mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 21:39:57 +00:00
Compare commits
32 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a0608044a1 | ||
|
|
2e4ea7d2bc | ||
|
|
57e5695a54 | ||
|
|
ce58ea7c38 | ||
|
|
57207eff4a | ||
|
|
2d78bff120 | ||
|
|
7c09b9b9a9 | ||
|
|
bd0034a157 | ||
|
|
144b3b5d83 | ||
|
|
b6f0a31686 | ||
|
|
9ec526f73f | ||
|
|
600bfd7237 | ||
|
|
d087e7891d | ||
|
|
098e397cf0 | ||
|
|
63ee8fa6a1 | ||
|
|
693091db29 | ||
|
|
dca4533dbe | ||
|
|
f6bbe199dc | ||
|
|
366e522c2b | ||
|
|
244b6919cc | ||
|
|
aca785ff98 | ||
|
|
bbdebf2c38 | ||
|
|
1336cce0dc | ||
|
|
6c83b6a513 | ||
|
|
6bec4bec51 | ||
|
|
23d30dfc78 | ||
|
|
94c8c50f96 | ||
|
|
72765d8e1a | ||
|
|
a2a8f9615e | ||
|
|
b085d9aaa1 | ||
|
|
6eb662de9b | ||
|
|
2bb2bb581a |
@@ -1,5 +1,5 @@
|
|||||||
[bumpversion]
|
[bumpversion]
|
||||||
current_version = 0.3.8
|
current_version = 0.3.11
|
||||||
commit = True
|
commit = True
|
||||||
message = Bump version: {current_version} → {new_version}
|
message = Bump version: {current_version} → {new_version}
|
||||||
tag = True
|
tag = True
|
||||||
|
|||||||
20
.github/workflows/npm-publish.yml
vendored
20
.github/workflows/npm-publish.yml
vendored
@@ -38,13 +38,17 @@ jobs:
|
|||||||
node/vectordb-*.tgz
|
node/vectordb-*.tgz
|
||||||
|
|
||||||
node-macos:
|
node-macos:
|
||||||
runs-on: macos-13
|
strategy:
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- arch: x86_64-apple-darwin
|
||||||
|
runner: macos-13
|
||||||
|
- arch: aarch64-apple-darwin
|
||||||
|
# xlarge is implicitly arm64.
|
||||||
|
runner: macos-13-xlarge
|
||||||
|
runs-on: ${{ matrix.config.runner }}
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
strategy:
|
|
||||||
fail-fast: false
|
|
||||||
matrix:
|
|
||||||
target: [x86_64-apple-darwin, aarch64-apple-darwin]
|
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
@@ -54,11 +58,8 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
cd node
|
cd node
|
||||||
npm ci
|
npm ci
|
||||||
- name: Install rustup target
|
|
||||||
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
|
|
||||||
run: rustup target add aarch64-apple-darwin
|
|
||||||
- name: Build MacOS native node modules
|
- name: Build MacOS native node modules
|
||||||
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
|
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
|
||||||
- name: Upload Darwin Artifacts
|
- name: Upload Darwin Artifacts
|
||||||
uses: actions/upload-artifact@v3
|
uses: actions/upload-artifact@v3
|
||||||
with:
|
with:
|
||||||
@@ -66,6 +67,7 @@ jobs:
|
|||||||
path: |
|
path: |
|
||||||
node/dist/lancedb-vectordb-darwin*.tgz
|
node/dist/lancedb-vectordb-darwin*.tgz
|
||||||
|
|
||||||
|
|
||||||
node-linux:
|
node-linux:
|
||||||
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||||
runs-on: ${{ matrix.config.runner }}
|
runs-on: ${{ matrix.config.runner }}
|
||||||
|
|||||||
6
.github/workflows/python.yml
vendored
6
.github/workflows/python.yml
vendored
@@ -91,11 +91,7 @@ jobs:
|
|||||||
pip install "pydantic<2"
|
pip install "pydantic<2"
|
||||||
pip install -e .[tests]
|
pip install -e .[tests]
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
pip install pytest pytest-mock black isort
|
pip install pytest pytest-mock
|
||||||
- name: Black
|
|
||||||
run: black --check --diff --no-color --quiet .
|
|
||||||
- name: isort
|
|
||||||
run: isort --check --diff --quiet .
|
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: pytest -m "not slow" -x -v --durations=30 tests
|
run: pytest -m "not slow" -x -v --durations=30 tests
|
||||||
- name: doctest
|
- name: doctest
|
||||||
|
|||||||
@@ -5,10 +5,10 @@ exclude = ["python"]
|
|||||||
resolver = "2"
|
resolver = "2"
|
||||||
|
|
||||||
[workspace.dependencies]
|
[workspace.dependencies]
|
||||||
lance = { "version" = "=0.8.17", "features" = ["dynamodb"] }
|
lance = { "version" = "=0.8.20", "features" = ["dynamodb"] }
|
||||||
lance-index = { "version" = "=0.8.17" }
|
lance-index = { "version" = "=0.8.20" }
|
||||||
lance-linalg = { "version" = "=0.8.17" }
|
lance-linalg = { "version" = "=0.8.20" }
|
||||||
lance-testing = { "version" = "=0.8.17" }
|
lance-testing = { "version" = "=0.8.20" }
|
||||||
# Note that this one does not include pyarrow
|
# Note that this one does not include pyarrow
|
||||||
arrow = { version = "47.0.0", optional = false }
|
arrow = { version = "47.0.0", optional = false }
|
||||||
arrow-array = "47.0"
|
arrow-array = "47.0"
|
||||||
|
|||||||
@@ -5,10 +5,11 @@
|
|||||||
|
|
||||||
**Developer-friendly, serverless vector database for AI applications**
|
**Developer-friendly, serverless vector database for AI applications**
|
||||||
|
|
||||||
<a href="https://lancedb.github.io/lancedb/">Documentation</a> •
|
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
|
||||||
<a href="https://blog.lancedb.com/">Blog</a> •
|
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
|
||||||
<a href="https://discord.gg/zMM32dvNtd">Discord</a> •
|
[](https://blog.lancedb.com/)
|
||||||
<a href="https://twitter.com/lancedb">Twitter</a>
|
[](https://discord.gg/zMM32dvNtd)
|
||||||
|
[](https://twitter.com/lancedb)
|
||||||
|
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
# Builds the macOS artifacts (node binaries).
|
# Builds the macOS artifacts (node binaries).
|
||||||
# Usage: ./ci/build_macos_artifacts.sh [target]
|
# Usage: ./ci/build_macos_artifacts.sh [target]
|
||||||
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
|
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
|
||||||
|
set -e
|
||||||
|
|
||||||
prebuild_rust() {
|
prebuild_rust() {
|
||||||
# Building here for the sake of easier debugging.
|
# Building here for the sake of easier debugging.
|
||||||
|
|||||||
@@ -98,6 +98,7 @@ nav:
|
|||||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||||
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||||
|
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
|
||||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||||
- 🌐 Javascript examples:
|
- 🌐 Javascript examples:
|
||||||
@@ -145,7 +146,8 @@ nav:
|
|||||||
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
|
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
|
||||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||||
- API references:
|
- API references:
|
||||||
- Python API: python/python.md
|
- OSS Python API: python/python.md
|
||||||
|
- SaaS Python API: python/saas-python.md
|
||||||
- Javascript API: javascript/modules.md
|
- Javascript API: javascript/modules.md
|
||||||
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms
|
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms
|
||||||
|
|
||||||
|
|||||||
165
docs/src/examples/image_embeddings_roboflow.md
Normal file
165
docs/src/examples/image_embeddings_roboflow.md
Normal file
@@ -0,0 +1,165 @@
|
|||||||
|
# How to Load Image Embeddings into LanceDB
|
||||||
|
|
||||||
|
With the rise of Large Multimodal Models (LMMs) such as [GPT-4 Vision](https://blog.roboflow.com/gpt-4-vision/), the need for storing image embeddings is growing. The most effective way to store text and image embeddings is in a vector database such as LanceDB. Vector databases are a special kind of data store that enables efficient search over stored embeddings.
|
||||||
|
|
||||||
|
[CLIP](https://blog.roboflow.com/openai-clip/), a multimodal model developed by OpenAI, is commonly used to calculate image embeddings. These embeddings can then be used with a vector database to build a semantic search engine that you can query using images or text. For example, you could use LanceDB and CLIP embeddings to build a search engine for a database of folders.
|
||||||
|
|
||||||
|
In this guide, we are going to show you how to use Roboflow Inference to load image embeddings into LanceDB. Without further ado, let’s get started!
|
||||||
|
|
||||||
|
## Step #1: Install Roboflow Inference
|
||||||
|
|
||||||
|
[Roboflow Inference](https://inference.roboflow.com) enables you to run state-of-the-art computer vision models with minimal configuration. Inference supports a range of models, from fine-tuned object detection, classification, and segmentation models to foundation models like CLIP. We will use Inference to calculate CLIP image embeddings.
|
||||||
|
|
||||||
|
Inference provides a HTTP API through which you can run vision models.
|
||||||
|
|
||||||
|
Inference powers the Roboflow hosted API, and is available as an open source utility. In this guide, we are going to run Inference locally, which enables you to calculate CLIP embeddings on your own hardware. We will also show you how to use the hosted Roboflow CLIP API, which is ideal if you need to scale and do not want to manage a system for calculating embeddings.
|
||||||
|
|
||||||
|
To get started, first install the Inference CLI:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install inference-cli
|
||||||
|
```
|
||||||
|
|
||||||
|
Next, install Docker. Refer to the official Docker installation instructions for your operating system to get Docker set up. Once Docker is ready, you can start Inference using the following command:
|
||||||
|
|
||||||
|
```
|
||||||
|
inference server start
|
||||||
|
```
|
||||||
|
|
||||||
|
An Inference server will start running at ‘http://localhost:9001’.
|
||||||
|
|
||||||
|
## Step #2: Set Up a LanceDB Vector Database
|
||||||
|
|
||||||
|
Now that we have Inference running, we can set up a LanceDB vector database. You can run LanceDB in JavaScript and Python. For this guide, we will use the Python API. But, you can take the HTTP requests we make below and change them to JavaScript if required.
|
||||||
|
|
||||||
|
For this guide, we are going to search the [COCO 128 dataset](https://universe.roboflow.com/team-roboflow/coco-128), which contains a wide range of objects. The variability in objects present in this dataset makes it a good dataset to demonstrate the capabilities of vector search. If you want to use this dataset, you can download [COCO 128 from Roboflow Universe](https://universe.roboflow.com/team-roboflow/coco-128). With that said, you can search whatever folder of images you want.
|
||||||
|
|
||||||
|
Once you have a dataset ready, install LanceDB with the following command:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
|
```
|
||||||
|
|
||||||
|
Create a new Python file and add the following code:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import cv2
|
||||||
|
import supervision as sv
|
||||||
|
import requests
|
||||||
|
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
db = lancedb.connect("./embeddings")
|
||||||
|
|
||||||
|
IMAGE_DIR = "images/"
|
||||||
|
API_KEY = os.environ.get("ROBOFLOW_API_KEY")
|
||||||
|
SERVER_URL = "http://localhost:9001"
|
||||||
|
|
||||||
|
results = []
|
||||||
|
|
||||||
|
for i, image in enumerate(os.listdir(IMAGE_DIR)):
|
||||||
|
infer_clip_payload = {
|
||||||
|
#Images can be provided as urls or as base64 encoded strings
|
||||||
|
"image": {
|
||||||
|
"type": "base64",
|
||||||
|
"value": base64.b64encode(open(IMAGE_DIR + image, "rb").read()).decode("utf-8"),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
res = requests.post(
|
||||||
|
f"{SERVER_URL}/clip/embed_image?api_key={API_KEY}",
|
||||||
|
json=infer_clip_payload,
|
||||||
|
)
|
||||||
|
|
||||||
|
embeddings = res.json()['embeddings']
|
||||||
|
|
||||||
|
print("Calculated embedding for image: ", image)
|
||||||
|
|
||||||
|
image = {"vector": embeddings[0], "name": os.path.join(IMAGE_DIR, image)}
|
||||||
|
|
||||||
|
results.append(image)
|
||||||
|
|
||||||
|
tbl = db.create_table("images", data=results)
|
||||||
|
|
||||||
|
tbl.create_fts_index("name")
|
||||||
|
```
|
||||||
|
|
||||||
|
To use the code above, you will need a Roboflow API key. [Learn how to retrieve a Roboflow API key](https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key). Run the following command to set up your API key in your environment:
|
||||||
|
|
||||||
|
```
|
||||||
|
export ROBOFLOW_API_KEY=""
|
||||||
|
```
|
||||||
|
|
||||||
|
Replace the `IMAGE_DIR` value with the folder in which you are storing the images for which you want to calculate embeddings. If you want to use the Roboflow CLIP API to calculate embeddings, replace the `SERVER_URL` value with `https://infer.roboflow.com`.
|
||||||
|
|
||||||
|
Run the script above to create a new LanceDB database. This database will be stored on your local machine. The database will be called `embeddings` and the table will be called `images`.
|
||||||
|
|
||||||
|
The script above calculates all embeddings for a folder then creates a new table. To add additional images, use the following code:
|
||||||
|
|
||||||
|
```python
|
||||||
|
def make_batches():
|
||||||
|
for i in range(5):
|
||||||
|
yield [
|
||||||
|
{"vector": [3.1, 4.1], "name": "image1.png"},
|
||||||
|
{"vector": [5.9, 26.5], "name": "image2.png"}
|
||||||
|
]
|
||||||
|
|
||||||
|
tbl = db.open_table("images")
|
||||||
|
tbl.add(make_batches())
|
||||||
|
```
|
||||||
|
|
||||||
|
Replacing the `make_batches()` function with code to load embeddings for images.
|
||||||
|
|
||||||
|
## Step #3: Run a Search Query
|
||||||
|
|
||||||
|
We are now ready to run a search query. To run a search query, we need a text embedding that represents a text query. We can use this embedding to search our LanceDB database for an entry.
|
||||||
|
|
||||||
|
Let’s calculate a text embedding for the query “cat”, then run a search query:
|
||||||
|
|
||||||
|
```python
|
||||||
|
infer_clip_payload = {
|
||||||
|
"text": "cat",
|
||||||
|
}
|
||||||
|
|
||||||
|
res = requests.post(
|
||||||
|
f"{SERVER_URL}/clip/embed_text?api_key={API_KEY}",
|
||||||
|
json=infer_clip_payload,
|
||||||
|
)
|
||||||
|
|
||||||
|
embeddings = res.json()['embeddings']
|
||||||
|
|
||||||
|
df = tbl.search(embeddings[0]).limit(3).to_list()
|
||||||
|
|
||||||
|
print("Results:")
|
||||||
|
|
||||||
|
for i in df:
|
||||||
|
print(i["name"])
|
||||||
|
```
|
||||||
|
|
||||||
|
This code will search for the three images most closely related to the prompt “cat”. The names of the most similar three images will be printed to the console. Here are the three top results:
|
||||||
|
|
||||||
|
```
|
||||||
|
dataset/images/train/000000000650_jpg.rf.1b74ba165c5a3513a3211d4a80b69e1c.jpg
|
||||||
|
dataset/images/train/000000000138_jpg.rf.af439ef1c55dd8a4e4b142d186b9c957.jpg
|
||||||
|
dataset/images/train/000000000165_jpg.rf.eae14d5509bf0c9ceccddbb53a5f0c66.jpg
|
||||||
|
```
|
||||||
|
|
||||||
|
Let’s open the top image:
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
The top image was a cat. Our search was successful.
