Compare commits

..

2 Commits

Author SHA1 Message Date
qzhu
8e25e0c7f0 reformatted 2023-12-07 12:08:05 -08:00
qzhu
5f989e86d2 SaaS python SDK doc 2023-12-07 12:01:03 -08:00
25 changed files with 151 additions and 954 deletions

View File

@@ -37,10 +37,14 @@ jobs:
path: |
node/vectordb-*.tgz
node-macos-x86:
node-macos:
runs-on: macos-13
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps:
- name: Checkout
uses: actions/checkout@v3
@@ -50,30 +54,11 @@ jobs:
run: |
cd node
npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh x86_64-apple-darwin
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:
name: native-darwin
path: |
node/dist/lancedb-vectordb-darwin*.tgz
node-macos-arm64:
runs-on: macos-13-xlarge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh aarch64-apple-darwin
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:

View File

@@ -5,10 +5,10 @@ exclude = ["python"]
resolver = "2"
[workspace.dependencies]
lance = { "version" = "=0.8.20", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.8.20" }
lance-linalg = { "version" = "=0.8.20" }
lance-testing = { "version" = "=0.8.20" }
lance = { "version" = "=0.8.17", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.8.17" }
lance-linalg = { "version" = "=0.8.17" }
lance-testing = { "version" = "=0.8.17" }
# Note that this one does not include pyarrow
arrow = { version = "47.0.0", optional = false }
arrow-array = "47.0"

View File

@@ -5,11 +5,10 @@
**Developer-friendly, serverless vector database for AI applications**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
<a href="https://lancedb.github.io/lancedb/">Documentation</a>
<a href="https://blog.lancedb.com/">Blog</a>
<a href="https://discord.gg/zMM32dvNtd">Discord</a>
<a href="https://twitter.com/lancedb">Twitter</a>
</p>

View File

@@ -80,6 +80,7 @@ nav:
- Ingest Embedding Functions: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Create Custom Embedding Functions: embeddings/api.md
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb
- 🔍 Python full-text search: fts.md
@@ -98,7 +99,6 @@ nav:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 🌐 Javascript examples:

18
node/package-lock.json generated
View File

@@ -316,18 +316,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.9.tgz",
"integrity": "sha512-irtAdfSRQDcfnMnB8T7D0atLFfu1MMZZ1JaxMKu24DDZ8e4IMYKUplxwvWni3241yA9yDE/pliRZCNQbQCEfrg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz",
@@ -4868,12 +4856,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"@lancedb/vectordb-darwin-arm64": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.9.tgz",
"integrity": "sha512-irtAdfSRQDcfnMnB8T7D0atLFfu1MMZZ1JaxMKu24DDZ8e4IMYKUplxwvWni3241yA9yDE/pliRZCNQbQCEfrg==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz",

View File

@@ -21,10 +21,9 @@ import type { EmbeddingFunction } from './embedding/embedding_function'
import { RemoteConnection } from './remote'
import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function'
import { type Literal, toSQL } from './util'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableUpdate, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js')
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js')
export { Query }
export type { EmbeddingFunction }
@@ -262,39 +261,6 @@ export interface Table<T = number[]> {
*/
delete: (filter: string) => Promise<void>
/**
* Update rows in this table.
*
* This can be used to update a single row, many rows, all rows, or
* sometimes no rows (if your predicate matches nothing).
*
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
*
* @examples
*
* ```ts
* const con = await lancedb.connect("./.lancedb")
* const data = [
* {id: 1, vector: [3, 3], name: 'Ye'},
* {id: 2, vector: [4, 4], name: 'Mike'},
* ];
* const tbl = await con.createTable("my_table", data)
*
* await tbl.update({
* filter: "id = 2",
* updates: { vector: [2, 2], name: "Michael" },
* })
*
* let results = await tbl.search([1, 1]).execute();
* // Returns [
* // {id: 2, vector: [2, 2], name: 'Michael'}
* // {id: 1, vector: [3, 3], name: 'Ye'}
* // ]
* ```
*
*/
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
/**
* List the indicies on this table.
*/
@@ -306,34 +272,6 @@ export interface Table<T = number[]> {
indexStats: (indexUuid: string) => Promise<IndexStats>
}
export interface UpdateArgs {
/**
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
* in which case all rows will be updated.
*/
where?: string
/**
* A key-value map of updates. The keys are the column names, and the values are the
* new values to set
*/
values: Record<string, Literal>
}
export interface UpdateSqlArgs {
/**
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
* in which case all rows will be updated.
*/
where?: string
/**
* A key-value map of updates. The keys are the column names, and the values are the
* new values to set as SQL expressions.
*/
valuesSql: Record<string, string>
}
export interface VectorIndex {
columns: string[]
name: string
@@ -488,16 +426,6 @@ export class LocalTable<T = number[]> implements Table<T> {
return new Query(query, this._tbl, this._embeddings)
}
/**
* Creates a filter query to find all rows matching the specified criteria
* @param value The filter criteria (like SQL where clause syntax)
*/
filter (value: string): Query<T> {
return new Query(undefined, this._tbl, this._embeddings).filter(value)
}
where = this.filter
/**
* Insert records into this Table.
*
@@ -553,31 +481,6 @@ export class LocalTable<T = number[]> implements Table<T> {
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
}
/**
* Update rows in this table.
*
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
*
* @returns
*/
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
let filter: string | null
let updates: Record<string, string>
if ('valuesSql' in args) {
filter = args.where ?? null
updates = args.valuesSql
} else {
filter = args.where ?? null
updates = {}
for (const [key, value] of Object.entries(args.values)) {
updates[key] = toSQL(value)
}
}
return tableUpdate.call(this._tbl, filter, updates).then((newTable: any) => { this._tbl = newTable })
}
/**
* Clean up old versions of the table, freeing disk space.
*

