mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 21:39:57 +00:00
Compare commits
14 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
018314a5c1 | ||
|
|
409eb30ea5 | ||
|
|
ff9872fd44 | ||
|
|
a0608044a1 | ||
|
|
2e4ea7d2bc | ||
|
|
57e5695a54 | ||
|
|
ce58ea7c38 | ||
|
|
57207eff4a | ||
|
|
2d78bff120 | ||
|
|
7c09b9b9a9 | ||
|
|
bd0034a157 | ||
|
|
144b3b5d83 | ||
|
|
b6f0a31686 | ||
|
|
9ec526f73f |
@@ -1,5 +1,5 @@
|
|||||||
[bumpversion]
|
[bumpversion]
|
||||||
current_version = 0.3.9
|
current_version = 0.3.11
|
||||||
commit = True
|
commit = True
|
||||||
message = Bump version: {current_version} → {new_version}
|
message = Bump version: {current_version} → {new_version}
|
||||||
tag = True
|
tag = True
|
||||||
|
|||||||
35
.github/workflows/npm-publish.yml
vendored
35
.github/workflows/npm-publish.yml
vendored
@@ -37,8 +37,16 @@ jobs:
|
|||||||
path: |
|
path: |
|
||||||
node/vectordb-*.tgz
|
node/vectordb-*.tgz
|
||||||
|
|
||||||
node-macos-x86:
|
node-macos:
|
||||||
runs-on: macos-13
|
strategy:
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- arch: x86_64-apple-darwin
|
||||||
|
runner: macos-13
|
||||||
|
- arch: aarch64-apple-darwin
|
||||||
|
# xlarge is implicitly arm64.
|
||||||
|
runner: macos-13-xlarge
|
||||||
|
runs-on: ${{ matrix.config.runner }}
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
steps:
|
steps:
|
||||||
@@ -51,7 +59,7 @@ jobs:
|
|||||||
cd node
|
cd node
|
||||||
npm ci
|
npm ci
|
||||||
- name: Build MacOS native node modules
|
- name: Build MacOS native node modules
|
||||||
run: bash ci/build_macos_artifacts.sh x86_64-apple-darwin
|
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
|
||||||
- name: Upload Darwin Artifacts
|
- name: Upload Darwin Artifacts
|
||||||
uses: actions/upload-artifact@v3
|
uses: actions/upload-artifact@v3
|
||||||
with:
|
with:
|
||||||
@@ -59,27 +67,6 @@ jobs:
|
|||||||
path: |
|
path: |
|
||||||
node/dist/lancedb-vectordb-darwin*.tgz
|
node/dist/lancedb-vectordb-darwin*.tgz
|
||||||
|
|
||||||
node-macos-arm64:
|
|
||||||
runs-on: macos-13-xlarge
|
|
||||||
# Only runs on tags that matches the make-release action
|
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
|
||||||
steps:
|
|
||||||
- name: Checkout
|
|
||||||
uses: actions/checkout@v3
|
|
||||||
- name: Install system dependencies
|
|
||||||
run: brew install protobuf
|
|
||||||
- name: Install npm dependencies
|
|
||||||
run: |
|
|
||||||
cd node
|
|
||||||
npm ci
|
|
||||||
- name: Build MacOS native node modules
|
|
||||||
run: bash ci/build_macos_artifacts.sh aarch64-apple-darwin
|
|
||||||
- name: Upload Darwin Artifacts
|
|
||||||
uses: actions/upload-artifact@v3
|
|
||||||
with:
|
|
||||||
name: native-darwin
|
|
||||||
path: |
|
|
||||||
node/dist/lancedb-vectordb-darwin*.tgz
|
|
||||||
|
|
||||||
node-linux:
|
node-linux:
|
||||||
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||||
|
|||||||
6
.github/workflows/python.yml
vendored
6
.github/workflows/python.yml
vendored
@@ -91,11 +91,7 @@ jobs:
|
|||||||
pip install "pydantic<2"
|
pip install "pydantic<2"
|
||||||
pip install -e .[tests]
|
pip install -e .[tests]
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
pip install pytest pytest-mock black isort
|
pip install pytest pytest-mock
|
||||||
- name: Black
|
|
||||||
run: black --check --diff --no-color --quiet .