|
||||||
|
|
||||||
|
## Conclusion
|
||||||
|
|
||||||
|
LanceDB is a vector database that you can use to store and efficiently search your image embeddings. You can use Roboflow Inference, a scalable computer vision inference server, to calculate CLIP embeddings that you can store in LanceDB.
|
||||||
|
|
||||||
|
You can use Inference and LanceDB together to build a range of applications with image embeddings, from a media search engine to a retrieval-augmented generation pipeline for use with LMMs.
|
||||||
|
|
||||||
|
To learn more about Inference and its capabilities, refer to the Inference documentation.
|
||||||
18
docs/src/python/saas-python.md
Normal file
18
docs/src/python/saas-python.md
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
# LanceDB Python API Reference
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
## Connection
|
||||||
|
|
||||||
|
::: lancedb.connect
|
||||||
|
|
||||||
|
::: lancedb.remote.db.RemoteDBConnection
|
||||||
|
|
||||||
|
## Table
|
||||||
|
|
||||||
|
::: lancedb.remote.table.RemoteTable
|
||||||
|
|
||||||
14
node/package-lock.json
generated
14
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.3.8",
|
"version": "0.3.11",
|
||||||
"lockfileVersion": 2,
|
"lockfileVersion": 2,
|
||||||
"requires": true,
|
"requires": true,
|
||||||
"packages": {
|
"packages": {
|
||||||
"": {
|
"": {
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.3.8",
|
"version": "0.3.11",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64",
|
"x64",
|
||||||
"arm64"
|
"arm64"
|
||||||
@@ -53,11 +53,11 @@
|
|||||||
"uuid": "^9.0.0"
|
"uuid": "^9.0.0"
|
||||||
},
|
},
|
||||||
"optionalDependencies": {
|
"optionalDependencies": {
|
||||||
"@lancedb/vectordb-darwin-arm64": "0.3.8",
|
"@lancedb/vectordb-darwin-arm64": "0.3.11",
|
||||||
"@lancedb/vectordb-darwin-x64": "0.3.8",
|
"@lancedb/vectordb-darwin-x64": "0.3.11",
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": "0.3.8",
|
"@lancedb/vectordb-linux-arm64-gnu": "0.3.11",
|
||||||
"@lancedb/vectordb-linux-x64-gnu": "0.3.8",
|
"@lancedb/vectordb-linux-x64-gnu": "0.3.11",
|
||||||
"@lancedb/vectordb-win32-x64-msvc": "0.3.8"
|
"@lancedb/vectordb-win32-x64-msvc": "0.3.11"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@apache-arrow/ts": {
|
"node_modules/@apache-arrow/ts": {
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.3.8",
|
"version": "0.3.11",
|
||||||
"description": " Serverless, low-latency vector database for AI applications",
|
"description": " Serverless, low-latency vector database for AI applications",
|
||||||
"main": "dist/index.js",
|
"main": "dist/index.js",
|
||||||
"types": "dist/index.d.ts",
|
"types": "dist/index.d.ts",
|
||||||
@@ -81,10 +81,10 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"optionalDependencies": {
|
"optionalDependencies": {
|
||||||
"@lancedb/vectordb-darwin-arm64": "0.3.8",
|
"@lancedb/vectordb-darwin-arm64": "0.3.11",
|
||||||
"@lancedb/vectordb-darwin-x64": "0.3.8",
|
"@lancedb/vectordb-darwin-x64": "0.3.11",
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": "0.3.8",
|
"@lancedb/vectordb-linux-arm64-gnu": "0.3.11",
|
||||||
"@lancedb/vectordb-linux-x64-gnu": "0.3.8",
|
"@lancedb/vectordb-linux-x64-gnu": "0.3.11",
|
||||||
"@lancedb/vectordb-win32-x64-msvc": "0.3.8"
|
"@lancedb/vectordb-win32-x64-msvc": "0.3.11"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -21,9 +21,10 @@ import type { EmbeddingFunction } from './embedding/embedding_function'
|
|||||||
import { RemoteConnection } from './remote'
|
import { RemoteConnection } from './remote'
|
||||||
import { Query } from './query'
|
import { Query } from './query'
|
||||||
import { isEmbeddingFunction } from './embedding/embedding_function'
|
import { isEmbeddingFunction } from './embedding/embedding_function'
|
||||||
|
import { type Literal, toSQL } from './util'
|
||||||
|
|
||||||
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||||
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js')
|
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableUpdate, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js')
|
||||||
|
|
||||||
export { Query }
|
export { Query }
|
||||||
export type { EmbeddingFunction }
|
export type { EmbeddingFunction }
|
||||||
@@ -261,6 +262,39 @@ export interface Table<T = number[]> {
|
|||||||
*/
|
*/
|
||||||
delete: (filter: string) => Promise<void>
|
delete: (filter: string) => Promise<void>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Update rows in this table.
|
||||||
|
*
|
||||||
|
* This can be used to update a single row, many rows, all rows, or
|
||||||
|
* sometimes no rows (if your predicate matches nothing).
|
||||||
|
*
|
||||||
|
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
|
||||||
|
*
|
||||||
|
* @examples
|
||||||
|
*
|
||||||
|
* ```ts
|
||||||
|
* const con = await lancedb.connect("./.lancedb")
|
||||||
|
* const data = [
|
||||||
|
* {id: 1, vector: [3, 3], name: 'Ye'},
|
||||||
|
* {id: 2, vector: [4, 4], name: 'Mike'},
|
||||||
|
* ];
|
||||||
|
* const tbl = await con.createTable("my_table", data)
|
||||||
|
*
|
||||||
|
* await tbl.update({
|
||||||
|
* filter: "id = 2",
|
||||||
|
* updates: { vector: [2, 2], name: "Michael" },
|
||||||
|
* })
|
||||||
|
*
|
||||||
|
* let results = await tbl.search([1, 1]).execute();
|
||||||
|
* // Returns [
|
||||||
|
* // {id: 2, vector: [2, 2], name: 'Michael'}
|
||||||
|
* // {id: 1, vector: [3, 3], name: 'Ye'}
|
||||||
|
* // ]
|
||||||
|
* ```
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* List the indicies on this table.
|
* List the indicies on this table.
|
||||||
*/
|
*/
|
||||||
@@ -272,6 +306,34 @@ export interface Table<T = number[]> {
|
|||||||
indexStats: (indexUuid: string) => Promise<IndexStats>
|
indexStats: (indexUuid: string) => Promise<IndexStats>
|
||||||
}
|
}
|
||||||
|
|
||||||
|
export interface UpdateArgs {
|
||||||
|
/**
|
||||||
|
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
|
||||||
|
* in which case all rows will be updated.
|
||||||
|
*/
|
||||||
|
where?: string
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A key-value map of updates. The keys are the column names, and the values are the
|
||||||
|
* new values to set
|
||||||
|
*/
|
||||||
|
values: Record<string, Literal>
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface UpdateSqlArgs {
|
||||||
|
/**
|
||||||
|
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
|
||||||
|
* in which case all rows will be updated.
|
||||||
|
*/
|
||||||
|
where?: string
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A key-value map of updates. The keys are the column names, and the values are the
|
||||||
|
* new values to set as SQL expressions.
|
||||||
|
*/
|
||||||
|
valuesSql: Record<string, string>
|
||||||
|
}
|
||||||
|
|
||||||
export interface VectorIndex {
|
export interface VectorIndex {
|
||||||
columns: string[]
|
columns: string[]
|
||||||
name: string
|
name: string
|
||||||
@@ -426,6 +488,16 @@ export class LocalTable<T = number[]> implements Table<T> {
|
|||||||
return new Query(query, this._tbl, this._embeddings)
|
return new Query(query, this._tbl, this._embeddings)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates a filter query to find all rows matching the specified criteria
|
||||||
|
* @param value The filter criteria (like SQL where clause syntax)
|
||||||
|
*/
|
||||||
|
filter (value: string): Query<T> {
|
||||||
|
return new Query(undefined, this._tbl, this._embeddings).filter(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
where = this.filter
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Insert records into this Table.
|
* Insert records into this Table.
|
||||||
*
|
*
|
||||||
@@ -481,6 +553,31 @@ export class LocalTable<T = number[]> implements Table<T> {
|
|||||||
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
|
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Update rows in this table.
|
||||||
|
*
|
||||||
|
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
|
||||||
|
*
|
||||||
|
* @returns
|
||||||
|
*/
|
||||||
|
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
|
||||||
|
let filter: string | null
|
||||||
|
let updates: Record<string, string>
|
||||||
|
|
||||||
|
if ('valuesSql' in args) {
|
||||||
|
filter = args.where ?? null
|
||||||
|
updates = args.valuesSql
|
||||||
|
} else {
|
||||||
|
filter = args.where ?? null
|
||||||
|
updates = {}
|
||||||
|
for (const [key, value] of Object.entries(args.values)) {
|
||||||
|
updates[key] = toSQL(value)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return tableUpdate.call(this._tbl, filter, updates).then((newTable: any) => { this._tbl = newTable })
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Clean up old versions of the table, freeing disk space.
|
* Clean up old versions of the table, freeing disk space.
|
||||||
*
|
*
|
||||||
|
|||||||
@@ -23,27 +23,29 @@ const { tableSearch } = require('../native.js')
|
|||||||
* A builder for nearest neighbor queries for LanceDB.
|
* A builder for nearest neighbor queries for LanceDB.
|
||||||
*/
|
*/
|
||||||
export class Query<T = number[]> {
|
export class Query<T = number[]> {
|
||||||
private readonly _query: T
|
private readonly _query?: T
|
||||||
private readonly _tbl?: any
|
private readonly _tbl?: any
|
||||||
private _queryVector?: number[]
|
private _queryVector?: number[]
|
||||||
private _limit: number
|
private _limit?: number
|
||||||
private _refineFactor?: number
|
private _refineFactor?: number
|
||||||
private _nprobes: number
|
private _nprobes: number
|
||||||
private _select?: string[]
|
private _select?: string[]
|
||||||
private _filter?: string
|
private _filter?: string
|
||||||
private _metricType?: MetricType
|
private _metricType?: MetricType
|
||||||
|
private _prefilter: boolean
|
||||||
protected readonly _embeddings?: EmbeddingFunction<T>
|
protected readonly _embeddings?: EmbeddingFunction<T>
|
||||||
|
|
||||||
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
|
constructor (query?: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
|
||||||
this._tbl = tbl
|
this._tbl = tbl
|
||||||
this._query = query
|
this._query = query
|
||||||
this._limit = 10
|
this._limit = undefined
|
||||||
this._nprobes = 20
|
this._nprobes = 20
|
||||||
this._refineFactor = undefined
|
this._refineFactor = undefined
|
||||||
this._select = undefined
|
this._select = undefined
|
||||||
this._filter = undefined
|
this._filter = undefined
|
||||||
this._metricType = undefined
|
this._metricType = undefined
|
||||||
this._embeddings = embeddings
|
this._embeddings = embeddings
|
||||||
|
this._prefilter = false
|
||||||
}
|
}
|
||||||
|
|
||||||
/***
|
/***
|
||||||
@@ -102,14 +104,21 @@ export class Query<T = number[]> {
|
|||||||
return this
|
return this
|
||||||
}
|
}
|
||||||
|
|
||||||
|
prefilter (value: boolean): Query<T> {
|
||||||
|
this._prefilter = value
|
||||||
|
return this
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Execute the query and return the results as an Array of Objects
|
* Execute the query and return the results as an Array of Objects
|
||||||
*/
|
*/
|
||||||
async execute<T = Record<string, unknown>> (): Promise<T[]> {
|
async execute<T = Record<string, unknown>> (): Promise<T[]> {
|
||||||
if (this._embeddings !== undefined) {
|
if (this._query !== undefined) {
|
||||||
this._queryVector = (await this._embeddings.embed([this._query]))[0]
|
if (this._embeddings !== undefined) {
|
||||||
} else {
|
this._queryVector = (await this._embeddings.embed([this._query]))[0]
|
||||||
this._queryVector = this._query as number[]
|
} else {
|
||||||
|
this._queryVector = this._query as number[]
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const isElectron = this.isElectron()
|
const isElectron = this.isElectron()
|
||||||
|
|||||||
@@ -38,6 +38,7 @@ export class HttpLancedbClient {
|
|||||||
vector: number[],
|
vector: number[],
|
||||||
k: number,
|
k: number,
|
||||||
nprobes: number,
|
nprobes: number,
|
||||||
|
prefilter: boolean,
|
||||||
refineFactor?: number,
|
refineFactor?: number,
|
||||||
columns?: string[],
|
columns?: string[],
|
||||||
filter?: string
|
filter?: string
|
||||||
@@ -50,7 +51,8 @@ export class HttpLancedbClient {
|
|||||||
nprobes,
|
nprobes,
|
||||||
refineFactor,
|
refineFactor,
|
||||||
columns,
|
columns,
|
||||||
filter
|
filter,
|
||||||
|
prefilter
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
headers: {
|
headers: {
|
||||||
|
|||||||
@@ -16,7 +16,8 @@ import {
|
|||||||
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
|
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
|
||||||
type ConnectionOptions, type CreateTableOptions, type VectorIndex,
|
type ConnectionOptions, type CreateTableOptions, type VectorIndex,
|
||||||
type WriteOptions,
|
type WriteOptions,
|
||||||
type IndexStats
|
type IndexStats,
|
||||||
|
type UpdateArgs, type UpdateSqlArgs
|
||||||
} from '../index'
|
} from '../index'
|
||||||
import { Query } from '../query'
|
import { Query } from '../query'
|
||||||
|
|
||||||
@@ -24,6 +25,7 @@ import { Vector, Table as ArrowTable } from 'apache-arrow'
|
|||||||
import { HttpLancedbClient } from './client'
|
import { HttpLancedbClient } from './client'
|
||||||
import { isEmbeddingFunction } from '../embedding/embedding_function'
|
import { isEmbeddingFunction } from '../embedding/embedding_function'
|
||||||
import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow'
|
import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow'
|
||||||
|
import { toSQL } from '../util'
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Remote connection.
|
* Remote connection.