View File

@@ -23,10 +23,10 @@ const { tableSearch } = require('../native.js')
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query<T = number[]> {
private readonly _query?: T
private readonly _query: T
private readonly _tbl?: any
private _queryVector?: number[]
private _limit?: number
private _limit: number
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
@@ -35,10 +35,10 @@ export class Query<T = number[]> {
private _prefilter: boolean
protected readonly _embeddings?: EmbeddingFunction<T>
constructor (query?: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query = query
this._limit = undefined
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
@@ -113,13 +113,11 @@ export class Query<T = number[]> {
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._query !== undefined) {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
}
const isElectron = this.isElectron()
const buffer = await tableSearch.call(this._tbl, this, isElectron)

View File

@@ -16,8 +16,7 @@ import {
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
type ConnectionOptions, type CreateTableOptions, type VectorIndex,
type WriteOptions,
type IndexStats,
type UpdateArgs, type UpdateSqlArgs
type IndexStats
} from '../index'
import { Query } from '../query'
@@ -247,10 +246,6 @@ export class RemoteTable<T = number[]> implements Table<T> {
await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
}
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
throw new Error('Not implemented')
}
async listIndices (): Promise<VectorIndex[]> {
const results = await this._client.post(`/v1/table/${this._name}/index/list/`)
return results.data.indexes?.map((index: any) => ({

View File

@@ -78,31 +78,12 @@ describe('LanceDB client', function () {
})
it('limits # of results', async function () {
const uri = await createTestDB(2, 100)
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
let results = await table.search([0.1, 0.3]).limit(1).execute()
const results = await table.search([0.1, 0.3]).limit(1).execute()
assert.equal(results.length, 1)
assert.equal(results[0].id, 1)
// there is a default limit if unspecified
results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 10)
})
it('uses a filter / where clause without vector search', async function () {
// eslint-disable-next-line @typescript-eslint/explicit-function-return-type
const assertResults = (results: Array<Record<string, unknown>>) => {
assert.equal(results.length, 50)
}
const uri = await createTestDB(2, 100)
const con = await lancedb.connect(uri)
const table = (await con.openTable('vectors')) as LocalTable
let results = await table.filter('id % 2 = 0').execute()
assertResults(results)
results = await table.where('id % 2 = 0').execute()
assertResults(results)
})
it('uses a filter / where clause', async function () {
@@ -279,46 +260,6 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2)
})
it('can update records in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ where: 'price = 10', valuesSql: { price: '100' } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 11)
})
it('can update the records using a literal value', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ where: 'price = 10', values: { price: 100 } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 11)
})
it('can update every record in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ valuesSql: { price: '100' } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 100)
})
it('can delete records from a table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
@@ -601,7 +542,7 @@ describe('Compact and cleanup', function () {
// should have no effect, but this validates the arguments are parsed.
await table.compactFiles({
targetRowsPerFragment: 102410,
targetRowsPerFragment: 1024 * 10,
maxRowsPerGroup: 1024,
materializeDeletions: true,
materializeDeletionsThreshold: 0.5,

View File

@@ -1,45 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { toSQL } from '../util'
import * as chai from 'chai'
const expect = chai.expect
describe('toSQL', function () {
it('should turn string to SQL expression', function () {
expect(toSQL('foo')).to.equal("'foo'")
})
it('should turn number to SQL expression', function () {
expect(toSQL(123)).to.equal('123')
})
it('should turn boolean to SQL expression', function () {
expect(toSQL(true)).to.equal('TRUE')
})
it('should turn null to SQL expression', function () {
expect(toSQL(null)).to.equal('NULL')
})
it('should turn Date to SQL expression', function () {
const date = new Date('05 October 2011 14:48 UTC')
expect(toSQL(date)).to.equal("'2011-10-05T14:48:00.000Z'")
})
it('should turn array to SQL expression', function () {
expect(toSQL(['foo', 'bar', true, 1])).to.equal("['foo', 'bar', TRUE, 1]")
})
})

View File

@@ -1,44 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
export type Literal = string | number | boolean | null | Date | Literal[]
export function toSQL (value: Literal): string {
if (typeof value === 'string') {
return `'${value}'`
}
if (typeof value === 'number') {
return value.toString()
}
if (typeof value === 'boolean') {
return value ? 'TRUE' : 'FALSE'
}
if (value === null) {
return 'NULL'
}
if (value instanceof Date) {
return `'${value.toISOString()}'`
}
if (Array.isArray(value)) {
return `[${value.map(toSQL).join(', ')}]`
}
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw new Error(`Unsupported value type: ${typeof value} value: (${value})`)
}

