Compare commits

...

29 Commits

Author SHA1 Message Date
Lance Release
62c5117def [python] Bump version: 0.5.5 → 0.5.6 2024-02-20 20:45:02 +00:00
Bert
22c196b3e3 lance 0.9.18 (#1000) 2024-02-19 15:20:34 -05:00
Johannes Kolbe
1f4ac71fa3 apply fixes for notebook (#989) 2024-02-19 15:36:52 +05:30
Ayush Chaurasia
b5aad2d856 docs: Add meta tag for image preview (#988)
I think this should work. Need to deploy it to be sure as it can be
tested locally. Can be tested here.

2 things about this solution:
* All pages have a same meta tag, i.e, lancedb banner
* If needed, we can automatically use the first image of each page and
generate meta tags using the ultralytics mkdocs plugin that we did for
this purpose - https://github.com/ultralytics/mkdocs
2024-02-19 14:07:31 +05:30
Chang She
ca6f55b160 doc: update navigation links for embedding functions (#986) 2024-02-17 12:12:11 -08:00
Chang She
6f8cf1e068 doc: improve embedding functions documentation (#983)
Got some user feedback that the `implicit` / `explicit` distinction is
confusing.
Instead I was thinking we would just deprecate the `with_embeddings` API
and then organize working with embeddings into 3 buckets:

1. manually generate embeddings
2. use a provided embedding function
3. define your own custom embedding function
2024-02-17 10:39:28 -08:00
Chang She
e0277383a5 feat(python): add optional threadpool for batch requests (#981)
Currently if a batch request is given to the remote API, each query is
sent sequentially. We should allow the user to specify a threadpool.
2024-02-16 20:22:22 -08:00
Will Jones
d6b408e26f fix: use static C runtime on Windows (#979)
We depend on C static runtime, but not all Windows machines have that.
So might be worth statically linking it.

https://github.com/reorproject/reor/issues/36#issuecomment-1948876463
2024-02-16 15:54:12 -08:00
Will Jones
2447372c1f docs: show DuckDB with dataset, not table (#974)
Using datasets is preferred way to allow filter and projection pushdown,
as well as aggregated larger-than-memory tables.
2024-02-16 09:18:18 -08:00
Ayush Chaurasia
f0298d8372 docs: Minimal reranking evaluation benchmarks (#977) 2024-02-15 22:16:53 +05:30
Lance Release
54693e6bec Updating package-lock.json 2024-02-14 23:20:59 +00:00
Will Jones
73b2977bff chore: upgrade lance to 0.9.16 (#975) 2024-02-14 14:20:03 -08:00
Will Jones
aec85f7875 ci: fix Node ARM release build (#971)
When we turned on fat LTO builds, we made the release build job **much**
more compute and memory intensive. The ARM runners have particularly low
memory per core, which makes them susceptible to OOM errors. To avoid
issues, I have enabled memory swap on ARM and bumped the side of the
runner.
2024-02-14 13:02:09 -08:00
Will Jones
51f92ecb3d ci: reduce number of build jobs on aarch64 to avoid OOM (#970) 2024-02-13 17:33:09 -08:00
Lance Release
5b60412d66 [python] Bump version: 0.5.4 → 0.5.5 2024-02-13 23:30:35 +00:00
Lance Release
53d63966a9 Updating package-lock.json 2024-02-13 23:23:02 +00:00
Lance Release
5ba87575e7 Bump version: 0.4.9 → 0.4.10 2024-02-13 23:22:53 +00:00
Weston Pace
cc5f2136a6 feat: make it easier to create empty tables (#942)
This PR also reworks the table creation utilities significantly so that
they are more consistent, built on top of each other, and thoroughly
documented.
2024-02-13 10:51:18 -08:00
Prashanth Rao
78e5fb5451 [docs]: Fix typos and clarity in hybrid search docs (#966)
- Fixed typos and added some clarity to the hybrid search docs
- Changed "Airbnb" case to be as per the [official company
name](https://en.wikipedia.org/wiki/Airbnb) (the "bnb" shouldn't be
capitalized", and the text in the document aligns with this
- Fixed headers in nav bar
2024-02-13 23:25:59 +05:30
Will Jones
8104c5c18e fix: wrap in BigInt to avoid upstream bug (#962)
Closes #960
2024-02-13 08:13:56 -08:00
Ayush Chaurasia
4fbabdeec3 docs: Add setup cell for colab example (#965) 2024-02-13 20:42:01 +05:30
Ayush Chaurasia
eb31d95fef feat(python): hybrid search updates, examples, & latency benchmarks (#964)
- Rename safe_import -> attempt_import_or_raise (closes
https://github.com/lancedb/lancedb/pull/923)
- Update docs
- Add Notebook example (@changhiskhan you can use it for the talk. Comes
with "open in colab" button)
- Latency benchmark & results comparison, sanity check on real-world
data
- Updates the default openai model to gpt-4
2024-02-13 17:58:39 +05:30
Will Jones
3169c36525 chore: fix clippy lints (#963) 2024-02-12 19:59:00 -08:00
QianZhu
1b990983b3 Qian/make vector col optional (#950)
remote SDK tests were completed through lancedb_integtest
2024-02-12 16:35:44 -08:00
Will Jones
0c21f91c16 fix(node): statically link lzma (#961)
Fixes #956