|
||||||
@@ -154,6 +156,7 @@ export class RemoteQuery<T = number[]> extends Query<T> {
|
|||||||
queryVector,
|
queryVector,
|
||||||
(this as any)._limit,
|
(this as any)._limit,
|
||||||
(this as any)._nprobes,
|
(this as any)._nprobes,
|
||||||
|
(this as any)._prefilter,
|
||||||
(this as any)._refineFactor,
|
(this as any)._refineFactor,
|
||||||
(this as any)._select,
|
(this as any)._select,
|
||||||
(this as any)._filter
|
(this as any)._filter
|
||||||
@@ -245,6 +248,26 @@ export class RemoteTable<T = number[]> implements Table<T> {
|
|||||||
await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
|
await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
|
||||||
}
|
}
|
||||||
|
|
||||||
|
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
|
||||||
|
let filter: string | null
|
||||||
|
let updates: Record<string, string>
|
||||||
|
|
||||||
|
if ('valuesSql' in args) {
|
||||||
|
filter = args.where ?? null
|
||||||
|
updates = args.valuesSql
|
||||||
|
} else {
|
||||||
|
filter = args.where ?? null
|
||||||
|
updates = {}
|
||||||
|
for (const [key, value] of Object.entries(args.values)) {
|
||||||
|
updates[key] = toSQL(value)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
await this._client.post(`/v1/table/${this._name}/update/`, {
|
||||||
|
predicate: filter,
|
||||||
|
updates: Object.entries(updates).map(([key, value]) => [key, value])
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
async listIndices (): Promise<VectorIndex[]> {
|
async listIndices (): Promise<VectorIndex[]> {
|
||||||
const results = await this._client.post(`/v1/table/${this._name}/index/list/`)
|
const results = await this._client.post(`/v1/table/${this._name}/index/list/`)
|
||||||
return results.data.indexes?.map((index: any) => ({
|
return results.data.indexes?.map((index: any) => ({
|
||||||
|
|||||||
@@ -78,12 +78,31 @@ describe('LanceDB client', function () {
|
|||||||
})
|
})
|
||||||
|
|
||||||
it('limits # of results', async function () {
|
it('limits # of results', async function () {
|
||||||
const uri = await createTestDB()
|
const uri = await createTestDB(2, 100)
|
||||||
const con = await lancedb.connect(uri)
|
const con = await lancedb.connect(uri)
|
||||||
const table = await con.openTable('vectors')
|
const table = await con.openTable('vectors')
|
||||||
const results = await table.search([0.1, 0.3]).limit(1).execute()
|
let results = await table.search([0.1, 0.3]).limit(1).execute()
|
||||||
assert.equal(results.length, 1)
|
assert.equal(results.length, 1)
|
||||||
assert.equal(results[0].id, 1)
|
assert.equal(results[0].id, 1)
|
||||||
|
|
||||||
|
// there is a default limit if unspecified
|
||||||
|
results = await table.search([0.1, 0.3]).execute()
|
||||||
|
assert.equal(results.length, 10)
|
||||||
|
})
|
||||||
|
|
||||||
|
it('uses a filter / where clause without vector search', async function () {
|
||||||
|
// eslint-disable-next-line @typescript-eslint/explicit-function-return-type
|
||||||
|
const assertResults = (results: Array<Record<string, unknown>>) => {
|
||||||
|
assert.equal(results.length, 50)
|
||||||
|
}
|
||||||
|
|
||||||
|
const uri = await createTestDB(2, 100)
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
const table = (await con.openTable('vectors')) as LocalTable
|
||||||
|
let results = await table.filter('id % 2 = 0').execute()
|
||||||
|
assertResults(results)
|
||||||
|
results = await table.where('id % 2 = 0').execute()
|
||||||
|
assertResults(results)
|
||||||
})
|
})
|
||||||
|
|
||||||
it('uses a filter / where clause', async function () {
|
it('uses a filter / where clause', async function () {
|
||||||
@@ -102,6 +121,20 @@ describe('LanceDB client', function () {
|
|||||||
assertResults(results)
|
assertResults(results)
|
||||||
})
|
})
|
||||||
|
|
||||||
|
it('should correctly process prefilter/postfilter', async function () {
|
||||||
|
const uri = await createTestDB(16, 300)
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
|
||||||
|
// post filter should return less than the limit
|
||||||
|
let results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(false).execute()
|
||||||
|
assert.isTrue(results.length < 10)
|
||||||
|
|
||||||
|
// pre filter should return exactly the limit
|
||||||
|
results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(true).execute()
|
||||||
|
assert.isTrue(results.length === 10)
|
||||||
|
})
|
||||||
|
|
||||||
it('select only a subset of columns', async function () {
|
it('select only a subset of columns', async function () {
|
||||||
const uri = await createTestDB()
|
const uri = await createTestDB()
|
||||||
const con = await lancedb.connect(uri)
|
const con = await lancedb.connect(uri)
|
||||||
@@ -246,6 +279,46 @@ describe('LanceDB client', function () {
|
|||||||
assert.equal(await table.countRows(), 2)
|
assert.equal(await table.countRows(), 2)
|
||||||
})
|
})
|
||||||
|
|
||||||
|
it('can update records in the table', async function () {
|
||||||
|
const uri = await createTestDB()
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
assert.equal(await table.countRows(), 2)
|
||||||
|
|
||||||
|
await table.update({ where: 'price = 10', valuesSql: { price: '100' } })
|
||||||
|
const results = await table.search([0.1, 0.2]).execute()
|
||||||
|
assert.equal(results[0].price, 100)
|
||||||
|
assert.equal(results[1].price, 11)
|
||||||
|
})
|
||||||
|
|
||||||
|
it('can update the records using a literal value', async function () {
|
||||||
|
const uri = await createTestDB()
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
assert.equal(await table.countRows(), 2)
|
||||||
|
|
||||||
|
await table.update({ where: 'price = 10', values: { price: 100 } })
|
||||||
|
const results = await table.search([0.1, 0.2]).execute()
|
||||||
|
assert.equal(results[0].price, 100)
|
||||||
|
assert.equal(results[1].price, 11)
|
||||||
|
})
|
||||||
|
|
||||||
|
it('can update every record in the table', async function () {
|
||||||
|
const uri = await createTestDB()
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
assert.equal(await table.countRows(), 2)
|
||||||
|
|
||||||
|
await table.update({ valuesSql: { price: '100' } })
|
||||||
|
const results = await table.search([0.1, 0.2]).execute()
|
||||||
|
|
||||||
|
assert.equal(results[0].price, 100)
|
||||||
|
assert.equal(results[1].price, 100)
|
||||||
|
})
|
||||||
|
|
||||||
it('can delete records from a table', async function () {
|
it('can delete records from a table', async function () {
|
||||||
const uri = await createTestDB()
|
const uri = await createTestDB()
|
||||||
const con = await lancedb.connect(uri)
|
const con = await lancedb.connect(uri)
|
||||||
@@ -528,7 +601,7 @@ describe('Compact and cleanup', function () {
|
|||||||
|
|
||||||
// should have no effect, but this validates the arguments are parsed.
|
// should have no effect, but this validates the arguments are parsed.
|
||||||
await table.compactFiles({
|
await table.compactFiles({
|
||||||
targetRowsPerFragment: 1024 * 10,
|
targetRowsPerFragment: 102410,
|
||||||
maxRowsPerGroup: 1024,
|
maxRowsPerGroup: 1024,
|
||||||
materializeDeletions: true,
|
materializeDeletions: true,
|
||||||
materializeDeletionsThreshold: 0.5,
|
materializeDeletionsThreshold: 0.5,
|
||||||
|
|||||||
45
node/src/test/util.ts
Normal file
45
node/src/test/util.ts
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
// Copyright 2023 LanceDB Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
import { toSQL } from '../util'
|
||||||
|
import * as chai from 'chai'
|
||||||
|
|
||||||
|
const expect = chai.expect
|
||||||
|
|
||||||
|
describe('toSQL', function () {
|
||||||
|
it('should turn string to SQL expression', function () {
|
||||||
|
expect(toSQL('foo')).to.equal("'foo'")
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should turn number to SQL expression', function () {
|
||||||
|
expect(toSQL(123)).to.equal('123')
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should turn boolean to SQL expression', function () {
|
||||||
|
expect(toSQL(true)).to.equal('TRUE')
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should turn null to SQL expression', function () {
|
||||||
|
expect(toSQL(null)).to.equal('NULL')
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should turn Date to SQL expression', function () {
|
||||||
|
const date = new Date('05 October 2011 14:48 UTC')
|
||||||
|
expect(toSQL(date)).to.equal("'2011-10-05T14:48:00.000Z'")
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should turn array to SQL expression', function () {
|
||||||
|
expect(toSQL(['foo', 'bar', true, 1])).to.equal("['foo', 'bar', TRUE, 1]")
|
||||||
|
})
|
||||||
|
})
|
||||||
44
node/src/util.ts
Normal file
44
node/src/util.ts
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
// Copyright 2023 LanceDB Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
export type Literal = string | number | boolean | null | Date | Literal[]
|
||||||
|
|
||||||
|
export function toSQL (value: Literal): string {
|
||||||
|
if (typeof value === 'string') {
|
||||||
|
return `'${value}'`
|
||||||
|
}
|
||||||
|
|
||||||
|
if (typeof value === 'number') {
|
||||||
|
return value.toString()
|
||||||
|
}
|
||||||
|
|
||||||
|
if (typeof value === 'boolean') {
|
||||||
|
return value ? 'TRUE' : 'FALSE'
|
||||||
|
}
|
||||||
|
|
||||||
|
if (value === null) {
|
||||||
|
return 'NULL'
|
||||||
|
}
|
||||||
|
|
||||||
|
if (value instanceof Date) {
|
||||||
|
return `'${value.toISOString()}'`
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Array.isArray(value)) {
|
||||||
|
return `[${value.map(toSQL).join(', ')}]`
|
||||||
|
}
|
||||||
|
|
||||||
|
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
|
||||||
|
throw new Error(`Unsupported value type: ${typeof value} value: (${value})`)
|
||||||
|
}
|
||||||
@@ -1,5 +1,5 @@
|
|||||||
[bumpversion]
|
[bumpversion]
|
||||||
current_version = 0.3.4
|
current_version = 0.3.6
|
||||||
commit = True
|
commit = True
|
||||||
message = [python] Bump version: {current_version} → {new_version}
|
message = [python] Bump version: {current_version} → {new_version}
|
||||||
tag = True
|
tag = True
|
||||||
|
|||||||
@@ -27,7 +27,7 @@ def connect(
|
|||||||
uri: URI,
|
uri: URI,
|
||||||
*,
|
*,
|
||||||
api_key: Optional[str] = None,
|
api_key: Optional[str] = None,
|
||||||
region: str = "us-west-2",
|
region: str = "us-east-1",
|
||||||
host_override: Optional[str] = None,
|
host_override: Optional[str] = None,
|
||||||
) -> DBConnection:
|
) -> DBConnection:
|
||||||
"""Connect to a LanceDB database.
|
"""Connect to a LanceDB database.
|
||||||
@@ -39,7 +39,7 @@ def connect(
|
|||||||
api_key: str, optional
|
api_key: str, optional
|
||||||
If presented, connect to LanceDB cloud.
|
If presented, connect to LanceDB cloud.
|
||||||
Otherwise, connect to a database on file system or cloud storage.
|
Otherwise, connect to a database on file system or cloud storage.
|
||||||
region: str, default "us-west-2"
|
region: str, default "us-east-1"
|
||||||
The region to use for LanceDB Cloud.
|
The region to use for LanceDB Cloud.
|
||||||
host_override: str, optional
|
host_override: str, optional
|
||||||
The override url for LanceDB Cloud.
|
The override url for LanceDB Cloud.
|
||||||
|
|||||||
@@ -348,3 +348,20 @@ def get_extras(field_info: pydantic.fields.FieldInfo, key: str) -> Any:
|
|||||||
if PYDANTIC_VERSION.major >= 2:
|
if PYDANTIC_VERSION.major >= 2:
|
||||||
return (field_info.json_schema_extra or {}).get(key)
|
return (field_info.json_schema_extra or {}).get(key)
|
||||||
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
|
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
|
||||||
|
|
||||||
|
|
||||||
|
if PYDANTIC_VERSION.major < 2:
|
||||||
|
|
||||||
|
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
|
||||||
|
"""
|
||||||
|
Convert a Pydantic model to a dictionary.
|
||||||
|
"""
|
||||||
|
return model.dict()
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
|
||||||
|
"""
|
||||||
|
Convert a Pydantic model to a dictionary.
|
||||||
|
"""
|
||||||
|
return model.model_dump()
|
||||||
|
|||||||
@@ -18,6 +18,8 @@ import attrs
|
|||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from lancedb.common import VECTOR_COLUMN_NAME
|
||||||
|
|
||||||
__all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"]
|
__all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"]
|
||||||
|
|
||||||
|
|
||||||
@@ -43,6 +45,8 @@ class VectorQuery(BaseModel):
|
|||||||
|
|
||||||
refine_factor: Optional[int] = None
|
refine_factor: Optional[int] = None
|
||||||
|
|
||||||
|
vector_column: str = VECTOR_COLUMN_NAME
|
||||||
|
|
||||||
|
|
||||||
@attrs.define
|
@attrs.define
|
||||||
class VectorQueryResult:
|
class VectorQueryResult:
|
||||||
|
|||||||
@@ -28,6 +28,7 @@ from ..pydantic import LanceModel
|
|||||||
from ..table import Table, _sanitize_data
|
from ..table import Table, _sanitize_data
|
||||||
from .arrow import to_ipc_binary
|
from .arrow import to_ipc_binary
|
||||||
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
|
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
|
||||||
|
from .errors import LanceDBClientError
|
||||||
|
|
||||||
|
|
||||||
class RemoteDBConnection(DBConnection):
|
class RemoteDBConnection(DBConnection):
|
||||||
@@ -55,16 +56,20 @@ class RemoteDBConnection(DBConnection):
|
|||||||
self._loop = asyncio.get_event_loop()
|
self._loop = asyncio.get_event_loop()
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
def __repr__(self) -> str:
|
||||||
return f"RemoveConnect(name={self.db_name})"
|
return f"RemoteConnect(name={self.db_name})"
|
||||||
|
|
||||||
@override
|
@override
|
||||||
def table_names(self, page_token: Optional[str] = None, limit=10) -> Iterable[str]:
|
def table_names(
|
||||||
|
self, page_token: Optional[str] = None, limit: int = 10
|
||||||
|
) -> Iterable[str]:
|
||||||
"""List the names of all tables in the database.
|
"""List the names of all tables in the database.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
page_token: str
|
page_token: str
|
||||||
The last token to start the new page.
|
The last token to start the new page.
|
||||||
|
limit: int, default 10
|
||||||
|
The maximum number of tables to return for each page.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
@@ -101,11 +106,12 @@ class RemoteDBConnection(DBConnection):
|
|||||||
self._loop.run_until_complete(
|
self._loop.run_until_complete(
|
||||||
self._client.post(f"/v1/table/{name}/describe/")
|
self._client.post(f"/v1/table/{name}/describe/")
|
||||||
)
|
)
|
||||||
except Exception:
|
except LanceDBClientError as err:
|
||||||
logging.error(
|
if str(err).startswith("Not found"):
|
||||||
"Table {name} does not exist."
|
logging.error(
|
||||||
"Please first call db.create_table({name}, data)"
|
f"Table {name} does not exist. "
|
||||||
)
|
f"Please first call db.create_table({name}, data)"
|
||||||
|
)
|
||||||
return RemoteTable(self, name)
|
return RemoteTable(self, name)
|
||||||
|
|
||||||
@override
|
@override
|
||||||
@@ -118,6 +124,97 @@ class RemoteDBConnection(DBConnection):
|
|||||||
fill_value: float = 0.0,
|
fill_value: float = 0.0,
|
||||||
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
||||||
) -> Table:
|
) -> Table:
|
||||||
|
"""Create a [Table][lancedb.table.Table] in the database.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
name: str
|
||||||
|
The name of the table.
|
||||||
|
data: The data to initialize the table, *optional*
|
||||||
|
User must provide at least one of `data` or `schema`.
|
||||||
|
Acceptable types are:
|
||||||
|
|
||||||
|
- dict or list-of-dict
|
||||||
|
|
||||||
|
- pandas.DataFrame
|
||||||
|
|
||||||
|
- pyarrow.Table or pyarrow.RecordBatch
|
||||||
|
schema: The schema of the table, *optional*
|
||||||
|
Acceptable types are:
|
||||||
|
|
||||||
|
- pyarrow.Schema
|
||||||
|
|
||||||
|
- [LanceModel][lancedb.pydantic.LanceModel]
|
||||||
|
on_bad_vectors: str, default "error"
|
||||||
|
What to do if any of the vectors are not the same size or contains NaNs.
|
||||||
|
One of "error", "drop", "fill".
|
||||||
|
fill_value: float
|
||||||
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
LanceTable
|
||||||
|
A reference to the newly created table.