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.5
current_version = 0.3.4
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -56,7 +56,7 @@ class RemoteDBConnection(DBConnection):
self._loop = asyncio.get_event_loop()
def __repr__(self) -> str:
return f"RemoteConnect(name={self.db_name})"
return f"RemoveConnect(name={self.db_name})"
@override
def table_names(
@@ -167,10 +167,10 @@ class RemoteDBConnection(DBConnection):
Can create with list of tuples or dictionaries:
>>> import lancedb
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> db = lancedb.connect("db://test-project-8f45eb")
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data) # doctest: +SKIP
>>> db.create_table("my_table", data)
LanceTable(my_table)
You can also pass a pandas DataFrame:
@@ -181,7 +181,7 @@ class RemoteDBConnection(DBConnection):
... "lat": [45.5, 40.1],
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data) # doctest: +SKIP
>>> db.create_table("table2", data)
LanceTable(table2)
>>> custom_schema = pa.schema([
@@ -189,7 +189,7 @@ class RemoteDBConnection(DBConnection):
... pa.field("lat", pa.float32()),
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema) # doctest: +SKIP
>>> db.create_table("table3", data, schema = custom_schema)
LanceTable(table3)
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
@@ -211,7 +211,7 @@ class RemoteDBConnection(DBConnection):
... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema) # doctest: +SKIP
>>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(table4)
"""

View File

@@ -85,7 +85,7 @@ class RemoteTable(Table):
>>> import lancedb
>>> import uuid
>>> from lancedb.schema import vector
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> conn = lancedb.connect("db://...", api_key="...", region="...")
>>> table_name = uuid.uuid4().hex
>>> schema = pa.schema(
... [
@@ -94,11 +94,11 @@ class RemoteTable(Table):
... pa.field("s", pa.string(), False),
... ]
... )
>>> table = db.create_table( # doctest: +SKIP
... table_name, # doctest: +SKIP
... schema=schema, # doctest: +SKIP
... )
>>> table.create_index("L2", "vector") # doctest: +SKIP
>>> table = conn.create_table(
>>> table_name,
>>> schema=schema,
>>> )
>>> table.create_index("L2", "vector")
"""
index_type = "vector"
@@ -173,22 +173,22 @@ class RemoteTable(Table):
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> db = lancedb.connect("db://...", api_key="...", region="...")
>>> data = [
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
... ]
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector") # doctest: +SKIP
... .where("original_width > 1000", prefilter=True) # doctest: +SKIP
... .select(["caption", "original_width"]) # doctest: +SKIP
... .limit(2) # doctest: +SKIP
... .to_pandas()) # doctest: +SKIP
caption original_width vector _distance # doctest: +SKIP
0 foo 2000 [0.5, 3.4, 1.3] 5.220000 # doctest: +SKIP
1 test 3000 [0.3, 6.2, 2.6] 23.089996 # doctest: +SKIP
>>> (table.search(query, vector_column_name="vector")
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
... .to_pandas())
caption original_width vector _distance
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
1 test 3000 [0.3, 6.2, 2.6] 23.089996
Parameters
----------
@@ -246,28 +246,30 @@ class RemoteTable(Table):
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
x vector _distance # doctest: +SKIP
0 3 [5.0, 6.0] 41.0 # doctest: +SKIP
1 2 [3.0, 4.0] 85.0 # doctest: +SKIP
2 1 [1.0, 2.0] 145.0 # doctest: +SKIP
>>> table.delete("x = 2") # doctest: +SKIP
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
x vector _distance # doctest: +SKIP
0 3 [5.0, 6.0] 41.0 # doctest: +SKIP
1 1 [1.0, 2.0] 145.0 # doctest: +SKIP
>>> db = lancedb.connect("db://...", api_key="...", region="...")
>>> table = db.create_table("my_table", data)
>>> table.search([10,10]).to_pandas()
x vector _distance
0 3 [5.0, 6.0] 41.0
1 2 [3.0, 4.0] 85.0
2 1 [1.0, 2.0] 145.0
>>> table.delete("x = 2")
>>> table.search([10,10]).to_pandas()
x vector _distance
0 3 [5.0, 6.0] 41.0
1 1 [1.0, 2.0] 145.0
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
>>> to_remove = [1, 3] # doctest: +SKIP
>>> to_remove = ", ".join([str(v) for v in to_remove]) # doctest: +SKIP
>>> table.delete(f"x IN ({to_remove})") # doctest: +SKIP
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
x vector _distance # doctest: +SKIP
0 2 [3.0, 4.0] 85.0 # doctest: +SKIP
>>> to_remove = [1, 3]
>>> to_remove = ", ".join([str(v) for v in to_remove])
>>> to_remove
'1, 3'
>>> table.delete(f"x IN ({to_remove})")
>>> table.search([10,10]).to_pandas()
x vector _distance
0 2 [3.0, 4.0] 85.0
"""
payload = {"predicate": predicate}
self._conn._loop.run_until_complete(