|
|
||||||
- name: isort
|
|
||||||
run: isort --check --diff --quiet .
|
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: pytest -m "not slow" -x -v --durations=30 tests
|
run: pytest -m "not slow" -x -v --durations=30 tests
|
||||||
- name: doctest
|
- name: doctest
|
||||||
|
|||||||
@@ -5,10 +5,10 @@ exclude = ["python"]
|
|||||||
resolver = "2"
|
resolver = "2"
|
||||||
|
|
||||||
[workspace.dependencies]
|
[workspace.dependencies]
|
||||||
lance = { "version" = "=0.8.20", "features" = ["dynamodb"] }
|
lance = { "version" = "=0.9.0", "features" = ["dynamodb"] }
|
||||||
lance-index = { "version" = "=0.8.20" }
|
lance-index = { "version" = "=0.9.0" }
|
||||||
lance-linalg = { "version" = "=0.8.20" }
|
lance-linalg = { "version" = "=0.9.0" }
|
||||||
lance-testing = { "version" = "=0.8.20" }
|
lance-testing = { "version" = "=0.9.0" }
|
||||||
# Note that this one does not include pyarrow
|
# Note that this one does not include pyarrow
|
||||||
arrow = { version = "47.0.0", optional = false }
|
arrow = { version = "47.0.0", optional = false }
|
||||||
arrow-array = "47.0"
|
arrow-array = "47.0"
|
||||||
|
|||||||
74
node/package-lock.json
generated
74
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"lockfileVersion": 2,
|
"lockfileVersion": 2,
|
||||||
"requires": true,
|
"requires": true,
|
||||||
"packages": {
|
"packages": {
|
||||||
"": {
|
"": {
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64",
|
"x64",
|
||||||
"arm64"
|
"arm64"
|
||||||
@@ -53,11 +53,11 @@
|
|||||||
"uuid": "^9.0.0"
|
"uuid": "^9.0.0"
|
||||||
},
|
},
|
||||||
"optionalDependencies": {
|
"optionalDependencies": {
|
||||||
"@lancedb/vectordb-darwin-arm64": "0.3.9",
|
"@lancedb/vectordb-darwin-arm64": "0.3.11",
|
||||||
"@lancedb/vectordb-darwin-x64": "0.3.9",
|
"@lancedb/vectordb-darwin-x64": "0.3.11",
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": "0.3.9",
|
"@lancedb/vectordb-linux-arm64-gnu": "0.3.11",
|
||||||
"@lancedb/vectordb-linux-x64-gnu": "0.3.9",
|
"@lancedb/vectordb-linux-x64-gnu": "0.3.11",
|
||||||
"@lancedb/vectordb-win32-x64-msvc": "0.3.9"
|
"@lancedb/vectordb-win32-x64-msvc": "0.3.11"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@apache-arrow/ts": {
|
"node_modules/@apache-arrow/ts": {
|
||||||
@@ -317,9 +317,9 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.9.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.11.tgz",
|
||||||
"integrity": "sha512-irtAdfSRQDcfnMnB8T7D0atLFfu1MMZZ1JaxMKu24DDZ8e4IMYKUplxwvWni3241yA9yDE/pliRZCNQbQCEfrg==",
|
"integrity": "sha512-N0Ak0jWmSh+QIUJKgtD85+/N0UMBZxaHrd9leusWgjEdtZdQqyzd6VWYAFPR6W6p8tt1hUZiuTRQ6ugfNhyEsg==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"arm64"
|
"arm64"
|
||||||
],
|
],
|
||||||
@@ -329,9 +329,9 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.11.tgz",
|
||||||