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
|
||||||
|
The vector index won't be created by default.
|
||||||
|
To create the index, call the `create_index` method on the table.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
|
||||||
|
Can create with list of tuples or dictionaries:
|
||||||
|
|
||||||
|
>>> import lancedb
|
||||||
|
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
|
||||||
|
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
|
||||||
|
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
|
||||||
|
>>> db.create_table("my_table", data) # doctest: +SKIP
|
||||||
|
LanceTable(my_table)
|
||||||
|
|
||||||
|
You can also pass a pandas DataFrame:
|
||||||
|
|
||||||
|
>>> import pandas as pd
|
||||||
|
>>> data = pd.DataFrame({
|
||||||
|
... "vector": [[1.1, 1.2], [0.2, 1.8]],
|
||||||
|
... "lat": [45.5, 40.1],
|
||||||
|
... "long": [-122.7, -74.1]
|
||||||
|
... })
|
||||||
|
>>> db.create_table("table2", data) # doctest: +SKIP
|
||||||
|
LanceTable(table2)
|
||||||
|
|
||||||
|
>>> custom_schema = pa.schema([
|
||||||
|
... pa.field("vector", pa.list_(pa.float32(), 2)),
|
||||||
|
... pa.field("lat", pa.float32()),
|
||||||
|
... pa.field("long", pa.float32())
|
||||||
|
... ])
|
||||||
|
>>> db.create_table("table3", data, schema = custom_schema) # doctest: +SKIP
|
||||||
|
LanceTable(table3)
|
||||||
|
|
||||||
|
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
|
||||||
|
|
||||||
|
>>> import pyarrow as pa
|
||||||
|
>>> def make_batches():
|
||||||
|
... for i in range(5):
|
||||||
|
... yield pa.RecordBatch.from_arrays(
|
||||||
|
... [
|
||||||
|
... pa.array([[3.1, 4.1], [5.9, 26.5]],
|
||||||
|
... pa.list_(pa.float32(), 2)),
|
||||||
|
... pa.array(["foo", "bar"]),
|
||||||
|
... pa.array([10.0, 20.0]),
|
||||||
|
... ],
|
||||||
|
... ["vector", "item", "price"],
|
||||||
|
... )
|
||||||
|
>>> schema=pa.schema([
|
||||||
|
... pa.field("vector", pa.list_(pa.float32(), 2)),
|
||||||
|
... pa.field("item", pa.utf8()),
|
||||||
|
... pa.field("price", pa.float32()),
|
||||||
|
... ])
|
||||||
|
>>> db.create_table("table4", make_batches(), schema=schema) # doctest: +SKIP
|
||||||
|
LanceTable(table4)
|
||||||
|
|
||||||
|
"""
|
||||||
if data is None and schema is None:
|
if data is None and schema is None:
|
||||||
raise ValueError("Either data or schema must be provided.")
|
raise ValueError("Either data or schema must be provided.")
|
||||||
if embedding_functions is not None:
|
if embedding_functions is not None:
|
||||||
|
|||||||
@@ -13,7 +13,7 @@
|
|||||||
|
|
||||||
import uuid
|
import uuid
|
||||||
from functools import cached_property
|
from functools import cached_property
|
||||||
from typing import Optional, Union
|
from typing import Dict, Optional, Union
|
||||||
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from lance import json_to_schema
|
from lance import json_to_schema
|
||||||
@@ -22,6 +22,7 @@ from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
|
|||||||
|
|
||||||
from ..query import LanceVectorQueryBuilder
|
from ..query import LanceVectorQueryBuilder
|
||||||
from ..table import Query, Table, _sanitize_data
|
from ..table import Query, Table, _sanitize_data
|
||||||
|
from ..util import value_to_sql
|
||||||
from .arrow import to_ipc_binary
|
from .arrow import to_ipc_binary
|
||||||
from .client import ARROW_STREAM_CONTENT_TYPE
|
from .client import ARROW_STREAM_CONTENT_TYPE
|
||||||
from .db import RemoteDBConnection
|
from .db import RemoteDBConnection
|
||||||
@@ -37,7 +38,10 @@ class RemoteTable(Table):
|
|||||||
|
|
||||||
@cached_property
|
@cached_property
|
||||||
def schema(self) -> pa.Schema:
|
def schema(self) -> pa.Schema:
|
||||||
"""Return the schema of the table."""
|
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
|
||||||
|
of this Table
|
||||||
|
|
||||||
|
"""
|
||||||
resp = self._conn._loop.run_until_complete(
|
resp = self._conn._loop.run_until_complete(
|
||||||
self._conn._client.post(f"/v1/table/{self._name}/describe/")
|
self._conn._client.post(f"/v1/table/{self._name}/describe/")
|
||||||
)
|
)
|
||||||
@@ -53,24 +57,17 @@ class RemoteTable(Table):
|
|||||||
return resp["version"]
|
return resp["version"]
|
||||||
|
|
||||||
def to_arrow(self) -> pa.Table:
|
def to_arrow(self) -> pa.Table:
|
||||||
"""Return the table as an Arrow table."""
|
"""to_arrow() is not supported on the LanceDB cloud"""
|
||||||
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
|
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
|
||||||
|
|
||||||
def to_pandas(self):
|
def to_pandas(self):
|
||||||
"""Return the table as a Pandas DataFrame.
|
"""to_pandas() is not supported on the LanceDB cloud"""
|
||||||
|
|
||||||
Intercept `to_arrow()` for better error message.
|
|
||||||
"""
|
|
||||||
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
|
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
|
||||||
|
|
||||||
def create_index(
|
def create_index(
|
||||||
self,
|
self,
|
||||||
metric="L2",
|
metric="L2",
|
||||||
num_partitions=256,
|
|
||||||
num_sub_vectors=96,
|
|
||||||
vector_column_name: str = VECTOR_COLUMN_NAME,
|
vector_column_name: str = VECTOR_COLUMN_NAME,
|
||||||
replace: bool = True,
|
|
||||||
accelerator: Optional[str] = None,
|
|
||||||
index_cache_size: Optional[int] = None,
|
index_cache_size: Optional[int] = None,
|
||||||
):
|
):
|
||||||
"""Create an index on the table.
|
"""Create an index on the table.
|
||||||
@@ -81,39 +78,28 @@ class RemoteTable(Table):
|
|||||||
----------
|
----------
|
||||||
metric : str
|
metric : str
|
||||||
The metric to use for the index. Default is "L2".
|
The metric to use for the index. Default is "L2".
|
||||||
num_partitions : int
|
|
||||||
The number of partitions to use for the index. Default is 256.
|
|
||||||
num_sub_vectors : int
|
|
||||||
The number of sub-vectors to use for the index. Default is 96.
|
|
||||||
vector_column_name : str
|
vector_column_name : str
|
||||||
The name of the vector column. Default is "vector".
|
The name of the vector column. Default is "vector".
|
||||||
replace : bool
|
|
||||||
Whether to replace the existing index. Default is True.
|
|
||||||
accelerator : str, optional
|
|
||||||
If set, use the given accelerator to create the index.
|
|
||||||
Default is None. Currently not supported.
|
|
||||||
index_cache_size : int, optional
|
|
||||||
The size of the index cache in number of entries. Default value is 256.
|
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
import lancedb
|
>>> import lancedb
|
||||||
import uuid
|
>>> import uuid
|
||||||
from lancedb.schema import vector
|
>>> from lancedb.schema import vector
|
||||||
conn = lancedb.connect("db://...", api_key="...", region="...")
|
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
|
||||||
table_name = uuid.uuid4().hex
|
>>> table_name = uuid.uuid4().hex
|
||||||
schema = pa.schema(
|
>>> schema = pa.schema(
|
||||||
[
|
... [
|
||||||
pa.field("id", pa.uint32(), False),
|
... pa.field("id", pa.uint32(), False),
|
||||||
pa.field("vector", vector(128), False),
|
... pa.field("vector", vector(128), False),
|
||||||
pa.field("s", pa.string(), False),
|
... pa.field("s", pa.string(), False),
|
||||||
]
|
... ]
|
||||||
)
|
... )
|
||||||
table = conn.create_table(
|
>>> table = db.create_table( # doctest: +SKIP
|
||||||
table_name,
|
... table_name, # doctest: +SKIP
|
||||||
schema=schema,
|
... schema=schema, # doctest: +SKIP
|
||||||
)
|
... )
|
||||||
table.create_index()
|
>>> table.create_index("L2", "vector") # doctest: +SKIP
|
||||||
"""
|
"""
|
||||||
index_type = "vector"
|
index_type = "vector"
|
||||||
|
|
||||||
@@ -135,6 +121,28 @@ class RemoteTable(Table):
|
|||||||
on_bad_vectors: str = "error",
|
on_bad_vectors: str = "error",
|
||||||
fill_value: float = 0.0,
|
fill_value: float = 0.0,
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Add more data to the [Table](Table). It has the same API signature as the OSS version.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
data: DATA
|
||||||
|
The data to insert into the table. Acceptable types are:
|
||||||
|
|
||||||
|
- dict or list-of-dict
|
||||||
|
|
||||||
|
- pandas.DataFrame
|
||||||
|
|
||||||
|
- pyarrow.Table or pyarrow.RecordBatch
|
||||||
|
mode: str
|
||||||
|
The mode to use when writing the data. Valid values are
|
||||||
|
"append" and "overwrite".
|
||||||
|
on_bad_vectors: str, default "error"
|
||||||
|
What to do if any of the vectors are not the same size or contains NaNs.
|
||||||
|
One of "error", "drop", "fill".
|
||||||
|
fill_value: float, default 0.
|
||||||
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||||
|
|
||||||
|
"""
|
||||||
data = _sanitize_data(
|
data = _sanitize_data(
|
||||||
data,
|
data,
|
||||||
self.schema,
|
self.schema,
|
||||||
@@ -158,6 +166,58 @@ class RemoteTable(Table):
|
|||||||
def search(
|
def search(
|
||||||
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
|
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
|
||||||
) -> LanceVectorQueryBuilder:
|
) -> LanceVectorQueryBuilder:
|
||||||
|
"""Create a search query to find the nearest neighbors
|
||||||
|
of the given query vector. We currently support [vector search][search]
|
||||||
|
|
||||||
|
All query options are defined in [Query][lancedb.query.Query].
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
|
||||||
|
>>> data = [
|
||||||
|
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
|
||||||
|
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
|
||||||
|
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
|
||||||
|
... ]
|
||||||
|
>>> table = db.create_table("my_table", data) # doctest: +SKIP
|
||||||
|
>>> query = [0.4, 1.4, 2.4]
|
||||||
|
>>> (table.search(query, vector_column_name="vector") # doctest: +SKIP
|
||||||
|
... .where("original_width > 1000", prefilter=True) # doctest: +SKIP
|
||||||
|
... .select(["caption", "original_width"]) # doctest: +SKIP
|
||||||
|
... .limit(2) # doctest: +SKIP
|
||||||
|
... .to_pandas()) # doctest: +SKIP
|
||||||
|
caption original_width vector _distance # doctest: +SKIP
|
||||||
|
0 foo 2000 [0.5, 3.4, 1.3] 5.220000 # doctest: +SKIP
|
||||||
|
1 test 3000 [0.3, 6.2, 2.6] 23.089996 # doctest: +SKIP
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
query: list/np.ndarray/str/PIL.Image.Image, default None
|
||||||
|
The targetted vector to search for.
|
||||||
|
|
||||||
|
- *default None*.
|
||||||
|
Acceptable types are: list, np.ndarray, PIL.Image.Image
|
||||||
|
|
||||||
|
- If None then the select/where/limit clauses are applied to filter
|
||||||
|
the table
|
||||||
|
vector_column_name: str
|
||||||
|
The name of the vector column to search.
|
||||||
|
*default "vector"*
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
LanceQueryBuilder
|
||||||
|
A query builder object representing the query.
|
||||||
|
Once executed, the query returns
|
||||||
|
|
||||||
|
- selected columns
|
||||||
|
|
||||||
|
- the vector
|
||||||
|
|
||||||
|
- and also the "_distance" column which is the distance between the query
|
||||||
|
vector and the returned vector.
|
||||||
|
"""
|
||||||
return LanceVectorQueryBuilder(self, query, vector_column_name)
|
return LanceVectorQueryBuilder(self, query, vector_column_name)
|
||||||
|
|
||||||
def _execute_query(self, query: Query) -> pa.Table:
|
def _execute_query(self, query: Query) -> pa.Table:
|
||||||
@@ -165,8 +225,114 @@ class RemoteTable(Table):
|
|||||||
return self._conn._loop.run_until_complete(result).to_arrow()
|
return self._conn._loop.run_until_complete(result).to_arrow()
|
||||||
|
|
||||||
def delete(self, predicate: str):
|
def delete(self, predicate: str):
|
||||||
"""Delete rows from the table."""
|
"""Delete rows from the table.
|
||||||
|
|
||||||
|
This can be used to delete a single row, many rows, all rows, or
|
||||||
|
sometimes no rows (if your predicate matches nothing).