View File

@@ -17,7 +17,7 @@ import inspect
import os
from abc import ABC, abstractmethod
from functools import cached_property
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Union
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Union
import lance
import numpy as np
@@ -30,7 +30,7 @@ from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from .pydantic import LanceModel
from .query import LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas, value_to_sql
from .util import fs_from_uri, safe_import_pandas
from .utils.events import register_event
if TYPE_CHECKING:
@@ -785,7 +785,7 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
register_event("search_table")
register_event("search")
return LanceQueryBuilder.create(
self, query, query_type, vector_column_name=vector_column_name
)
@@ -906,42 +906,35 @@ class LanceTable(Table):
f"Table {name} does not exist."
f"Please first call db.create_table({name}, data)"
)
register_event("open_table")
return tbl
def delete(self, where: str):
self._dataset.delete(where)
def update(
self,
where: Optional[str] = None,
values: Optional[dict] = None,
*,
values_sql: Optional[Dict[str, str]] = None,
):
def update(self, where: str, values: dict):
"""
EXPERIMENTAL: Update rows in the table (not threadsafe).
This can be used to update zero to all rows depending on how many
rows match the where clause.
Parameters
----------
where: str, optional
where: str
The SQL where clause to use when updating rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
values: dict, optional
values: dict
The values to update. The keys are the column names and the values
are the values to set.
values_sql: dict, optional
The values to update, expressed as SQL expression strings. These can
reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1.
Examples
--------
>>> import lancedb
>>> import pandas as pd
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
>>> data = [
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
>>> table.to_pandas()
@@ -957,15 +950,18 @@ class LanceTable(Table):
2 2 [10.0, 10.0]
"""
if values is not None and values_sql is not None:
raise ValueError("Only one of values or values_sql can be provided")
if values is None and values_sql is None:
raise ValueError("Either values or values_sql must be provided")
if values is not None:
values_sql = {k: value_to_sql(v) for k, v in values.items()}
self.to_lance().update(values_sql, where)
orig_data = self._dataset.to_table(filter=where).combine_chunks()
if len(orig_data) == 0:
return
for col, val in values.items():
i = orig_data.column_names.index(col)
if i < 0:
raise ValueError(f"Column {col} does not exist")
orig_data = orig_data.set_column(
i, col, pa.array([val] * len(orig_data), type=orig_data[col].type)
)
self.delete(where)
self.add(orig_data, mode="append")
self._reset_dataset()
register_event("update")

View File

@@ -12,12 +12,9 @@
# limitations under the License.
import os
from datetime import date, datetime
from functools import singledispatch
from typing import Tuple
from urllib.parse import urlparse
import numpy as np
import pyarrow.fs as pa_fs
@@ -91,53 +88,3 @@ def safe_import_pandas():
return pd
except ImportError:
return None
@singledispatch
def value_to_sql(value):
raise NotImplementedError("SQL conversion is not implemented for this type")
@value_to_sql.register(str)
def _(value: str):
return f"'{value}'"
@value_to_sql.register(int)
def _(value: int):
return str(value)
@value_to_sql.register(float)
def _(value: float):
return str(value)
@value_to_sql.register(bool)
def _(value: bool):
return str(value).upper()
@value_to_sql.register(type(None))
def _(value: type(None)):
return "NULL"
@value_to_sql.register(datetime)
def _(value: datetime):
return f"'{value.isoformat()}'"
@value_to_sql.register(date)
def _(value: date):
return f"'{value.isoformat()}'"
@value_to_sql.register(list)
def _(value: list):
return "[" + ", ".join(map(value_to_sql, value)) + "]"
@value_to_sql.register(np.ndarray)
def _(value: np.ndarray):
return value_to_sql(value.tolist())

View File

@@ -64,10 +64,8 @@ class _Events:
Initializes the Events object with default values for events, rate_limit, and metadata.
"""
self.events = [] # events list
self.throttled_event_names = ["search_table"]
self.throttled_events = set()
self.max_events = 5 # max events to store in memory
self.rate_limit = 60.0 * 5 # rate limit (seconds)
self.max_events = 25 # max events to store in memory
self.rate_limit = 60.0 # rate limit (seconds)
self.time = 0.0
if is_git_dir():
@@ -114,9 +112,10 @@ class _Events:
return
if (
len(self.events) < self.max_events
): # Events list limited to self.max_events (drop any events past this)
): # Events list limited to 25 events (drop any events past this)
params.update(self.metadata)
event = {
self.events.append(
{
"event": event_name,
"properties": params,
"timestamp": datetime.datetime.now(
@@ -124,11 +123,7 @@ class _Events:
).isoformat(),
"distinct_id": CONFIG["uuid"],
}
if event_name not in self.throttled_event_names:
self.events.append(event)
elif event_name not in self.throttled_events:
self.throttled_events.add(event_name)
self.events.append(event)
)
# Check rate limit
t = time.time()
@@ -140,6 +135,7 @@ class _Events:
"distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event
"batch": self.events,
}
# POST equivalent to requests.post(self.url, json=data).
# threaded request is used to avoid blocking, retries are disabled, and verbose is disabled
# to avoid any possible disruption in the console.
@@ -154,7 +150,6 @@ class _Events:
# Flush & Reset
self.events = []
self.throttled_events = set()
self.time = t

View File

@@ -1,12 +1,12 @@
[project]
name = "lancedb"
version = "0.3.5"
version = "0.3.4"
dependencies = [
"deprecation",
"pylance==0.8.21",
"pylance==0.8.17",
"ratelimiter~=1.0",
"retry>=0.9.2",
"tqdm>=4.27.0",
"tqdm>=4.1.0",
"aiohttp",
"pydantic>=1.10",
"attrs>=21.3.0",