"integrity": "sha512-4xXQoPheyIl1P5kRoKmZtaAHFrYdL9pw5yq+r6ewIx0TCemN4LSvzSUTqM5nZl3QPU8FeL0CGD8Gt2gMU0HQ2A==",
|
"integrity": "sha512-vugA+Z4XDrV1gFW5PfqJImw0w84NpGrZsaTZ9afw2oc5a37alx5zOoHEoBQimaX88j+YjWme38h3B98qoNTP5w==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64"
|
"x64"
|
||||||
],
|
],
|
||||||
@@ -341,9 +341,9 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.9.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.11.tgz",
|
||||||
"integrity": "sha512-WIxCZKnLeSlz0PGURtKSX6hJ4CYE2o5P+IFmmuWOWB1uNapQu6zOpea6rNxcRFHUA0IJdO02lVxVfn2hDX4SMg==",
|
"integrity": "sha512-mArXy17URht7cTdGgNc+yL6BOxvK4vAtNaPh68WBOy7e438l6++s2E4bZyaeyeoIv8sPENDmJZzBr4YuBEc7yw==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"arm64"
|
"arm64"
|
||||||
],
|
],
|
||||||
@@ -353,9 +353,9 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.9.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.11.tgz",
|
||||||
"integrity": "sha512-bQbcV9adKzYbJLNzDjk9OYsMnT2IjmieLfb4IQ1hj5IUoWfbg80Bd0+gZUnrmrhG6fe56TIriFZYQR9i7TSE9Q==",
|
"integrity": "sha512-AoF0f/mUP1d2r5nirLQiajHBVnhsYCD/vDGUlTmLWH4lX4v9zVqlh9HmXjpLBcaK4klGmt5CBmcb+tj5v2/ySA==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64"
|
"x64"
|
||||||
],
|
],
|
||||||
@@ -365,9 +365,9 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.9.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.11.tgz",
|
||||||
"integrity": "sha512-7EXI7P1QvAfgJNPWWBMDOkoJ696gSBAClcyEJNYg0JV21jVFZRwJVI3bZXflesWduFi/mTuzPkFFA68us1u19A==",
|
"integrity": "sha512-Zq+JHtkaGaoozHcOdXid3jRkEj6u2d1C0VD+Wg+7AIpRokzYt5zcKWPzjDnqoRuD+VTv6YFjYN58RmYwa2Ktiw==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64"
|
"x64"
|
||||||
],
|
],
|
||||||
@@ -4869,33 +4869,33 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-darwin-arm64": {
|
"@lancedb/vectordb-darwin-arm64": {
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.9.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.11.tgz",
|
||||||
"integrity": "sha512-irtAdfSRQDcfnMnB8T7D0atLFfu1MMZZ1JaxMKu24DDZ8e4IMYKUplxwvWni3241yA9yDE/pliRZCNQbQCEfrg==",
|
"integrity": "sha512-N0Ak0jWmSh+QIUJKgtD85+/N0UMBZxaHrd9leusWgjEdtZdQqyzd6VWYAFPR6W6p8tt1hUZiuTRQ6ugfNhyEsg==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-darwin-x64": {
|
"@lancedb/vectordb-darwin-x64": {
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.11.tgz",
|
||||||
"integrity": "sha512-4xXQoPheyIl1P5kRoKmZtaAHFrYdL9pw5yq+r6ewIx0TCemN4LSvzSUTqM5nZl3QPU8FeL0CGD8Gt2gMU0HQ2A==",
|
"integrity": "sha512-vugA+Z4XDrV1gFW5PfqJImw0w84NpGrZsaTZ9afw2oc5a37alx5zOoHEoBQimaX88j+YjWme38h3B98qoNTP5w==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": {
|
"@lancedb/vectordb-linux-arm64-gnu": {
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.9.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.11.tgz",
|
||||||
"integrity": "sha512-WIxCZKnLeSlz0PGURtKSX6hJ4CYE2o5P+IFmmuWOWB1uNapQu6zOpea6rNxcRFHUA0IJdO02lVxVfn2hDX4SMg==",