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
predicate: str
|
||||||
|
The SQL where clause to use when deleting rows.
|
||||||
|
|
||||||
|
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
|
||||||
|
|
||||||
|
The filter must not be empty, or it will error.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> data = [
|
||||||
|
... {"x": 1, "vector": [1, 2]},
|
||||||
|
... {"x": 2, "vector": [3, 4]},
|
||||||
|
... {"x": 3, "vector": [5, 6]}
|
||||||
|
... ]
|
||||||
|
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
|
||||||
|
>>> table = db.create_table("my_table", data) # doctest: +SKIP
|
||||||
|
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
|
||||||
|
x vector _distance # doctest: +SKIP
|
||||||
|
0 3 [5.0, 6.0] 41.0 # doctest: +SKIP
|
||||||
|
1 2 [3.0, 4.0] 85.0 # doctest: +SKIP
|
||||||
|
2 1 [1.0, 2.0] 145.0 # doctest: +SKIP
|
||||||
|
>>> table.delete("x = 2") # doctest: +SKIP
|
||||||
|
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
|
||||||
|
x vector _distance # doctest: +SKIP
|
||||||
|
0 3 [5.0, 6.0] 41.0 # doctest: +SKIP
|
||||||
|
1 1 [1.0, 2.0] 145.0 # doctest: +SKIP
|
||||||
|
|
||||||
|
If you have a list of values to delete, you can combine them into a
|
||||||
|
stringified list and use the `IN` operator:
|
||||||
|
|
||||||
|
>>> to_remove = [1, 3] # doctest: +SKIP
|
||||||
|
>>> to_remove = ", ".join([str(v) for v in to_remove]) # doctest: +SKIP
|
||||||
|
>>> table.delete(f"x IN ({to_remove})") # doctest: +SKIP
|
||||||
|
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
|
||||||
|
x vector _distance # doctest: +SKIP
|
||||||
|
0 2 [3.0, 4.0] 85.0 # doctest: +SKIP
|
||||||
|
"""
|
||||||
payload = {"predicate": predicate}
|
payload = {"predicate": predicate}
|
||||||
self._conn._loop.run_until_complete(
|
self._conn._loop.run_until_complete(
|
||||||
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)
|
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def update(
|
||||||
|
self,
|
||||||
|
where: Optional[str] = None,
|
||||||
|
values: Optional[dict] = None,
|
||||||
|
*,
|
||||||
|
values_sql: Optional[Dict[str, str]] = None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
This can be used to update zero to all rows depending on how many
|
||||||
|
rows match the where clause.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
where: str, optional
|
||||||
|
The SQL where clause to use when updating rows. For example, 'x = 2'
|
||||||
|
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
||||||
|
values: dict, optional
|
||||||
|
The values to update. The keys are the column names and the values
|
||||||
|
are the values to set.
|
||||||
|
values_sql: dict, optional
|
||||||
|
The values to update, expressed as SQL expression strings. These can
|
||||||
|
reference existing columns. For example, {"x": "x + 1"} will increment
|
||||||
|
the x column by 1.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> data = [
|
||||||
|
... {"x": 1, "vector": [1, 2]},
|
||||||
|
... {"x": 2, "vector": [3, 4]},
|
||||||
|
... {"x": 3, "vector": [5, 6]}
|
||||||
|
... ]
|
||||||
|
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
|
||||||
|
>>> table = db.create_table("my_table", data) # doctest: +SKIP
|
||||||
|
>>> table.to_pandas() # doctest: +SKIP
|
||||||
|
x vector # doctest: +SKIP
|
||||||
|
0 1 [1.0, 2.0] # doctest: +SKIP
|
||||||
|
1 2 [3.0, 4.0] # doctest: +SKIP
|
||||||
|
2 3 [5.0, 6.0] # doctest: +SKIP
|
||||||
|
>>> table.update(where="x = 2", values={"vector": [10, 10]}) # doctest: +SKIP
|
||||||
|
>>> table.to_pandas() # doctest: +SKIP
|
||||||
|
x vector # doctest: +SKIP
|
||||||
|
0 1 [1.0, 2.0] # doctest: +SKIP
|
||||||
|
1 3 [5.0, 6.0] # doctest: +SKIP
|
||||||
|
2 2 [10.0, 10.0] # doctest: +SKIP
|
||||||
|
|
||||||
|
"""
|
||||||
|
if values is not None and values_sql is not None:
|
||||||
|
raise ValueError("Only one of values or values_sql can be provided")
|
||||||
|
if values is None and values_sql is None:
|
||||||
|
raise ValueError("Either values or values_sql must be provided")
|
||||||
|
|
||||||
|
if values is not None:
|
||||||
|
updates = [[k, value_to_sql(v)] for k, v in values.items()]
|
||||||
|
else:
|
||||||
|
updates = [[k, v] for k, v in values_sql.items()]
|
||||||
|
|
||||||
|
payload = {"predicate": where, "updates": updates}
|
||||||
|
self._conn._loop.run_until_complete(
|
||||||
|
self._conn._client.post(f"/v1/table/{self._name}/update/", data=payload)
|
||||||
|
)
|
||||||
|
|||||||
@@ -17,7 +17,7 @@ import inspect
|
|||||||
import os
|
import os
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from functools import cached_property
|
from functools import cached_property
|
||||||
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Union
|
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Union
|
||||||
|
|
||||||
import lance
|
import lance
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -28,9 +28,9 @@ from lance.vector import vec_to_table
|
|||||||
|
|
||||||
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||||
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
||||||
from .pydantic import LanceModel
|
from .pydantic import LanceModel, model_to_dict
|
||||||
from .query import LanceQueryBuilder, Query
|
from .query import LanceQueryBuilder, Query
|
||||||
from .util import fs_from_uri, safe_import_pandas
|
from .util import fs_from_uri, safe_import_pandas, value_to_sql
|
||||||
from .utils.events import register_event
|
from .utils.events import register_event
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
@@ -53,8 +53,10 @@ def _sanitize_data(
|
|||||||
# convert to list of dict if data is a bunch of LanceModels
|
# convert to list of dict if data is a bunch of LanceModels
|
||||||
if isinstance(data[0], LanceModel):
|
if isinstance(data[0], LanceModel):
|
||||||
schema = data[0].__class__.to_arrow_schema()
|
schema = data[0].__class__.to_arrow_schema()
|
||||||
data = [dict(d) for d in data]
|
data = [model_to_dict(d) for d in data]
|
||||||
data = pa.Table.from_pylist(data)
|
data = pa.Table.from_pylist(data, schema=schema)
|
||||||
|
else:
|
||||||
|
data = pa.Table.from_pylist(data)
|
||||||
elif isinstance(data, dict):
|
elif isinstance(data, dict):
|
||||||
data = vec_to_table(data)
|
data = vec_to_table(data)
|
||||||
elif pd is not None and isinstance(data, pd.DataFrame):
|
elif pd is not None and isinstance(data, pd.DataFrame):
|
||||||
@@ -785,7 +787,7 @@ class LanceTable(Table):
|
|||||||
and also the "_distance" column which is the distance between the query
|
and also the "_distance" column which is the distance between the query
|
||||||
vector and the returned vector.
|
vector and the returned vector.
|
||||||
"""
|
"""
|
||||||
register_event("search")
|
register_event("search_table")
|
||||||
return LanceQueryBuilder.create(
|
return LanceQueryBuilder.create(
|
||||||
self, query, query_type, vector_column_name=vector_column_name
|
self, query, query_type, vector_column_name=vector_column_name
|
||||||
)
|
)
|
||||||
@@ -906,35 +908,42 @@ class LanceTable(Table):
|
|||||||
f"Table {name} does not exist."
|
f"Table {name} does not exist."
|
||||||
f"Please first call db.create_table({name}, data)"
|
f"Please first call db.create_table({name}, data)"
|
||||||
)
|
)
|
||||||
|
register_event("open_table")
|
||||||
|
|
||||||
return tbl
|
return tbl
|
||||||
|
|
||||||
def delete(self, where: str):
|
def delete(self, where: str):
|
||||||
self._dataset.delete(where)
|
self._dataset.delete(where)
|
||||||
|
|
||||||
def update(self, where: str, values: dict):
|
def update(
|
||||||
|
self,
|
||||||
|
where: Optional[str] = None,
|
||||||
|
values: Optional[dict] = None,
|
||||||
|
*,
|
||||||
|
values_sql: Optional[Dict[str, str]] = None,
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
EXPERIMENTAL: Update rows in the table (not threadsafe).
|
|
||||||
|
|
||||||
This can be used to update zero to all rows depending on how many
|
This can be used to update zero to all rows depending on how many
|
||||||
rows match the where clause.
|
rows match the where clause.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
where: str
|
where: str, optional
|
||||||
The SQL where clause to use when updating rows. For example, 'x = 2'
|
The SQL where clause to use when updating rows. For example, 'x = 2'
|
||||||
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
||||||
values: dict
|
values: dict, optional
|
||||||
The values to update. The keys are the column names and the values
|
The values to update. The keys are the column names and the values
|
||||||
are the values to set.
|
are the values to set.
|
||||||
|
values_sql: dict, optional
|
||||||
|
The values to update, expressed as SQL expression strings. These can
|
||||||
|
reference existing columns. For example, {"x": "x + 1"} will increment
|
||||||
|
the x column by 1.
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
>>> import lancedb
|
>>> import lancedb
|
||||||
>>> data = [
|
>>> import pandas as pd
|
||||||
... {"x": 1, "vector": [1, 2]},
|
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
|
||||||
... {"x": 2, "vector": [3, 4]},
|
|
||||||
... {"x": 3, "vector": [5, 6]}
|
|
||||||
... ]
|
|
||||||
>>> db = lancedb.connect("./.lancedb")
|
>>> db = lancedb.connect("./.lancedb")
|
||||||
>>> table = db.create_table("my_table", data)
|
>>> table = db.create_table("my_table", data)
|
||||||
>>> table.to_pandas()
|
>>> table.to_pandas()
|
||||||
@@ -950,18 +959,15 @@ class LanceTable(Table):
|
|||||||
2 2 [10.0, 10.0]
|
2 2 [10.0, 10.0]
|
||||||
|
|
||||||
"""
|
"""
|
||||||
orig_data = self._dataset.to_table(filter=where).combine_chunks()
|
if values is not None and values_sql is not None:
|
||||||
if len(orig_data) == 0:
|
raise ValueError("Only one of values or values_sql can be provided")
|
||||||
return
|
if values is None and values_sql is None:
|
||||||
for col, val in values.items():
|
raise ValueError("Either values or values_sql must be provided")
|
||||||
i = orig_data.column_names.index(col)
|
|
||||||
if i < 0:
|
if values is not None:
|
||||||
raise ValueError(f"Column {col} does not exist")
|
values_sql = {k: value_to_sql(v) for k, v in values.items()}
|
||||||
orig_data = orig_data.set_column(
|
|
||||||
i, col, pa.array([val] * len(orig_data), type=orig_data[col].type)
|
self.to_lance().update(values_sql, where)
|
||||||
)
|
|
||||||
self.delete(where)
|
|
||||||
self.add(orig_data, mode="append")
|
|
||||||
self._reset_dataset()
|
self._reset_dataset()
|
||||||
register_event("update")
|
register_event("update")
|
||||||
|
|
||||||
|
|||||||
@@ -12,9 +12,12 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
from datetime import date, datetime
|
||||||
|
from functools import singledispatch
|
||||||
from typing import Tuple
|
from typing import Tuple
|
||||||
from urllib.parse import urlparse
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
import pyarrow.fs as pa_fs
|
import pyarrow.fs as pa_fs
|
||||||
|
|
||||||
|
|
||||||
@@ -88,3 +91,53 @@ def safe_import_pandas():
|
|||||||
return pd
|
return pd
|
||||||
except ImportError:
|
except ImportError:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
@singledispatch
|
||||||
|
def value_to_sql(value):
|
||||||
|
raise NotImplementedError("SQL conversion is not implemented for this type")
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(str)
|
||||||
|
def _(value: str):
|
||||||
|
return f"'{value}'"
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(int)
|
||||||
|
def _(value: int):
|
||||||
|
return str(value)
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(float)
|
||||||
|
def _(value: float):
|
||||||
|
return str(value)
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(bool)
|
||||||
|
def _(value: bool):
|
||||||
|
return str(value).upper()
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(type(None))
|
||||||
|
def _(value: type(None)):
|
||||||
|
return "NULL"
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(datetime)
|
||||||
|
def _(value: datetime):
|
||||||
|
return f"'{value.isoformat()}'"
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(date)
|
||||||
|
def _(value: date):
|
||||||
|
return f"'{value.isoformat()}'"
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(list)
|
||||||
|
def _(value: list):
|
||||||
|
return "[" + ", ".join(map(value_to_sql, value)) + "]"
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(np.ndarray)
|
||||||
|
def _(value: np.ndarray):
|
||||||
|
return value_to_sql(value.tolist())
|
||||||
|
|||||||
@@ -64,8 +64,10 @@ class _Events:
|
|||||||
Initializes the Events object with default values for events, rate_limit, and metadata.
|
Initializes the Events object with default values for events, rate_limit, and metadata.
|
||||||
"""
|
"""
|
||||||
self.events = [] # events list
|
self.events = [] # events list
|
||||||
self.max_events = 25 # max events to store in memory
|
self.throttled_event_names = ["search_table"]
|
||||||
self.rate_limit = 60.0 # rate limit (seconds)
|
self.throttled_events = set()
|
||||||
|
self.max_events = 5 # max events to store in memory
|
||||||
|
self.rate_limit = 60.0 * 5 # rate limit (seconds)
|
||||||
self.time = 0.0
|
self.time = 0.0
|
||||||
|
|
||||||
if is_git_dir():
|
if is_git_dir():
|
||||||
@@ -112,18 +114,21 @@ class _Events:
|
|||||||
return
|
return
|
||||||
if (
|
if (
|
||||||
len(self.events) < self.max_events
|
len(self.events) < self.max_events
|
||||||
): # Events list limited to 25 events (drop any events past this)
|
): # Events list limited to self.max_events (drop any events past this)
|
||||||
params.update(self.metadata)
|
params.update(self.metadata)
|
||||||
self.events.append(
|
event = {
|
||||||
{
|
"event": event_name,
|
||||||
"event": event_name,
|
"properties": params,
|
||||||
"properties": params,
|
"timestamp": datetime.datetime.now(
|
||||||
"timestamp": datetime.datetime.now(
|
tz=datetime.timezone.utc
|
||||||
tz=datetime.timezone.utc
|
).isoformat(),
|
||||||
).isoformat(),
|
"distinct_id": CONFIG["uuid"],
|
||||||
"distinct_id": CONFIG["uuid"],
|
}
|
||||||
}
|
if event_name not in self.throttled_event_names:
|
||||||
)
|
self.events.append(event)
|
||||||
|
elif event_name not in self.throttled_events:
|
||||||
|
self.throttled_events.add(event_name)
|
||||||
|
self.events.append(event)
|
||||||
|
|
||||||
# Check rate limit
|
# Check rate limit
|
||||||
t = time.time()
|
t = time.time()
|
||||||
@@ -135,7 +140,6 @@ class _Events:
|
|||||||
"distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event
|
"distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event
|
||||||
"batch": self.events,
|
"batch": self.events,
|
||||||
}
|
}
|
||||||
|
|
||||||
# POST equivalent to requests.post(self.url, json=data).
|
# POST equivalent to requests.post(self.url, json=data).
|
||||||
# threaded request is used to avoid blocking, retries are disabled, and verbose is disabled
|
# threaded request is used to avoid blocking, retries are disabled, and verbose is disabled
|
||||||
# to avoid any possible disruption in the console.
|
# to avoid any possible disruption in the console.
|
||||||
@@ -150,6 +154,7 @@ class _Events:
|
|||||||
|
|
||||||
# Flush & Reset
|
# Flush & Reset
|
||||||
self.events = []
|
self.events = []
|
||||||
|
self.throttled_events = set()
|
||||||
self.time = t
|
self.time = t
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,12 +1,12 @@
|
|||||||
[project]
|
[project]
|
||||||
name = "lancedb"
|
name = "lancedb"
|
||||||
version = "0.3.4"
|
version = "0.3.6"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"deprecation",
|
"deprecation",
|
||||||
"pylance==0.8.17",
|
"pylance==0.8.21",
|
||||||
"ratelimiter~=1.0",
|
"ratelimiter~=1.0",
|
||||||
"retry>=0.9.2",
|
"retry>=0.9.2",
|
||||||
"tqdm>=4.1.0",
|
"tqdm>=4.27.0",
|
||||||
"aiohttp",
|
"aiohttp",
|
||||||
"pydantic>=1.10",
|
"pydantic>=1.10",
|
||||||
"attrs>=21.3.0",
|
"attrs>=21.3.0",
|
||||||
|
|||||||
@@ -26,6 +26,9 @@ class FakeLanceDBClient:
|
|||||||
t = pa.schema([]).empty_table()
|
t = pa.schema([]).empty_table()
|
||||||
return VectorQueryResult(t)
|
return VectorQueryResult(t)
|
||||||
|
|
||||||
|
async def post(self, path: str):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
def test_remote_db():
|
def test_remote_db():
|
||||||
conn = lancedb.connect("db://client-will-be-injected", api_key="fake")
|
conn = lancedb.connect("db://client-will-be-injected", api_key="fake")
|
||||||
|
|||||||
@@ -12,7 +12,7 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import functools
|
import functools
|
||||||
from datetime import timedelta
|
from datetime import date, datetime, timedelta
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import List
|
from typing import List
|
||||||
from unittest.mock import PropertyMock, patch
|
from unittest.mock import PropertyMock, patch
|
||||||
@@ -21,6 +21,7 @@ import lance
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
|
from pydantic import BaseModel
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from lancedb.conftest import MockTextEmbeddingFunction
|
from lancedb.conftest import MockTextEmbeddingFunction
|
||||||
@@ -141,14 +142,32 @@ def test_add(db):
|
|||||||
|
|
||||||
|
|
||||||
def test_add_pydantic_model(db):
|
def test_add_pydantic_model(db):
|
||||||
class TestModel(LanceModel):
|
# https://github.com/lancedb/lancedb/issues/562
|
||||||
vector: Vector(16)
|
|
||||||
li: List[int]
|
|
||||||
|
|
||||||
data = TestModel(vector=list(range(16)), li=[1, 2, 3])
|
class Document(BaseModel):
|
||||||
table = LanceTable.create(db, "test", data=[data])
|
content: str
|
||||||
assert len(table) == 1
|
source: str
|
||||||
assert table.schema == TestModel.to_arrow_schema()
|
|
||||||
|
class LanceSchema(LanceModel):
|
||||||
|
id: str
|
||||||
|
vector: Vector(2)
|
||||||
|
li: List[int]
|
||||||
|
payload: Document
|
||||||
|
|
||||||
|
tbl = LanceTable.create(db, "mytable", schema=LanceSchema, mode="overwrite")
|
||||||
|
assert tbl.schema == LanceSchema.to_arrow_schema()
|
||||||
|
|
||||||
|
# add works
|
||||||
|
expected = LanceSchema(
|
||||||
|
id="id",
|
||||||
|
vector=[0.0, 0.0],
|
||||||
|
li=[1, 2, 3],
|
||||||
|
payload=Document(content="foo", source="bar"),
|
||||||
|
)
|
||||||
|
tbl.add([expected])
|
||||||
|
|
||||||
|
result = tbl.search([0.0, 0.0]).limit(1).to_pydantic(LanceSchema)[0]
|
||||||
|
assert result == expected
|
||||||
|
|
||||||
|
|
||||||
def _add(table, schema):
|
def _add(table, schema):
|
||||||
@@ -348,14 +367,79 @@ def test_update(db):
|
|||||||
assert len(table) == 2
|
assert len(table) == 2
|
||||||
assert len(table.list_versions()) == 2
|
assert len(table.list_versions()) == 2
|
||||||
table.update(where="id=0", values={"vector": [1.1, 1.1]})
|
table.update(where="id=0", values={"vector": [1.1, 1.1]})
|
||||||
assert len(table.list_versions()) == 4
|
assert len(table.list_versions()) == 3
|
||||||
assert table.version == 4
|
assert table.version == 3
|
||||||
assert len(table) == 2
|
assert len(table) == 2
|
||||||
v = table.to_arrow()["vector"].combine_chunks()
|
v = table.to_arrow()["vector"].combine_chunks()
|
||||||
v = v.values.to_numpy().reshape(2, 2)
|
v = v.values.to_numpy().reshape(2, 2)
|
||||||
assert np.allclose(v, np.array([[1.2, 1.9], [1.1, 1.1]]))
|
assert np.allclose(v, np.array([[1.2, 1.9], [1.1, 1.1]]))
|
||||||
|
|
||||||
|
|
||||||
|
def test_update_types(db):
|
||||||
|
table = LanceTable.create(
|
||||||
|
db,
|
||||||
|
"my_table",
|
||||||
|
data=[
|
||||||
|
{
|
||||||
|
"id": 0,
|
||||||
|
"str": "foo",
|
||||||
|
"float": 1.1,
|
||||||
|
"timestamp": datetime(2021, 1, 1),
|
||||||
|
"date": date(2021, 1, 1),
|
||||||
|
"vector1": [1.0, 0.0],
|
||||||
|
"vector2": [1.0, 1.0],
|
||||||
|
}
|
||||||
|
],
|
||||||
|
)
|
||||||
|
# Update with SQL
|
||||||
|
table.update(
|
||||||
|
values_sql=dict(
|
||||||
|
id="1",
|
||||||
|
str="'bar'",
|
||||||
|
float="2.2",
|
||||||
|
timestamp="TIMESTAMP '2021-01-02 00:00:00'",
|
||||||
|
date="DATE '2021-01-02'",
|
||||||
|
vector1="[2.0, 2.0]",
|
||||||
|
vector2="[3.0, 3.0]",
|
||||||
|
)
|
||||||
|
)
|
||||||
|
actual = table.to_arrow().to_pylist()[0]
|
||||||
|
expected = dict(
|
||||||
|
id=1,
|
||||||
|
str="bar",
|
||||||
|
float=2.2,
|
||||||
|
timestamp=datetime(2021, 1, 2),
|
||||||
|
date=date(2021, 1, 2),
|
||||||
|
vector1=[2.0, 2.0],
|
||||||
|
vector2=[3.0, 3.0],
|
||||||
|
)
|
||||||
|
assert actual == expected
|
||||||
|
|
||||||
|
# Update with values
|
||||||
|
table.update(
|
||||||
|
values=dict(
|
||||||
|
id=2,
|
||||||
|
str="baz",
|
||||||
|
float=3.3,
|
||||||
|
timestamp=datetime(2021, 1, 3),
|
||||||
|
date=date(2021, 1, 3),
|
||||||
|
vector1=[3.0, 3.0],
|
||||||
|
vector2=np.array([4.0, 4.0]),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
actual = table.to_arrow().to_pylist()[0]
|
||||||
|
expected = dict(
|
||||||
|
id=2,
|
||||||
|
str="baz",
|
||||||
|
float=3.3,
|
||||||
|
timestamp=datetime(2021, 1, 3),
|
||||||
|
date=date(2021, 1, 3),
|
||||||
|
vector1=[3.0, 3.0],
|
||||||
|
vector2=[4.0, 4.0],
|
||||||
|
)
|
||||||
|
assert actual == expected
|
||||||
|
|
||||||
|
|
||||||
def test_create_with_embedding_function(db):
|
def test_create_with_embedding_function(db):
|
||||||
class MyTable(LanceModel):
|
class MyTable(LanceModel):
|
||||||
text: str
|
text: str
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "vectordb-node"
|
name = "vectordb-node"
|
||||||
version = "0.3.8"
|
version = "0.3.11"
|
||||||
description = "Serverless, low-latency vector database for AI applications"
|
description = "Serverless, low-latency vector database for AI applications"
|
||||||
license = "Apache-2.0"
|
license = "Apache-2.0"
|
||||||
edition = "2018"
|
edition = "2018"
|
||||||
|
|||||||
@@ -237,6 +237,7 @@ fn main(mut cx: ModuleContext) -> NeonResult<()> {
|
|||||||
cx.export_function("tableAdd", JsTable::js_add)?;
|
cx.export_function("tableAdd", JsTable::js_add)?;
|
||||||
cx.export_function("tableCountRows", JsTable::js_count_rows)?;
|
cx.export_function("tableCountRows", JsTable::js_count_rows)?;
|
||||||
cx.export_function("tableDelete", JsTable::js_delete)?;
|
cx.export_function("tableDelete", JsTable::js_delete)?;
|
||||||
|
cx.export_function("tableUpdate", JsTable::js_update)?;
|
||||||
cx.export_function("tableCleanupOldVersions", JsTable::js_cleanup)?;
|
cx.export_function("tableCleanupOldVersions", JsTable::js_cleanup)?;
|
||||||
cx.export_function("tableCompactFiles", JsTable::js_compact)?;
|
cx.export_function("tableCompactFiles", JsTable::js_compact)?;
|
||||||
cx.export_function("tableListIndices", JsTable::js_list_indices)?;
|
cx.export_function("tableListIndices", JsTable::js_list_indices)?;
|
||||||
|
|||||||
@@ -23,8 +23,14 @@ impl JsQuery {
|
|||||||
let query_obj = cx.argument::<JsObject>(0)?;
|
let query_obj = cx.argument::<JsObject>(0)?;
|
||||||
|
|
||||||
let limit = query_obj
|
let limit = query_obj
|
||||||
.get::<JsNumber, _, _>(&mut cx, "_limit")?
|
.get_opt::<JsNumber, _, _>(&mut cx, "_limit")?
|
||||||
.value(&mut cx);
|
.map(|value| {
|
||||||
|
let limit = value.value(&mut cx) as u64;
|
||||||
|
if limit <= 0 {
|
||||||
|
panic!("Limit must be a positive integer");
|
||||||
|
}
|
||||||
|
limit
|
||||||
|
});
|
||||||
let select = query_obj
|
let select = query_obj
|
||||||
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
|
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
|
||||||
.map(|arr| {
|
.map(|arr| {
|
||||||
@@ -48,6 +54,10 @@ impl JsQuery {
|
|||||||
.map(|s| s.value(&mut cx))
|
.map(|s| s.value(&mut cx))
|
||||||
.map(|s| MetricType::try_from(s.as_str()).unwrap());
|
.map(|s| MetricType::try_from(s.as_str()).unwrap());
|
||||||
|
|
||||||
|
let prefilter = query_obj
|
||||||
|
.get::<JsBoolean, _, _>(&mut cx, "_prefilter")?
|
||||||
|
.value(&mut cx);
|
||||||
|
|
||||||
let is_electron = cx
|
let is_electron = cx
|
||||||
.argument::<JsBoolean>(1)
|
.argument::<JsBoolean>(1)
|
||||||
.or_throw(&mut cx)?
|
.or_throw(&mut cx)?
|
||||||
@@ -57,19 +67,23 @@ impl JsQuery {
|
|||||||
|
|
||||||
let (deferred, promise) = cx.promise();
|
let (deferred, promise) = cx.promise();
|
||||||
let channel = cx.channel();
|
let channel = cx.channel();
|
||||||
let query_vector = query_obj.get::<JsArray, _, _>(&mut cx, "_queryVector")?;
|
let query_vector = query_obj.get_opt::<JsArray, _, _>(&mut cx, "_queryVector")?;
|
||||||
let query = convert::js_array_to_vec(query_vector.deref(), &mut cx);
|
|
||||||
let table = js_table.table.clone();
|
let table = js_table.table.clone();
|
||||||
|
let query = query_vector.map(|q| convert::js_array_to_vec(q.deref(), &mut cx));
|
||||||
|
|
||||||
rt.spawn(async move {
|
rt.spawn(async move {
|
||||||
let builder = table
|
let mut builder = table
|
||||||
.search(Float32Array::from(query))
|
.search(query.map(|q| Float32Array::from(q)))
|
||||||
.limit(limit as usize)
|
|
||||||
.refine_factor(refine_factor)
|
.refine_factor(refine_factor)
|
||||||
.nprobes(nprobes)
|
.nprobes(nprobes)
|
||||||
.filter(filter)
|
.filter(filter)
|
||||||
.metric_type(metric_type)
|
.metric_type(metric_type)
|
||||||
.select(select);
|
.select(select)
|
||||||
|
.prefilter(prefilter);
|
||||||
|
if let Some(limit) = limit {
|
||||||
|
builder = builder.limit(limit as usize);
|
||||||
|
};
|
||||||
|
|
||||||
let record_batch_stream = builder.execute();
|
let record_batch_stream = builder.execute();
|
||||||
let results = record_batch_stream
|
let results = record_batch_stream
|
||||||
.and_then(|stream| {
|
.and_then(|stream| {
|
||||||
|
|||||||
@@ -165,6 +165,69 @@ impl JsTable {
|
|||||||
Ok(promise)
|
Ok(promise)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub(crate) fn js_update(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||||
|
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
||||||
|
let mut table = js_table.table.clone();
|
||||||
|
|
||||||
|
let rt = runtime(&mut cx)?;
|
||||||
|
let (deferred, promise) = cx.promise();
|
||||||
|
let channel = cx.channel();
|
||||||
|
|
||||||
|
// create a vector of updates from the passed map
|
||||||
|
let updates_arg = cx.argument::<JsObject>(1)?;
|
||||||
|
let properties = updates_arg.get_own_property_names(&mut cx)?;
|
||||||
|
let mut updates: Vec<(String, String)> =
|
||||||
|
Vec::with_capacity(properties.len(&mut cx) as usize);
|
||||||
|
|
||||||
|
let len_properties = properties.len(&mut cx);
|
||||||
|
for i in 0..len_properties {
|
||||||
|
let property = properties
|
||||||
|
.get_value(&mut cx, i)?
|
||||||
|
.downcast_or_throw::<JsString, _>(&mut cx)?;
|
||||||
|
|
||||||
|
let value = updates_arg
|
||||||
|
.get_value(&mut cx, property.clone())?