View File

@@ -12,7 +12,7 @@
# limitations under the License.
import functools
from datetime import date, datetime, timedelta
from datetime import timedelta
from pathlib import Path
from typing import List
from unittest.mock import PropertyMock, patch
@@ -348,79 +348,14 @@ def test_update(db):
assert len(table) == 2
assert len(table.list_versions()) == 2
table.update(where="id=0", values={"vector": [1.1, 1.1]})
assert len(table.list_versions()) == 3
assert table.version == 3
assert len(table.list_versions()) == 4
assert table.version == 4
assert len(table) == 2
v = table.to_arrow()["vector"].combine_chunks()
v = v.values.to_numpy().reshape(2, 2)
assert np.allclose(v, np.array([[1.2, 1.9], [1.1, 1.1]]))
def test_update_types(db):
table = LanceTable.create(
db,
"my_table",
data=[
{
"id": 0,
"str": "foo",
"float": 1.1,
"timestamp": datetime(2021, 1, 1),
"date": date(2021, 1, 1),
"vector1": [1.0, 0.0],
"vector2": [1.0, 1.0],
}
],
)
# Update with SQL
table.update(
values_sql=dict(
id="1",
str="'bar'",
float="2.2",
timestamp="TIMESTAMP '2021-01-02 00:00:00'",
date="DATE '2021-01-02'",
vector1="[2.0, 2.0]",
vector2="[3.0, 3.0]",
)
)
actual = table.to_arrow().to_pylist()[0]
expected = dict(
id=1,
str="bar",
float=2.2,
timestamp=datetime(2021, 1, 2),
date=date(2021, 1, 2),
vector1=[2.0, 2.0],
vector2=[3.0, 3.0],
)
assert actual == expected
# Update with values
table.update(
values=dict(
id=2,
str="baz",
float=3.3,
timestamp=datetime(2021, 1, 3),
date=date(2021, 1, 3),
vector1=[3.0, 3.0],
vector2=np.array([4.0, 4.0]),
)
)
actual = table.to_arrow().to_pylist()[0]
expected = dict(
id=2,
str="baz",
float=3.3,
timestamp=datetime(2021, 1, 3),
date=date(2021, 1, 3),
vector1=[3.0, 3.0],
vector2=[4.0, 4.0],
)
assert actual == expected
def test_create_with_embedding_function(db):
class MyTable(LanceModel):
text: str

View File

@@ -237,7 +237,6 @@ fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("tableAdd", JsTable::js_add)?;
cx.export_function("tableCountRows", JsTable::js_count_rows)?;
cx.export_function("tableDelete", JsTable::js_delete)?;
cx.export_function("tableUpdate", JsTable::js_update)?;
cx.export_function("tableCleanupOldVersions", JsTable::js_cleanup)?;
cx.export_function("tableCompactFiles", JsTable::js_compact)?;
cx.export_function("tableListIndices", JsTable::js_list_indices)?;

View File

@@ -23,14 +23,8 @@ impl JsQuery {
let query_obj = cx.argument::<JsObject>(0)?;
let limit = query_obj
.get_opt::<JsNumber, _, _>(&mut cx, "_limit")?
.map(|value| {
let limit = value.value(&mut cx) as u64;
if limit <= 0 {
panic!("Limit must be a positive integer");
}
limit
});
.get::<JsNumber, _, _>(&mut cx, "_limit")?
.value(&mut cx);
let select = query_obj
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
.map(|arr| {
@@ -54,9 +48,7 @@ impl JsQuery {
.map(|s| s.value(&mut cx))
.map(|s| MetricType::try_from(s.as_str()).unwrap());
let prefilter = query_obj
.get::<JsBoolean, _, _>(&mut cx, "_prefilter")?
.value(&mut cx);
let prefilter = query_obj.get::<JsBoolean, _, _>(&mut cx, "_prefilter")?.value(&mut cx);
let is_electron = cx
.argument::<JsBoolean>(1)
@@ -67,23 +59,20 @@ impl JsQuery {
let (deferred, promise) = cx.promise();
let channel = cx.channel();
let query_vector = query_obj.get_opt::<JsArray, _, _>(&mut cx, "_queryVector")?;
let query_vector = query_obj.get::<JsArray, _, _>(&mut cx, "_queryVector")?;
let query = convert::js_array_to_vec(query_vector.deref(), &mut cx);
let table = js_table.table.clone();
let query = query_vector.map(|q| convert::js_array_to_vec(q.deref(), &mut cx));
rt.spawn(async move {
let mut builder = table
.search(query.map(|q| Float32Array::from(q)))
let builder = table
.search(Float32Array::from(query))
.limit(limit as usize)
.refine_factor(refine_factor)
.nprobes(nprobes)
.filter(filter)
.metric_type(metric_type)
.select(select)
.prefilter(prefilter);
if let Some(limit) = limit {
builder = builder.limit(limit as usize);
};
let record_batch_stream = builder.execute();
let results = record_batch_stream
.and_then(|stream| {

View File

@@ -165,69 +165,6 @@ impl JsTable {
Ok(promise)
}
pub(crate) fn js_update(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let mut table = js_table.table.clone();
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let channel = cx.channel();
// create a vector of updates from the passed map
let updates_arg = cx.argument::<JsObject>(1)?;
let properties = updates_arg.get_own_property_names(&mut cx)?;
let mut updates: Vec<(String, String)> =
Vec::with_capacity(properties.len(&mut cx) as usize);
let len_properties = properties.len(&mut cx);
for i in 0..len_properties {
let property = properties
.get_value(&mut cx, i)?
.downcast_or_throw::<JsString, _>(&mut cx)?;
let value = updates_arg
.get_value(&mut cx, property.clone())?
.downcast_or_throw::<JsString, _>(&mut cx)?;
let property = property.value(&mut cx);
let value = value.value(&mut cx);
updates.push((property, value));
}
// get the filter/predicate if the user passed one
let predicate = cx.argument_opt(0);
let predicate = predicate.unwrap().downcast::<JsString, _>(&mut cx);
let predicate = match predicate {
Ok(_) => {
let val = predicate.map(|s| s.value(&mut cx)).unwrap();
Some(val)
}
Err(_) => {
// if the predicate is not string, check it's null otherwise an invalid
// type was passed
cx.argument::<JsNull>(0)?;
None
}
};
rt.spawn(async move {
let updates_arg = updates
.iter()
.map(|(k, v)| (k.as_str(), v.as_str()))
.collect::<Vec<_>>();
let predicate = predicate.as_ref().map(|s| s.as_str());
let update_result = table.update(predicate, updates_arg).await;
deferred.settle_with(&channel, move |mut cx| {
update_result.or_throw(&mut cx)?;
Ok(cx.boxed(JsTable::from(table)))
})
});
Ok(promise)
}
pub(crate) fn js_cleanup(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;