|
"integrity": "sha512-mArXy17URht7cTdGgNc+yL6BOxvK4vAtNaPh68WBOy7e438l6++s2E4bZyaeyeoIv8sPENDmJZzBr4YuBEc7yw==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-linux-x64-gnu": {
|
"@lancedb/vectordb-linux-x64-gnu": {
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.9.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.11.tgz",
|
||||||
"integrity": "sha512-bQbcV9adKzYbJLNzDjk9OYsMnT2IjmieLfb4IQ1hj5IUoWfbg80Bd0+gZUnrmrhG6fe56TIriFZYQR9i7TSE9Q==",
|
"integrity": "sha512-AoF0f/mUP1d2r5nirLQiajHBVnhsYCD/vDGUlTmLWH4lX4v9zVqlh9HmXjpLBcaK4klGmt5CBmcb+tj5v2/ySA==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-win32-x64-msvc": {
|
"@lancedb/vectordb-win32-x64-msvc": {
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.9.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.11.tgz",
|
||||||
"integrity": "sha512-7EXI7P1QvAfgJNPWWBMDOkoJ696gSBAClcyEJNYg0JV21jVFZRwJVI3bZXflesWduFi/mTuzPkFFA68us1u19A==",
|
"integrity": "sha512-Zq+JHtkaGaoozHcOdXid3jRkEj6u2d1C0VD+Wg+7AIpRokzYt5zcKWPzjDnqoRuD+VTv6YFjYN58RmYwa2Ktiw==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@neon-rs/cli": {
|
"@neon-rs/cli": {
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.3.9",
|
"version": "0.3.11",
|
||||||
"description": " Serverless, low-latency vector database for AI applications",
|
"description": " Serverless, low-latency vector database for AI applications",
|
||||||
"main": "dist/index.js",
|
"main": "dist/index.js",
|
||||||
"types": "dist/index.d.ts",
|
"types": "dist/index.d.ts",
|
||||||
@@ -81,10 +81,10 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"optionalDependencies": {
|
"optionalDependencies": {
|
||||||
"@lancedb/vectordb-darwin-arm64": "0.3.9",
|
"@lancedb/vectordb-darwin-arm64": "0.3.11",
|
||||||
"@lancedb/vectordb-darwin-x64": "0.3.9",
|
"@lancedb/vectordb-darwin-x64": "0.3.11",
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": "0.3.9",
|
"@lancedb/vectordb-linux-arm64-gnu": "0.3.11",
|
||||||
"@lancedb/vectordb-linux-x64-gnu": "0.3.9",
|
"@lancedb/vectordb-linux-x64-gnu": "0.3.11",
|
||||||
"@lancedb/vectordb-win32-x64-msvc": "0.3.9"
|
"@lancedb/vectordb-win32-x64-msvc": "0.3.11"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -25,6 +25,7 @@ import { Vector, Table as ArrowTable } from 'apache-arrow'
|
|||||||
import { HttpLancedbClient } from './client'
|
import { HttpLancedbClient } from './client'
|
||||||
import { isEmbeddingFunction } from '../embedding/embedding_function'
|
import { isEmbeddingFunction } from '../embedding/embedding_function'
|
||||||
import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow'
|
import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow'
|
||||||
|
import { toSQL } from '../util'
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Remote connection.
|
* Remote connection.
