatasetIndexExt;
let mut dataset = self.dataset.as_ref().clone();
dataset
.create_index(
@@ -257,6 +262,14 @@ impl Table {
Ok(())
}
pub async fn optimize_indices(&mut self) -> Result<()> {
let mut dataset = self.dataset.as_ref().clone();
dataset.optimize_indices().await?;
Ok(())
}
/// Insert records into this Table
///
/// # Arguments
@@ -353,12 +366,45 @@ impl Table {
/// for faster reads.
///
/// This calls into [lance::dataset::optimize::compact_files].
pub async fn compact_files(&mut self, options: CompactionOptions) -> Result<CompactionMetrics> {
pub async fn compact_files(
&mut self,
options: CompactionOptions,
remap_options: Option<Arc<dyn IndexRemapperOptions>>,
) -> Result<CompactionMetrics> {
let mut dataset = self.dataset.as_ref().clone();
let metrics = compact_files(&mut dataset, options, None).await?;
let metrics = compact_files(&mut dataset, options, remap_options).await?;
self.dataset = Arc::new(dataset);
Ok(metrics)
}
pub fn count_fragments(&self) -> usize {
self.dataset.count_fragments()
}
pub async fn count_deleted_rows(&self) -> Result<usize> {
Ok(self.dataset.count_deleted_rows().await?)
}
pub async fn num_small_files(&self, max_rows_per_group: usize) -> usize {
self.dataset.num_small_files(max_rows_per_group).await
}
pub async fn count_indexed_rows(&self, index_uuid: &str) -> Result<Option<usize>> {
Ok(self.dataset.count_indexed_rows(index_uuid).await?)
}
pub async fn count_unindexed_rows(&self, index_uuid: &str) -> Result<Option<usize>> {
Ok(self.dataset.count_unindexed_rows(index_uuid).await?)
}
pub async fn load_indices(&self) -> Result<Vec<VectorIndex>> {
let (indices, mf) =
futures::try_join!(self.dataset.load_indices(), self.dataset.latest_manifest())?;
Ok(indices
.iter()
.map(|i| VectorIndex::new_from_format(&mf, i))
.collect())
}
}
#[cfg(test)]
@@ -373,9 +419,9 @@ mod tests {
use arrow_data::ArrayDataBuilder;
use arrow_schema::{DataType, Field, Schema};
use lance::dataset::{Dataset, WriteMode};
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use lance::io::object_store::{ObjectStoreParams, WrappingObjectStore};
use lance_index::vector::ivf::IvfBuildParams;
use rand::Rng;
use tempfile::tempdir;