View File

@@ -359,7 +359,7 @@ mod test {
assert_eq!(t.count_rows().await.unwrap(), 100);
let q = t
.search(Some(PrimitiveArray::from_iter_values(vec![0.1, 0.1, 0.1, 0.1])))
.search(PrimitiveArray::from_iter_values(vec![0.1, 0.1, 0.1, 0.1]))
.limit(10)
.execute()
.await

View File

@@ -24,8 +24,8 @@ use crate::error::Result;
/// A builder for nearest neighbor queries for LanceDB.
pub struct Query {
pub dataset: Arc<Dataset>,
pub query_vector: Option<Float32Array>,
pub limit: Option<usize>,
pub query_vector: Float32Array,
pub limit: usize,
pub filter: Option<String>,
pub select: Option<Vec<String>>,
pub nprobes: usize,
@@ -46,11 +46,11 @@ impl Query {
/// # Returns
///
/// * A [Query] object.
pub(crate) fn new(dataset: Arc<Dataset>, vector: Option<Float32Array>) -> Self {
pub(crate) fn new(dataset: Arc<Dataset>, vector: Float32Array) -> Self {
Query {
dataset,
query_vector: vector,
limit: None,
limit: 10,
nprobes: 20,
refine_factor: None,
metric_type: None,
@@ -69,13 +69,11 @@ impl Query {
pub async fn execute(&self) -> Result<DatasetRecordBatchStream> {
let mut scanner: Scanner = self.dataset.scan();
if let Some(query) = self.query_vector.as_ref() {
// If there is a vector query, default to limit=10 if unspecified
scanner.nearest(crate::table::VECTOR_COLUMN_NAME, query, self.limit.unwrap_or(10))?;
} else {
// If there is no vector query, it's ok to not have a limit
scanner.limit(self.limit.map(|limit| limit as i64), None)?;
}
scanner.nearest(
crate::table::VECTOR_COLUMN_NAME,
&self.query_vector,
self.limit,
)?;
scanner.nprobs(self.nprobes);
scanner.use_index(self.use_index);
scanner.prefilter(self.prefilter);
@@ -93,7 +91,7 @@ impl Query {
///
/// * `limit` - The maximum number of results to return.
pub fn limit(mut self, limit: usize) -> Query {
self.limit = Some(limit);
self.limit = limit;
self
}
@@ -103,7 +101,7 @@ impl Query {
///
/// * `vector` - The vector that will be used for search.
pub fn query_vector(mut self, query_vector: Float32Array) -> Query {
self.query_vector = Some(query_vector);
self.query_vector = query_vector;
self
}
@@ -176,7 +174,7 @@ mod tests {
use std::sync::Arc;
use super::*;
use arrow_array::{Float32Array, RecordBatch, RecordBatchIterator, RecordBatchReader, cast::AsArray, Int32Array};
use arrow_array::{Float32Array, RecordBatch, RecordBatchIterator, RecordBatchReader};
use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema};
use futures::StreamExt;
use lance::dataset::Dataset;
@@ -189,7 +187,7 @@ mod tests {
let batches = make_test_batches();
let ds = Dataset::write(batches, "memory://foo", None).await.unwrap();
let vector = Some(Float32Array::from_iter_values([0.1, 0.2]));
let vector = Float32Array::from_iter_values([0.1, 0.2]);
let query = Query::new(Arc::new(ds), vector.clone());
assert_eq!(query.query_vector, vector);
@@ -203,8 +201,8 @@ mod tests {
.metric_type(Some(MetricType::Cosine))
.refine_factor(Some(999));
assert_eq!(query.query_vector.unwrap(), new_vector);
assert_eq!(query.limit.unwrap(), 100);
assert_eq!(query.query_vector, new_vector);
assert_eq!(query.limit, 100);
assert_eq!(query.nprobes, 1000);
assert_eq!(query.use_index, true);
assert_eq!(query.metric_type, Some(MetricType::Cosine));
@@ -216,7 +214,7 @@ mod tests {
let batches = make_non_empty_batches();
let ds = Arc::new(Dataset::write(batches, "memory://foo", None).await.unwrap());
let vector = Some(Float32Array::from_iter_values([0.1; 4]));
let vector = Float32Array::from_iter_values([0.1; 4]);
let query = Query::new(ds.clone(), vector.clone());
let result = query
@@ -246,27 +244,6 @@ mod tests {
}
}
#[tokio::test]
async fn test_execute_no_vector() {
// test that it's ok to not specify a query vector (just filter / limit)
let batches = make_non_empty_batches();
let ds = Arc::new(Dataset::write(batches, "memory://foo", None).await.unwrap());
let query = Query::new(ds.clone(), None);
let result = query
.filter(Some("id % 2 == 0".to_string()))
.execute()
.await;
let mut stream = result.expect("should have result");
// should only have one batch
while let Some(batch) = stream.next().await {
let b = batch.expect("should be Ok");
// cast arr into Int32Array
let arr: &Int32Array = b["id"].as_primitive();
assert!(arr.iter().all(|x| x.unwrap() % 2 == 0));
}
}
fn make_non_empty_batches() -> impl RecordBatchReader + Send + 'static {
let vec = Box::new(RandomVector::new().named("vector".to_string()));
let id = Box::new(IncrementingInt32::new().named("id".to_string()));