|
||||||
@@ -248,7 +249,23 @@ export class RemoteTable<T = number[]> implements Table<T> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
|
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
|
||||||
throw new Error('Not implemented')
|
let filter: string | null
|
||||||
|
let updates: Record<string, string>
|
||||||
|
|
||||||
|
if ('valuesSql' in args) {
|
||||||
|
filter = args.where ?? null
|
||||||
|
updates = args.valuesSql
|
||||||
|
} else {
|
||||||
|
filter = args.where ?? null
|
||||||
|
updates = {}
|
||||||
|
for (const [key, value] of Object.entries(args.values)) {
|
||||||
|
updates[key] = toSQL(value)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
await this._client.post(`/v1/table/${this._name}/update/`, {
|
||||||
|
predicate: filter,
|
||||||
|
updates: Object.entries(updates).map(([key, value]) => [key, value])
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
async listIndices (): Promise<VectorIndex[]> {
|
async listIndices (): Promise<VectorIndex[]> {
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
[bumpversion]
|
[bumpversion]
|
||||||
current_version = 0.3.5
|
current_version = 0.4.0
|
||||||
commit = True
|
commit = True
|
||||||
message = [python] Bump version: {current_version} → {new_version}
|
message = [python] Bump version: {current_version} → {new_version}
|
||||||
tag = True
|
tag = True
|
||||||
|
|||||||
@@ -348,3 +348,20 @@ def get_extras(field_info: pydantic.fields.FieldInfo, key: str) -> Any:
|
|||||||
if PYDANTIC_VERSION.major >= 2:
|
if PYDANTIC_VERSION.major >= 2:
|
||||||
return (field_info.json_schema_extra or {}).get(key)
|
return (field_info.json_schema_extra or {}).get(key)
|
||||||
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
|
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
|
||||||
|
|
||||||
|
|
||||||
|
if PYDANTIC_VERSION.major < 2:
|
||||||
|
|
||||||
|
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
|
||||||
|
"""
|
||||||
|
Convert a Pydantic model to a dictionary.
|
||||||
|
"""
|
||||||
|
return model.dict()
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
|
||||||
|
"""
|
||||||
|
Convert a Pydantic model to a dictionary.
|
||||||
|
"""
|
||||||
|
return model.model_dump()
|
||||||
|
|||||||
@@ -18,6 +18,8 @@ import attrs
|
|||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from lancedb.common import VECTOR_COLUMN_NAME
|
||||||
|
|
||||||
__all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"]
|
__all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"]
|
||||||
|
|
||||||
|
|
||||||
@@ -43,6 +45,8 @@ class VectorQuery(BaseModel):
|
|||||||
|
|
||||||
refine_factor: Optional[int] = None
|
refine_factor: Optional[int] = None
|
||||||
|
|
||||||
|
vector_column: str = VECTOR_COLUMN_NAME
|
||||||
|
|
||||||
|
|
||||||
@attrs.define
|
@attrs.define
|
||||||
class VectorQueryResult:
|
class VectorQueryResult:
|
||||||
|
|||||||
@@ -13,7 +13,7 @@
|
|||||||
|
|
||||||
import uuid
|
import uuid
|
||||||
from functools import cached_property
|
from functools import cached_property
|
||||||
from typing import Optional, Union
|
from typing import Dict, Optional, Union
|
||||||
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from lance import json_to_schema
|
from lance import json_to_schema
|
||||||
@@ -22,6 +22,7 @@ from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
|
|||||||
|
|
||||||
from ..query import LanceVectorQueryBuilder
|
from ..query import LanceVectorQueryBuilder
|
||||||
from ..table import Query, Table, _sanitize_data
|
from ..table import Query, Table, _sanitize_data
|
||||||
|
from ..util import value_to_sql
|
||||||
from .arrow import to_ipc_binary
|
from .arrow import to_ipc_binary
|
||||||
from .client import ARROW_STREAM_CONTENT_TYPE
|
from .client import ARROW_STREAM_CONTENT_TYPE
|
||||||
from .db import RemoteDBConnection
|
from .db import RemoteDBConnection
|
||||||
@@ -273,3 +274,65 @@ class RemoteTable(Table):
|
|||||||
self._conn._loop.run_until_complete(
|
self._conn._loop.run_until_complete(
|
||||||
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)
|
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def update(
|
||||||
|
self,
|
||||||
|
where: Optional[str] = None,
|
||||||
|
values: Optional[dict] = None,
|
||||||
|
*,
|
||||||
|
values_sql: Optional[Dict[str, str]] = None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
This can be used to update zero to all rows depending on how many
|
||||||
|
rows match the where clause.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
where: str, optional
|
||||||
|
The SQL where clause to use when updating rows. For example, 'x = 2'
|
||||||
|
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
||||||
|
values: dict, optional
|
||||||
|
The values to update. The keys are the column names and the values
|
||||||
|
are the values to set.