|
||||||
|
.downcast_or_throw::<JsString, _>(&mut cx)?;
|
||||||
|
|
||||||
|
let property = property.value(&mut cx);
|
||||||
|
let value = value.value(&mut cx);
|
||||||
|
updates.push((property, value));
|
||||||
|
}
|
||||||
|
|
||||||
|
// get the filter/predicate if the user passed one
|
||||||
|
let predicate = cx.argument_opt(0);
|
||||||
|
let predicate = predicate.unwrap().downcast::<JsString, _>(&mut cx);
|
||||||
|
let predicate = match predicate {
|
||||||
|
Ok(_) => {
|
||||||
|
let val = predicate.map(|s| s.value(&mut cx)).unwrap();
|
||||||
|
Some(val)
|
||||||
|
}
|
||||||
|
Err(_) => {
|
||||||
|
// if the predicate is not string, check it's null otherwise an invalid
|
||||||
|
// type was passed
|
||||||
|
cx.argument::<JsNull>(0)?;
|
||||||
|
None
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
rt.spawn(async move {
|
||||||
|
let updates_arg = updates
|
||||||
|
.iter()
|
||||||
|
.map(|(k, v)| (k.as_str(), v.as_str()))
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let predicate = predicate.as_ref().map(|s| s.as_str());
|
||||||
|
|
||||||
|
let update_result = table.update(predicate, updates_arg).await;
|
||||||
|
deferred.settle_with(&channel, move |mut cx| {
|
||||||
|
update_result.or_throw(&mut cx)?;
|
||||||
|
Ok(cx.boxed(JsTable::from(table)))
|
||||||
|
})
|
||||||
|
});
|
||||||
|
|
||||||
|
Ok(promise)
|
||||||
|
}
|
||||||
|
|
||||||
pub(crate) fn js_cleanup(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
pub(crate) fn js_cleanup(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||||
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
||||||
let rt = runtime(&mut cx)?;
|
let rt = runtime(&mut cx)?;
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "vectordb"
|
name = "vectordb"
|
||||||
version = "0.3.8"
|
version = "0.3.11"
|
||||||
edition = "2021"
|
edition = "2021"
|
||||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||||
license = "Apache-2.0"
|
license = "Apache-2.0"
|
||||||
|
|||||||
@@ -359,7 +359,9 @@ mod test {
|
|||||||
assert_eq!(t.count_rows().await.unwrap(), 100);
|
assert_eq!(t.count_rows().await.unwrap(), 100);
|
||||||
|
|
||||||
let q = t
|
let q = t
|
||||||
.search(PrimitiveArray::from_iter_values(vec![0.1, 0.1, 0.1, 0.1]))
|
.search(Some(PrimitiveArray::from_iter_values(vec![
|
||||||
|
0.1, 0.1, 0.1, 0.1,
|
||||||
|
])))
|
||||||
.limit(10)
|
.limit(10)
|
||||||
.execute()
|
.execute()
|
||||||
.await
|
.await
|
||||||
|
|||||||
@@ -24,14 +24,16 @@ use crate::error::Result;
|
|||||||
/// A builder for nearest neighbor queries for LanceDB.
|
/// A builder for nearest neighbor queries for LanceDB.
|
||||||
pub struct Query {
|
pub struct Query {
|
||||||
pub dataset: Arc<Dataset>,
|
pub dataset: Arc<Dataset>,
|
||||||
pub query_vector: Float32Array,
|
pub query_vector: Option<Float32Array>,
|
||||||
pub limit: usize,
|
pub column: String,
|
||||||
|
pub limit: Option<usize>,
|
||||||
pub filter: Option<String>,
|
pub filter: Option<String>,
|
||||||
pub select: Option<Vec<String>>,
|
pub select: Option<Vec<String>>,
|
||||||
pub nprobes: usize,
|
pub nprobes: usize,
|
||||||
pub refine_factor: Option<u32>,
|
pub refine_factor: Option<u32>,
|
||||||
pub metric_type: Option<MetricType>,
|
pub metric_type: Option<MetricType>,
|
||||||
pub use_index: bool,
|
pub use_index: bool,
|
||||||
|
pub prefilter: bool,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Query {
|
impl Query {
|
||||||
@@ -45,17 +47,19 @@ impl Query {
|
|||||||
/// # Returns
|
/// # Returns
|
||||||
///
|
///
|
||||||
/// * A [Query] object.
|
/// * A [Query] object.
|
||||||
pub(crate) fn new(dataset: Arc<Dataset>, vector: Float32Array) -> Self {
|
pub(crate) fn new(dataset: Arc<Dataset>, vector: Option<Float32Array>) -> Self {
|
||||||
Query {
|
Query {
|
||||||
dataset,
|
dataset,
|
||||||
query_vector: vector,
|
query_vector: vector,
|
||||||
limit: 10,
|
column: crate::table::VECTOR_COLUMN_NAME.to_string(),
|
||||||
|
limit: None,
|
||||||
nprobes: 20,
|
nprobes: 20,
|
||||||
refine_factor: None,
|
refine_factor: None,
|
||||||
metric_type: None,
|
metric_type: None,
|
||||||
use_index: true,
|
use_index: true,
|
||||||
filter: None,
|
filter: None,
|
||||||
select: None,
|
select: None,
|
||||||
|
prefilter: false,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -67,13 +71,17 @@ impl Query {
|
|||||||
pub async fn execute(&self) -> Result<DatasetRecordBatchStream> {
|
pub async fn execute(&self) -> Result<DatasetRecordBatchStream> {
|
||||||
let mut scanner: Scanner = self.dataset.scan();
|
let mut scanner: Scanner = self.dataset.scan();
|
||||||
|
|
||||||
scanner.nearest(
|
if let Some(query) = self.query_vector.as_ref() {
|
||||||
crate::table::VECTOR_COLUMN_NAME,
|
// If there is a vector query, default to limit=10 if unspecified
|
||||||
&self.query_vector,
|
scanner.nearest(&self.column, query, self.limit.unwrap_or(10))?;
|
||||||
self.limit,
|
} else {
|
||||||
)?;
|
// If there is no vector query, it's ok to not have a limit
|
||||||
|
scanner.limit(self.limit.map(|limit| limit as i64), None)?;
|
||||||
|
}
|
||||||
scanner.nprobs(self.nprobes);
|
scanner.nprobs(self.nprobes);
|
||||||
scanner.use_index(self.use_index);
|
scanner.use_index(self.use_index);
|
||||||
|
scanner.prefilter(self.prefilter);
|
||||||
|
|
||||||
self.select.as_ref().map(|p| scanner.project(p.as_slice()));
|
self.select.as_ref().map(|p| scanner.project(p.as_slice()));
|
||||||
self.filter.as_ref().map(|f| scanner.filter(f));
|
self.filter.as_ref().map(|f| scanner.filter(f));
|
||||||
self.refine_factor.map(|rf| scanner.refine(rf));
|
self.refine_factor.map(|rf| scanner.refine(rf));
|
||||||
@@ -81,13 +89,23 @@ impl Query {
|
|||||||
Ok(scanner.try_into_stream().await?)
|
Ok(scanner.try_into_stream().await?)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Set the column to query
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `column` - The column name
|
||||||
|
pub fn column(mut self, column: &str) -> Query {
|
||||||
|
self.column = column.into();
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
/// Set the maximum number of results to return.
|
/// Set the maximum number of results to return.
|
||||||
///
|
///
|
||||||
/// # Arguments
|
/// # Arguments
|
||||||
///
|
///
|
||||||
/// * `limit` - The maximum number of results to return.
|
/// * `limit` - The maximum number of results to return.
|
||||||
pub fn limit(mut self, limit: usize) -> Query {
|
pub fn limit(mut self, limit: usize) -> Query {
|
||||||
self.limit = limit;
|
self.limit = Some(limit);
|
||||||
self
|
self
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -97,7 +115,7 @@ impl Query {
|
|||||||
///
|
///
|
||||||
/// * `vector` - The vector that will be used for search.
|
/// * `vector` - The vector that will be used for search.
|
||||||
pub fn query_vector(mut self, query_vector: Float32Array) -> Query {
|
pub fn query_vector(mut self, query_vector: Float32Array) -> Query {
|
||||||
self.query_vector = query_vector;
|
self.query_vector = Some(query_vector);
|
||||||
self
|
self
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -158,6 +176,11 @@ impl Query {
|
|||||||
self.select = columns;
|
self.select = columns;
|
||||||
self
|
self
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn prefilter(mut self, prefilter: bool) -> Query {
|
||||||
|
self.prefilter = prefilter;
|
||||||
|
self
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
@@ -165,9 +188,14 @@ mod tests {
|
|||||||
use std::sync::Arc;
|
use std::sync::Arc;
|
||||||
|
|
||||||
use super::*;
|
use super::*;
|
||||||
use arrow_array::{Float32Array, RecordBatch, RecordBatchIterator, RecordBatchReader};
|
use arrow_array::{
|
||||||
|
cast::AsArray, Float32Array, Int32Array, RecordBatch, RecordBatchIterator,
|
||||||
|
RecordBatchReader,
|
||||||
|
};
|
||||||
use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema};
|
use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema};
|
||||||
|
use futures::StreamExt;
|
||||||
use lance::dataset::Dataset;
|
use lance::dataset::Dataset;
|
||||||
|
use lance_testing::datagen::{BatchGenerator, IncrementingInt32, RandomVector};
|
||||||
|
|
||||||
use crate::query::Query;
|
use crate::query::Query;
|
||||||
|
|
||||||
@@ -176,7 +204,7 @@ mod tests {
|
|||||||
let batches = make_test_batches();
|
let batches = make_test_batches();
|
||||||
let ds = Dataset::write(batches, "memory://foo", None).await.unwrap();
|
let ds = Dataset::write(batches, "memory://foo", None).await.unwrap();
|
||||||
|
|
||||||
let vector = Float32Array::from_iter_values([0.1, 0.2]);
|
let vector = Some(Float32Array::from_iter_values([0.1, 0.2]));
|
||||||
let query = Query::new(Arc::new(ds), vector.clone());
|
let query = Query::new(Arc::new(ds), vector.clone());
|
||||||
assert_eq!(query.query_vector, vector);
|
assert_eq!(query.query_vector, vector);
|
||||||
|
|
||||||
@@ -190,8 +218,8 @@ mod tests {
|
|||||||
.metric_type(Some(MetricType::Cosine))
|
.metric_type(Some(MetricType::Cosine))
|
||||||
.refine_factor(Some(999));
|
.refine_factor(Some(999));
|
||||||
|
|
||||||
assert_eq!(query.query_vector, new_vector);
|
assert_eq!(query.query_vector.unwrap(), new_vector);
|
||||||
assert_eq!(query.limit, 100);
|
assert_eq!(query.limit.unwrap(), 100);
|
||||||
assert_eq!(query.nprobes, 1000);
|
assert_eq!(query.nprobes, 1000);
|
||||||
assert_eq!(query.use_index, true);
|
assert_eq!(query.use_index, true);
|
||||||
assert_eq!(query.metric_type, Some(MetricType::Cosine));
|
assert_eq!(query.metric_type, Some(MetricType::Cosine));
|
||||||
@@ -200,13 +228,64 @@ mod tests {
|
|||||||
|
|
||||||
#[tokio::test]
|
#[tokio::test]
|
||||||
async fn test_execute() {
|
async fn test_execute() {
|
||||||
let batches = make_test_batches();
|
let batches = make_non_empty_batches();
|
||||||
let ds = Dataset::write(batches, "memory://foo", None).await.unwrap();
|
let ds = Arc::new(Dataset::write(batches, "memory://foo", None).await.unwrap());
|
||||||
|
|
||||||
let vector = Float32Array::from_iter_values([0.1; 128]);
|
let vector = Some(Float32Array::from_iter_values([0.1; 4]));
|
||||||
let query = Query::new(Arc::new(ds), vector.clone());
|
|
||||||
let result = query.execute().await;
|
let query = Query::new(ds.clone(), vector.clone());
|
||||||
assert_eq!(result.is_ok(), true);
|
let result = query
|
||||||
|
.limit(10)
|
||||||
|
.filter(Some("id % 2 == 0".to_string()))
|
||||||
|
.execute()
|
||||||
|
.await;
|
||||||
|
let mut stream = result.expect("should have result");
|
||||||
|
// should only have one batch
|
||||||
|
while let Some(batch) = stream.next().await {
|
||||||
|
// post filter should have removed some rows
|
||||||
|
assert!(batch.expect("should be Ok").num_rows() < 10);
|
||||||
|
}
|
||||||
|
|
||||||
|
let query = Query::new(ds, vector.clone());
|
||||||
|
let result = query
|
||||||
|
.limit(10)
|
||||||
|
.filter(Some("id % 2 == 0".to_string()))
|
||||||
|
.prefilter(true)
|
||||||
|
.execute()
|
||||||
|
.await;
|
||||||
|
let mut stream = result.expect("should have result");
|
||||||
|
// should only have one batch
|
||||||
|
while let Some(batch) = stream.next().await {
|
||||||
|
// pre filter should return 10 rows
|
||||||
|
assert!(batch.expect("should be Ok").num_rows() == 10);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[tokio::test]
|
||||||
|
async fn test_execute_no_vector() {
|
||||||
|
// test that it's ok to not specify a query vector (just filter / limit)
|
||||||
|
let batches = make_non_empty_batches();
|
||||||
|
let ds = Arc::new(Dataset::write(batches, "memory://foo", None).await.unwrap());
|
||||||
|
|
||||||
|
let query = Query::new(ds.clone(), None);
|
||||||
|
let result = query
|
||||||
|
.filter(Some("id % 2 == 0".to_string()))
|
||||||
|
.execute()
|
||||||
|
.await;
|
||||||
|
let mut stream = result.expect("should have result");
|
||||||
|
// should only have one batch
|
||||||
|
while let Some(batch) = stream.next().await {
|
||||||
|
let b = batch.expect("should be Ok");
|
||||||
|
// cast arr into Int32Array
|
||||||
|
let arr: &Int32Array = b["id"].as_primitive();
|
||||||
|
assert!(arr.iter().all(|x| x.unwrap() % 2 == 0));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn make_non_empty_batches() -> impl RecordBatchReader + Send + 'static {
|
||||||
|
let vec = Box::new(RandomVector::new().named("vector".to_string()));
|
||||||
|
let id = Box::new(IncrementingInt32::new().named("id".to_string()));
|
||||||
|
BatchGenerator::new().col(vec).col(id).batch(512)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn make_test_batches() -> impl RecordBatchReader + Send + 'static {
|
fn make_test_batches() -> impl RecordBatchReader + Send + 'static {
|
||||||
|
|||||||
@@ -23,7 +23,7 @@ use lance::dataset::cleanup::RemovalStats;
|
|||||||
use lance::dataset::optimize::{
|
use lance::dataset::optimize::{
|
||||||
compact_files, CompactionMetrics, CompactionOptions, IndexRemapperOptions,
|
compact_files, CompactionMetrics, CompactionOptions, IndexRemapperOptions,
|
||||||
};
|
};
|
||||||
use lance::dataset::{Dataset, WriteParams};
|
use lance::dataset::{Dataset, UpdateBuilder, WriteParams};
|
||||||
use lance::index::DatasetIndexExt;
|
use lance::index::DatasetIndexExt;
|
||||||
use lance::io::object_store::WrappingObjectStore;
|
use lance::io::object_store::WrappingObjectStore;
|
||||||
use std::path::Path;
|
use std::path::Path;
|
||||||
@@ -308,10 +308,14 @@ impl Table {
|
|||||||
/// # Returns
|
/// # Returns
|
||||||
///
|
///
|
||||||
/// * A [Query] object.
|
/// * A [Query] object.