View File

@@ -23,7 +23,7 @@ use lance::dataset::cleanup::RemovalStats;
use lance::dataset::optimize::{
compact_files, CompactionMetrics, CompactionOptions, IndexRemapperOptions,
};
use lance::dataset::{Dataset, UpdateBuilder, WriteParams};
use lance::dataset::{Dataset, WriteParams};
use lance::index::DatasetIndexExt;
use lance::io::object_store::WrappingObjectStore;
use std::path::Path;
@@ -308,14 +308,10 @@ impl Table {
/// # Returns
///
/// * A [Query] object.
pub fn search(&self, query_vector: Option<Float32Array>) -> Query {
pub fn search(&self, query_vector: Float32Array) -> Query {
Query::new(self.dataset.clone(), query_vector)
}
pub fn filter(&self, expr: String) -> Query {
Query::new(self.dataset.clone(), None).filter(Some(expr))
}
/// Returns the number of rows in this Table
pub async fn count_rows(&self) -> Result<usize> {
Ok(self.dataset.count_rows().await?)
@@ -342,27 +338,6 @@ impl Table {
Ok(())
}
pub async fn update(
&mut self,
predicate: Option<&str>,
updates: Vec<(&str, &str)>,
) -> Result<()> {
let mut builder = UpdateBuilder::new(self.dataset.clone());
if let Some(predicate) = predicate {
builder = builder.update_where(predicate)?;
}
for (column, value) in updates {
builder = builder.set(column, value)?;
}
let operation = builder.build()?;
let new_ds = operation.execute().await?;
self.dataset = new_ds;
Ok(())
}
/// Remove old versions of the dataset from disk.
///
/// # Arguments
@@ -438,14 +413,11 @@ mod tests {
use std::sync::Arc;
use arrow_array::{
Array, BooleanArray, Date32Array, FixedSizeListArray, Float32Array, Float64Array,
Int32Array, Int64Array, LargeStringArray, RecordBatch, RecordBatchIterator,
RecordBatchReader, StringArray, TimestampMillisecondArray, TimestampNanosecondArray,
UInt32Array,
Array, FixedSizeListArray, Float32Array, Int32Array, RecordBatch, RecordBatchIterator,
RecordBatchReader,
};
use arrow_data::ArrayDataBuilder;
use arrow_schema::{DataType, Field, Schema, TimeUnit};
use futures::TryStreamExt;
use arrow_schema::{DataType, Field, Schema};
use lance::dataset::{Dataset, WriteMode};
use lance::index::vector::pq::PQBuildParams;
use lance::io::object_store::{ObjectStoreParams, WrappingObjectStore};
@@ -568,272 +540,6 @@ mod tests {
assert_eq!(table.name, "test");
}
#[tokio::test]
async fn test_update_with_predicate() {
let tmp_dir = tempdir().unwrap();
let dataset_path = tmp_dir.path().join("test.lance");
let uri = dataset_path.to_str().unwrap();
let schema = Arc::new(Schema::new(vec![
Field::new("id", DataType::Int32, false),
Field::new("name", DataType::Utf8, false),
]));
let record_batch_iter = RecordBatchIterator::new(
vec![RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Int32Array::from_iter_values(0..10)),
Arc::new(StringArray::from_iter_values(vec![
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
])),
],
)
.unwrap()]
.into_iter()
.map(Ok),
schema.clone(),
);
Dataset::write(record_batch_iter, uri, None).await.unwrap();
let mut table = Table::open(uri).await.unwrap();
table
.update(Some("id > 5"), vec![("name", "'foo'")])
.await
.unwrap();
let ds_after = Dataset::open(uri).await.unwrap();
let mut batches = ds_after
.scan()
.project(&["id", "name"])
.unwrap()
.try_into_stream()
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
while let Some(batch) = batches.pop() {
let ids = batch
.column(0)
.as_any()
.downcast_ref::<Int32Array>()
.unwrap()
.iter()
.collect::<Vec<_>>();
let names = batch
.column(1)
.as_any()
.downcast_ref::<StringArray>()
.unwrap()
.iter()
.collect::<Vec<_>>();
for (i, name) in names.iter().enumerate() {
let id = ids[i].unwrap();
let name = name.unwrap();
if id > 5 {
assert_eq!(name, "foo");
} else {
assert_eq!(name, &format!("{}", (b'a' + id as u8) as char));
}
}
}
}
#[tokio::test]
async fn test_update_all_types() {
let tmp_dir = tempdir().unwrap();
let dataset_path = tmp_dir.path().join("test.lance");
let uri = dataset_path.to_str().unwrap();
let schema = Arc::new(Schema::new(vec![
Field::new("int32", DataType::Int32, false),
Field::new("int64", DataType::Int64, false),
Field::new("uint32", DataType::UInt32, false),
Field::new("string", DataType::Utf8, false),
Field::new("large_string", DataType::LargeUtf8, false),
Field::new("float32", DataType::Float32, false),
Field::new("float64", DataType::Float64, false),
Field::new("bool", DataType::Boolean, false),
Field::new("date32", DataType::Date32, false),