|
||||||
|
values_sql: dict, optional
|
||||||
|
The values to update, expressed as SQL expression strings. These can
|
||||||
|
reference existing columns. For example, {"x": "x + 1"} will increment
|
||||||
|
the x column by 1.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> data = [
|
||||||
|
... {"x": 1, "vector": [1, 2]},
|
||||||
|
... {"x": 2, "vector": [3, 4]},
|
||||||
|
... {"x": 3, "vector": [5, 6]}
|
||||||
|
... ]
|
||||||
|
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
|
||||||
|
>>> table = db.create_table("my_table", data) # doctest: +SKIP
|
||||||
|
>>> table.to_pandas() # doctest: +SKIP
|
||||||
|
x vector # doctest: +SKIP
|
||||||
|
0 1 [1.0, 2.0] # doctest: +SKIP
|
||||||
|
1 2 [3.0, 4.0] # doctest: +SKIP
|
||||||
|
2 3 [5.0, 6.0] # doctest: +SKIP
|
||||||
|
>>> table.update(where="x = 2", values={"vector": [10, 10]}) # doctest: +SKIP
|
||||||
|
>>> table.to_pandas() # doctest: +SKIP
|
||||||
|
x vector # doctest: +SKIP
|
||||||
|
0 1 [1.0, 2.0] # doctest: +SKIP
|
||||||
|
1 3 [5.0, 6.0] # doctest: +SKIP
|
||||||
|
2 2 [10.0, 10.0] # doctest: +SKIP
|
||||||
|
|
||||||
|
"""
|
||||||
|
if values is not None and values_sql is not None:
|
||||||
|
raise ValueError("Only one of values or values_sql can be provided")
|
||||||
|
if values is None and values_sql is None:
|
||||||
|
raise ValueError("Either values or values_sql must be provided")
|
||||||
|
|
||||||
|
if values is not None:
|
||||||
|
updates = [[k, value_to_sql(v)] for k, v in values.items()]
|
||||||
|
else:
|
||||||
|
updates = [[k, v] for k, v in values_sql.items()]
|
||||||
|
|
||||||
|
payload = {"predicate": where, "updates": updates}
|
||||||
|
self._conn._loop.run_until_complete(
|
||||||
|
self._conn._client.post(f"/v1/table/{self._name}/update/", data=payload)
|
||||||
|
)
|
||||||
|
|||||||
@@ -28,7 +28,7 @@ from lance.vector import vec_to_table
|
|||||||
|
|
||||||
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||||
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
||||||
from .pydantic import LanceModel
|
from .pydantic import LanceModel, model_to_dict
|
||||||
from .query import LanceQueryBuilder, Query
|
from .query import LanceQueryBuilder, Query
|
||||||
from .util import fs_from_uri, safe_import_pandas, value_to_sql
|
from .util import fs_from_uri, safe_import_pandas, value_to_sql
|
||||||
from .utils.events import register_event
|
from .utils.events import register_event
|
||||||
@@ -53,7 +53,9 @@ def _sanitize_data(
|
|||||||
# convert to list of dict if data is a bunch of LanceModels
|
# convert to list of dict if data is a bunch of LanceModels
|
||||||
if isinstance(data[0], LanceModel):
|
if isinstance(data[0], LanceModel):
|
||||||
schema = data[0].__class__.to_arrow_schema()
|
schema = data[0].__class__.to_arrow_schema()
|
||||||
data = [dict(d) for d in data]
|
data = [model_to_dict(d) for d in data]
|
||||||
|
data = pa.Table.from_pylist(data, schema=schema)
|
||||||
|
else:
|
||||||
data = pa.Table.from_pylist(data)
|
data = pa.Table.from_pylist(data)
|
||||||
elif isinstance(data, dict):
|
elif isinstance(data, dict):
|
||||||