|
||||||
pub fn search(&self, query_vector: Float32Array) -> Query {
|
pub fn search(&self, query_vector: Option<Float32Array>) -> Query {
|
||||||
Query::new(self.dataset.clone(), query_vector)
|
Query::new(self.dataset.clone(), query_vector)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn filter(&self, expr: String) -> Query {
|
||||||
|
Query::new(self.dataset.clone(), None).filter(Some(expr))
|
||||||
|
}
|
||||||
|
|
||||||
/// Returns the number of rows in this Table
|
/// Returns the number of rows in this Table
|
||||||
pub async fn count_rows(&self) -> Result<usize> {
|
pub async fn count_rows(&self) -> Result<usize> {
|
||||||
Ok(self.dataset.count_rows().await?)
|
Ok(self.dataset.count_rows().await?)
|
||||||
@@ -338,6 +342,27 @@ impl Table {
|
|||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub async fn update(
|
||||||
|
&mut self,
|
||||||
|
predicate: Option<&str>,
|
||||||
|
updates: Vec<(&str, &str)>,
|
||||||
|
) -> Result<()> {
|
||||||
|
let mut builder = UpdateBuilder::new(self.dataset.clone());
|
||||||
|
if let Some(predicate) = predicate {
|
||||||
|
builder = builder.update_where(predicate)?;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (column, value) in updates {
|
||||||
|
builder = builder.set(column, value)?;
|
||||||
|
}
|
||||||
|
|
||||||
|
let operation = builder.build()?;
|
||||||
|
let new_ds = operation.execute().await?;
|
||||||
|
self.dataset = new_ds;
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
/// Remove old versions of the dataset from disk.
|
/// Remove old versions of the dataset from disk.
|
||||||
///
|
///
|
||||||
/// # Arguments
|
/// # Arguments
|
||||||
@@ -413,11 +438,14 @@ mod tests {
|
|||||||
use std::sync::Arc;
|
use std::sync::Arc;
|
||||||
|
|
||||||
use arrow_array::{
|
use arrow_array::{
|
||||||
Array, FixedSizeListArray, Float32Array, Int32Array, RecordBatch, RecordBatchIterator,
|
Array, BooleanArray, Date32Array, FixedSizeListArray, Float32Array, Float64Array,
|
||||||
RecordBatchReader,
|
Int32Array, Int64Array, LargeStringArray, RecordBatch, RecordBatchIterator,
|
||||||
|
RecordBatchReader, StringArray, TimestampMillisecondArray, TimestampNanosecondArray,
|
||||||
|
UInt32Array,
|
||||||
};
|
};
|
||||||
use arrow_data::ArrayDataBuilder;
|
use arrow_data::ArrayDataBuilder;
|
||||||
use arrow_schema::{DataType, Field, Schema};
|
use arrow_schema::{DataType, Field, Schema, TimeUnit};
|
||||||
|
use futures::TryStreamExt;
|
||||||
use lance::dataset::{Dataset, WriteMode};
|
use lance::dataset::{Dataset, WriteMode};
|
||||||
use lance::index::vector::pq::PQBuildParams;
|
use lance::index::vector::pq::PQBuildParams;
|
||||||
use lance::io::object_store::{ObjectStoreParams, WrappingObjectStore};
|
use lance::io::object_store::{ObjectStoreParams, WrappingObjectStore};
|
||||||
@@ -540,6 +568,272 @@ mod tests {
|
|||||||
assert_eq!(table.name, "test");
|
assert_eq!(table.name, "test");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[tokio::test]
|
||||||
|
async fn test_update_with_predicate() {
|
||||||
|
let tmp_dir = tempdir().unwrap();
|
||||||
|
let dataset_path = tmp_dir.path().join("test.lance");
|
||||||
|
let uri = dataset_path.to_str().unwrap();
|
||||||
|
|
||||||
|
let schema = Arc::new(Schema::new(vec![
|
||||||
|
Field::new("id", DataType::Int32, false),
|
||||||
|
Field::new("name", DataType::Utf8, false),
|
||||||
|
]));
|
||||||
|
|
||||||
|
let record_batch_iter = RecordBatchIterator::new(
|
||||||
|
vec![RecordBatch::try_new(
|
||||||
|
schema.clone(),
|
||||||
|
vec![
|
||||||
|
Arc::new(Int32Array::from_iter_values(0..10)),
|
||||||
|
Arc::new(StringArray::from_iter_values(vec![
|
||||||
|
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
|
||||||
|
])),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
.unwrap()]
|
||||||
|
.into_iter()
|
||||||
|
.map(Ok),
|
||||||
|
schema.clone(),
|
||||||
|
);
|
||||||
|
|
||||||
|
Dataset::write(record_batch_iter, uri, None).await.unwrap();
|
||||||
|
let mut table = Table::open(uri).await.unwrap();
|
||||||
|
|
||||||
|
table
|
||||||
|
.update(Some("id > 5"), vec![("name", "'foo'")])
|
||||||
|
.await
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
let ds_after = Dataset::open(uri).await.unwrap();
|
||||||
|
let mut batches = ds_after
|
||||||
|
.scan()
|
||||||
|
.project(&["id", "name"])
|
||||||
|
.unwrap()
|
||||||
|
.try_into_stream()
|
||||||
|
.await
|
||||||
|
.unwrap()
|
||||||
|
.try_collect::<Vec<_>>()
|
||||||
|
.await
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
while let Some(batch) = batches.pop() {
|
||||||
|
let ids = batch
|
||||||
|
.column(0)
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<Int32Array>()
|
||||||
|
.unwrap()
|
||||||
|
.iter()
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
let names = batch
|
||||||
|
.column(1)
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<StringArray>()
|
||||||
|
.unwrap()
|
||||||
|
.iter()
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
for (i, name) in names.iter().enumerate() {
|
||||||
|
let id = ids[i].unwrap();
|
||||||
|
let name = name.unwrap();
|
||||||
|
if id > 5 {
|
||||||
|
assert_eq!(name, "foo");
|
||||||
|
} else {
|
||||||
|
assert_eq!(name, &format!("{}", (b'a' + id as u8) as char));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[tokio::test]
|
||||||
|
async fn test_update_all_types() {
|
||||||
|
let tmp_dir = tempdir().unwrap();
|
||||||
|
let dataset_path = tmp_dir.path().join("test.lance");
|
||||||
|
let uri = dataset_path.to_str().unwrap();
|
||||||
|
|
||||||
|
let schema = Arc::new(Schema::new(vec![
|
||||||
|
Field::new("int32", DataType::Int32, false),
|
||||||
|
Field::new("int64", DataType::Int64, false),
|
||||||
|
Field::new("uint32", DataType::UInt32, false),
|
||||||
|
Field::new("string", DataType::Utf8, false),
|
||||||
|
Field::new("large_string", DataType::LargeUtf8, false),
|
||||||
|
Field::new("float32", DataType::Float32, false),
|
||||||
|
Field::new("float64", DataType::Float64, false),
|
||||||
|
Field::new("bool", DataType::Boolean, false),
|
||||||
|
Field::new("date32", DataType::Date32, false),
|
||||||
|
Field::new(
|
||||||
|
"timestamp_ns",
|
||||||
|
DataType::Timestamp(TimeUnit::Nanosecond, None),
|
||||||
|
false,
|
||||||
|
),
|
||||||
|
Field::new(
|
||||||
|
"timestamp_ms",
|
||||||
|
DataType::Timestamp(TimeUnit::Millisecond, None),
|
||||||
|
false,
|
||||||
|
),
|
||||||
|
Field::new(
|
||||||
|
"vec_f32",
|
||||||
|
DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float32, true)), 2),
|
||||||
|
false,
|
||||||
|
),
|
||||||
|
Field::new(
|
||||||
|
"vec_f64",
|
||||||
|
DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float64, true)), 2),
|
||||||
|
false,
|
||||||
|
),
|
||||||
|
]));
|
||||||
|
|
||||||
|
let record_batch_iter = RecordBatchIterator::new(
|
||||||
|
vec![RecordBatch::try_new(
|
||||||
|
schema.clone(),
|
||||||
|
vec![
|
||||||
|
Arc::new(Int32Array::from_iter_values(0..10)),
|
||||||
|
Arc::new(Int64Array::from_iter_values(0..10)),
|
||||||
|
Arc::new(UInt32Array::from_iter_values(0..10)),
|
||||||
|
Arc::new(StringArray::from_iter_values(vec![
|
||||||
|
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
|
||||||
|
])),
|
||||||
|
Arc::new(LargeStringArray::from_iter_values(vec![
|
||||||
|
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
|
||||||
|
])),
|
||||||
|
Arc::new(Float32Array::from_iter_values(
|
||||||
|
(0..10).into_iter().map(|i| i as f32),
|
||||||
|
)),
|
||||||
|
Arc::new(Float64Array::from_iter_values(
|
||||||
|
(0..10).into_iter().map(|i| i as f64),
|
||||||
|
)),
|
||||||
|
Arc::new(Into::<BooleanArray>::into(vec![
|
||||||
|
true, false, true, false, true, false, true, false, true, false,
|
||||||
|
])),
|
||||||
|
Arc::new(Date32Array::from_iter_values(0..10)),
|
||||||
|
Arc::new(TimestampNanosecondArray::from_iter_values(0..10)),
|
||||||
|
Arc::new(TimestampMillisecondArray::from_iter_values(0..10)),
|
||||||
|
Arc::new(
|
||||||
|
create_fixed_size_list(
|
||||||
|
Float32Array::from_iter_values((0..20).into_iter().map(|i| i as f32)),
|
||||||
|
2,
|
||||||
|
)
|
||||||
|
.unwrap(),
|
||||||
|
),
|
||||||
|
Arc::new(
|
||||||
|
create_fixed_size_list(
|
||||||
|
Float64Array::from_iter_values((0..20).into_iter().map(|i| i as f64)),
|
||||||
|
2,
|
||||||
|
)
|
||||||
|
.unwrap(),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
.unwrap()]
|
||||||
|
.into_iter()
|
||||||
|
.map(Ok),
|
||||||
|
schema.clone(),
|
||||||
|
);
|
||||||
|
|
||||||
|
Dataset::write(record_batch_iter, uri, None).await.unwrap();
|
||||||
|
let mut table = Table::open(uri).await.unwrap();
|
||||||
|
|
||||||
|
// check it can do update for each type
|
||||||
|
let updates: Vec<(&str, &str)> = vec![
|
||||||
|
("string", "'foo'"),
|
||||||
|
("large_string", "'large_foo'"),
|
||||||
|
("int32", "1"),
|
||||||
|
("int64", "1"),
|
||||||
|
("uint32", "1"),
|
||||||
|
("float32", "1.0"),
|
||||||
|
("float64", "1.0"),
|
||||||
|
("bool", "true"),
|
||||||
|
("date32", "1"),
|
||||||
|
("timestamp_ns", "1"),
|
||||||
|
("timestamp_ms", "1"),
|
||||||
|
("vec_f32", "[1.0, 1.0]"),
|
||||||
|
("vec_f64", "[1.0, 1.0]"),
|
||||||
|
];
|
||||||
|
|
||||||
|
// for (column, value) in test_cases {
|
||||||
|
table.update(None, updates).await.unwrap();
|
||||||
|
|
||||||
|
let ds_after = Dataset::open(uri).await.unwrap();
|
||||||
|
let mut batches = ds_after
|
||||||
|
.scan()
|
||||||
|
.project(&[
|
||||||
|
"string",
|
||||||
|
"large_string",
|
||||||
|
"int32",
|
||||||
|
"int64",
|
||||||
|
"uint32",
|
||||||
|
"float32",
|
||||||
|
"float64",
|
||||||
|
"bool",
|
||||||
|
"date32",
|
||||||
|
"timestamp_ns",
|
||||||
|
"timestamp_ms",
|
||||||
|
"vec_f32",
|
||||||
|
"vec_f64",
|
||||||
|
])
|
||||||
|
.unwrap()
|
||||||
|
.try_into_stream()
|
||||||
|
.await
|
||||||
|
.unwrap()
|
||||||
|
.try_collect::<Vec<_>>()
|
||||||
|
.await
|
||||||
|
.unwrap();
|
||||||
|
let batch = batches.pop().unwrap();
|
||||||
|
|
||||||
|
macro_rules! assert_column {
|
||||||
|
($column:expr, $array_type:ty, $expected:expr) => {
|
||||||
|
let array = $column
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<$array_type>()
|
||||||
|
.unwrap()
|
||||||
|
.iter()
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
for v in array {
|
||||||
|
assert_eq!(v, Some($expected));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
assert_column!(batch.column(0), StringArray, "foo");
|
||||||
|
assert_column!(batch.column(1), LargeStringArray, "large_foo");
|
||||||
|
assert_column!(batch.column(2), Int32Array, 1);
|
||||||
|
assert_column!(batch.column(3), Int64Array, 1);
|
||||||
|
assert_column!(batch.column(4), UInt32Array, 1);
|
||||||
|
assert_column!(batch.column(5), Float32Array, 1.0);
|
||||||
|
assert_column!(batch.column(6), Float64Array, 1.0);
|
||||||
|
assert_column!(batch.column(7), BooleanArray, true);
|
||||||
|
assert_column!(batch.column(8), Date32Array, 1);
|
||||||
|
assert_column!(batch.column(9), TimestampNanosecondArray, 1);
|
||||||
|
assert_column!(batch.column(10), TimestampMillisecondArray, 1);
|
||||||
|
|
||||||
|
let array = batch
|
||||||
|
.column(11)
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<FixedSizeListArray>()
|
||||||
|
.unwrap()
|
||||||
|
.iter()
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
for v in array {
|
||||||
|
let v = v.unwrap();
|
||||||
|
let f32array = v.as_any().downcast_ref::<Float32Array>().unwrap();
|
||||||
|
for v in f32array {
|
||||||
|
assert_eq!(v, Some(1.0));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let array = batch
|
||||||
|
.column(12)
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<FixedSizeListArray>()
|
||||||
|
.unwrap()
|
||||||
|
.iter()
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
for v in array {
|
||||||
|
let v = v.unwrap();
|
||||||
|
let f64array = v.as_any().downcast_ref::<Float64Array>().unwrap();
|
||||||
|
for v in f64array {
|
||||||
|
assert_eq!(v, Some(1.0));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
#[tokio::test]
|
#[tokio::test]
|
||||||
async fn test_search() {
|
async fn test_search() {
|
||||||
let tmp_dir = tempdir().unwrap();
|
let tmp_dir = tempdir().unwrap();
|
||||||
@@ -554,8 +848,8 @@ mod tests {
|
|||||||
let table = Table::open(uri).await.unwrap();
|
let table = Table::open(uri).await.unwrap();
|
||||||
|
|
||||||
let vector = Float32Array::from_iter_values([0.1, 0.2]);
|
let vector = Float32Array::from_iter_values([0.1, 0.2]);
|
||||||
let query = table.search(vector.clone());
|
let query = table.search(Some(vector.clone()));
|
||||||
assert_eq!(vector, query.query_vector);
|
assert_eq!(vector, query.query_vector.unwrap());
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Default, Debug)]
|
#[derive(Default, Debug)]
|
||||||
|
|||||||
Reference in New Issue
Block a user