Field::new(
"timestamp_ns",
DataType::Timestamp(TimeUnit::Nanosecond, None),
false,
),
Field::new(
"timestamp_ms",
DataType::Timestamp(TimeUnit::Millisecond, None),
false,
),
Field::new(
"vec_f32",
DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float32, true)), 2),
false,
),
Field::new(
"vec_f64",
DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float64, true)), 2),
false,
),
]));
let record_batch_iter = RecordBatchIterator::new(
vec![RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Int32Array::from_iter_values(0..10)),
Arc::new(Int64Array::from_iter_values(0..10)),
Arc::new(UInt32Array::from_iter_values(0..10)),
Arc::new(StringArray::from_iter_values(vec![
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
])),
Arc::new(LargeStringArray::from_iter_values(vec![
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
])),
Arc::new(Float32Array::from_iter_values(
(0..10).into_iter().map(|i| i as f32),
)),
Arc::new(Float64Array::from_iter_values(
(0..10).into_iter().map(|i| i as f64),
)),
Arc::new(Into::<BooleanArray>::into(vec![
true, false, true, false, true, false, true, false, true, false,
])),
Arc::new(Date32Array::from_iter_values(0..10)),
Arc::new(TimestampNanosecondArray::from_iter_values(0..10)),
Arc::new(TimestampMillisecondArray::from_iter_values(0..10)),
Arc::new(
create_fixed_size_list(
Float32Array::from_iter_values((0..20).into_iter().map(|i| i as f32)),
2,
)
.unwrap(),
),
Arc::new(
create_fixed_size_list(
Float64Array::from_iter_values((0..20).into_iter().map(|i| i as f64)),
2,
)
.unwrap(),
),
],
)
.unwrap()]
.into_iter()
.map(Ok),
schema.clone(),
);
Dataset::write(record_batch_iter, uri, None).await.unwrap();
let mut table = Table::open(uri).await.unwrap();
// check it can do update for each type
let updates: Vec<(&str, &str)> = vec![
("string", "'foo'"),
("large_string", "'large_foo'"),
("int32", "1"),
("int64", "1"),
("uint32", "1"),
("float32", "1.0"),
("float64", "1.0"),
("bool", "true"),
("date32", "1"),
("timestamp_ns", "1"),
("timestamp_ms", "1"),
("vec_f32", "[1.0, 1.0]"),
("vec_f64", "[1.0, 1.0]"),
];
// for (column, value) in test_cases {
table.update(None, updates).await.unwrap();
let ds_after = Dataset::open(uri).await.unwrap();
let mut batches = ds_after
.scan()
.project(&[
"string",
"large_string",
"int32",
"int64",
"uint32",
"float32",
"float64",
"bool",
"date32",
"timestamp_ns",
"timestamp_ms",
"vec_f32",
"vec_f64",
])
.unwrap()
.try_into_stream()
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
let batch = batches.pop().unwrap();
macro_rules! assert_column {
($column:expr, $array_type:ty, $expected:expr) => {
let array = $column
.as_any()
.downcast_ref::<$array_type>()
.unwrap()
.iter()
.collect::<Vec<_>>();
for v in array {
assert_eq!(v, Some($expected));
}
};
}
assert_column!(batch.column(0), StringArray, "foo");
assert_column!(batch.column(1), LargeStringArray, "large_foo");
assert_column!(batch.column(2), Int32Array, 1);
assert_column!(batch.column(3), Int64Array, 1);
assert_column!(batch.column(4), UInt32Array, 1);
assert_column!(batch.column(5), Float32Array, 1.0);
assert_column!(batch.column(6), Float64Array, 1.0);
assert_column!(batch.column(7), BooleanArray, true);
assert_column!(batch.column(8), Date32Array, 1);
assert_column!(batch.column(9), TimestampNanosecondArray, 1);
assert_column!(batch.column(10), TimestampMillisecondArray, 1);
let array = batch
.column(11)
.as_any()
.downcast_ref::<FixedSizeListArray>()
.unwrap()
.iter()
.collect::<Vec<_>>();
for v in array {
let v = v.unwrap();
let f32array = v.as_any().downcast_ref::<Float32Array>().unwrap();
for v in f32array {
assert_eq!(v, Some(1.0));
}
}
let array = batch
.column(12)
.as_any()
.downcast_ref::<FixedSizeListArray>()
.unwrap()
.iter()
.collect::<Vec<_>>();
for v in array {
let v = v.unwrap();
let f64array = v.as_any().downcast_ref::<Float64Array>().unwrap();
for v in f64array {
assert_eq!(v, Some(1.0));
}
}
}
#[tokio::test]
async fn test_search() {
let tmp_dir = tempdir().unwrap();
@@ -848,8 +554,8 @@ mod tests {
let table = Table::open(uri).await.unwrap();
let vector = Float32Array::from_iter_values([0.1, 0.2]);
let query = table.search(Some(vector.clone()));
assert_eq!(vector, query.query_vector.unwrap());
let query = table.search(vector.clone());
assert_eq!(vector, query.query_vector);
}
#[derive(Default, Debug)]