data = vec_to_table(data)
|
data = vec_to_table(data)
|
||||||
|
|||||||
@@ -1,9 +1,9 @@
|
|||||||
[project]
|
[project]
|
||||||
name = "lancedb"
|
name = "lancedb"
|
||||||
version = "0.3.5"
|
version = "0.4.0"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"deprecation",
|
"deprecation",
|
||||||
"pylance==0.8.21",
|
"pylance==0.9.0",
|
||||||
"ratelimiter~=1.0",
|
"ratelimiter~=1.0",
|
||||||
"retry>=0.9.2",
|
"retry>=0.9.2",
|
||||||
"tqdm>=4.27.0",
|
"tqdm>=4.27.0",
|
||||||
|
|||||||
@@ -21,6 +21,7 @@ import lance
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
|
from pydantic import BaseModel
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from lancedb.conftest import MockTextEmbeddingFunction
|
from lancedb.conftest import MockTextEmbeddingFunction
|
||||||
@@ -141,14 +142,32 @@ def test_add(db):
|
|||||||
|
|
||||||
|
|
||||||
def test_add_pydantic_model(db):
|
def test_add_pydantic_model(db):
|
||||||
class TestModel(LanceModel):
|
# https://github.com/lancedb/lancedb/issues/562
|
||||||
vector: Vector(16)
|
|
||||||
li: List[int]
|
|
||||||
|
|
||||||
data = TestModel(vector=list(range(16)), li=[1, 2, 3])
|
class Document(BaseModel):
|
||||||
table = LanceTable.create(db, "test", data=[data])
|
content: str
|
||||||
assert len(table) == 1
|
source: str
|
||||||
assert table.schema == TestModel.to_arrow_schema()
|
|
||||||
|
class LanceSchema(LanceModel):
|
||||||
|
id: str
|
||||||
|
vector: Vector(2)
|
||||||
|
li: List[int]
|
||||||
|
payload: Document
|
||||||
|
|
||||||
|
tbl = LanceTable.create(db, "mytable", schema=LanceSchema, mode="overwrite")
|
||||||
|
assert tbl.schema == LanceSchema.to_arrow_schema()
|
||||||
|
|
||||||
|
# add works
|
||||||
|
expected = LanceSchema(
|
||||||
|
id="id",
|
||||||
|
vector=[0.0, 0.0],
|
||||||
|
li=[1, 2, 3],
|
||||||
|
payload=Document(content="foo", source="bar"),
|
||||||
|
)
|
||||||
|
tbl.add([expected])
|
||||||
|
|
||||||
|
result = tbl.search([0.0, 0.0]).limit(1).to_pydantic(LanceSchema)[0]
|
||||||
|
assert result == expected
|
||||||
|
|
||||||
|
|
||||||
def _add(table, schema):
|
def _add(table, schema):
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "vectordb-node"
|
name = "vectordb-node"
|
||||||
version = "0.3.9"
|
version = "0.3.11"
|
||||||
description = "Serverless, low-latency vector database for AI applications"
|
description = "Serverless, low-latency vector database for AI applications"
|
||||||
license = "Apache-2.0"
|
license = "Apache-2.0"
|
||||||
edition = "2018"
|
edition = "2018"
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "vectordb"
|
name = "vectordb"
|
||||||
version = "0.3.9"
|
version = "0.3.11"
|
||||||
edition = "2021"
|
edition = "2021"
|
||||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||||
license = "Apache-2.0"
|
license = "Apache-2.0"
|
||||||
|
|||||||
@@ -359,7 +359,9 @@ mod test {
|
|||||||
assert_eq!(t.count_rows().await.unwrap(), 100);
|
assert_eq!(t.count_rows().await.unwrap(), 100);
|
||||||
|
|
||||||
let q = t
|
let q = t
|
||||||
.search(Some(PrimitiveArray::from_iter_values(vec![0.1, 0.1, 0.1, 0.1])))
|
.search(Some(PrimitiveArray::from_iter_values(vec![
|
||||||
|
0.1, 0.1, 0.1, 0.1,
|
||||||
|
])))
|
||||||
.limit(10)
|
.limit(10)
|
||||||
.execute()
|
.execute()
|
||||||
.await
|
.await
|
||||||
|
|||||||
@@ -25,6 +25,7 @@ use crate::error::Result;
|
|||||||
pub struct Query {
|
pub struct Query {
|
||||||
pub dataset: Arc<Dataset>,
|
pub dataset: Arc<Dataset>,
|
||||||
pub query_vector: Option<Float32Array>,
|
pub query_vector: Option<Float32Array>,
|
||||||
|
pub column: String,
|
||||||
pub limit: Option<usize>,
|
pub limit: Option<usize>,
|
||||||
pub filter: Option<String>,
|
pub filter: Option<String>,
|
||||||
pub select: Option<Vec<String>>,
|
pub select: Option<Vec<String>>,
|
||||||
@@ -50,6 +51,7 @@ impl Query {
|
|||||||
Query {
|
Query {
|
||||||
dataset,
|
dataset,
|
||||||
query_vector: vector,
|
query_vector: vector,
|
||||||
|
column: crate::table::VECTOR_COLUMN_NAME.to_string(),
|
||||||
limit: None,
|
limit: None,
|
||||||
nprobes: 20,
|
nprobes: 20,
|
||||||
refine_factor: None,
|
refine_factor: None,
|
||||||
@@ -71,7 +73,7 @@ impl Query {
|
|||||||
|
|
||||||
if let Some(query) = self.query_vector.as_ref() {
|
if let Some(query) = self.query_vector.as_ref() {
|
||||||
// If there is a vector query, default to limit=10 if unspecified
|
// If there is a vector query, default to limit=10 if unspecified
|
||||||
scanner.nearest(crate::table::VECTOR_COLUMN_NAME, query, self.limit.unwrap_or(10))?;
|
scanner.nearest(&self.column, query, self.limit.unwrap_or(10))?;
|
||||||
} else {
|
} else {
|
||||||
// If there is no vector query, it's ok to not have a limit
|
// If there is no vector query, it's ok to not have a limit
|
||||||
scanner.limit(self.limit.map(|limit| limit as i64), None)?;
|
scanner.limit(self.limit.map(|limit| limit as i64), None)?;
|
||||||
@@ -87,6 +89,16 @@ impl Query {
|
|||||||
Ok(scanner.try_into_stream().await?)
|
Ok(scanner.try_into_stream().await?)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Set the column to query
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `column` - The column name
|
||||||
|
pub fn column(mut self, column: &str) -> Query {
|
||||||
|
self.column = column.into();
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
/// Set the maximum number of results to return.
|
/// Set the maximum number of results to return.
|
||||||
///
|
///
|
||||||
/// # Arguments
|
/// # Arguments
|
||||||
@@ -176,7 +188,10 @@ mod tests {
|
|||||||
use std::sync::Arc;
|
use std::sync::Arc;
|
||||||
|
|
||||||
use super::*;
|
use super::*;
|
||||||
use arrow_array::{Float32Array, RecordBatch, RecordBatchIterator, RecordBatchReader, cast::AsArray, Int32Array};
|
use arrow_array::{
|
||||||
|
cast::AsArray, Float32Array, Int32Array, RecordBatch, RecordBatchIterator,
|
||||||
|
RecordBatchReader,
|
||||||
|
};
|
||||||
use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema};
|
use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema};
|
||||||
use futures::StreamExt;
|
use futures::StreamExt;
|
||||||
use lance::dataset::Dataset;
|
use lance::dataset::Dataset;
|
||||||
|
|||||||
Reference in New Issue
Block a user