Same changes as https://github.com/lancedb/lance/pull/1934
2024-02-12 10:07:09 -08:00
Lance Release
7e50c239eb Updating package-lock.json 2024-02-10 18:07:16 +00:00
Weston Pace
24e8043150 chore: use a bigger runner for NPM publish jobs on aarch64 to avoid OOM (#955) 2024-02-10 09:57:33 -08:00
Lance Release
990440385d Updating package-lock.json 2024-02-09 23:37:31 +00:00
Lance Release
a693a9d897 Bump version: 0.4.8 → 0.4.9 2024-02-09 23:37:21 +00:00
64 changed files with 2411 additions and 565 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.4.8 current_version = 0.4.10
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -25,6 +25,7 @@ rustflags = [
"-Dclippy::dbg_macro", "-Dclippy::dbg_macro",
# not too much we can do to avoid multiple crate versions # not too much we can do to avoid multiple crate versions
"-Aclippy::multiple-crate-versions", "-Aclippy::multiple-crate-versions",
"-Aclippy::wildcard_dependencies",
] ]
[target.x86_64-unknown-linux-gnu] [target.x86_64-unknown-linux-gnu]
@@ -32,3 +33,8 @@ rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"
[target.aarch64-apple-darwin] [target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"] rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
# Not all Windows systems have the C runtime installed, so this avoids library
# not found errors on systems that are missing it.
[target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

View File

@@ -80,10 +80,25 @@ jobs:
- arch: x86_64 - arch: x86_64
runner: ubuntu-latest runner: ubuntu-latest
- arch: aarch64 - arch: aarch64
runner: buildjet-4vcpu-ubuntu-2204-arm # For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts - name: Build Linux Artifacts
run: | run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}

View File

@@ -14,10 +14,10 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"] categories = ["database-implementations"]
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.9.15", "features" = ["dynamodb"] } lance = { "version" = "=0.9.18", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.15" } lance-index = { "version" = "=0.9.18" }
lance-linalg = { "version" = "=0.9.15" } lance-linalg = { "version" = "=0.9.18" }
lance-testing = { "version" = "=0.9.15" } lance-testing = { "version" = "=0.9.18" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "50.0", optional = false } arrow = { version = "50.0", optional = false }
arrow-array = "50.0" arrow-array = "50.0"

View File

@@ -13,7 +13,9 @@ docker build \
. .
popd popd
# We turn on memory swap to avoid OOM killer
docker run \ docker run \
-v $(pwd):/io -w /io \ -v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \ lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH bash ci/manylinux_node/build.sh $ARCH

View File

@@ -90,16 +90,18 @@ nav:
- Building an ANN index: ann_indexes.md - Building an ANN index: ann_indexes.md
- Vector Search: search.md - Vector Search: search.md
- Full-text search: fts.md - Full-text search: fts.md
- Hybrid search: hybrid_search.md - Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- 🧬 Managing embeddings: - 🧬 Managing embeddings:
- Overview: embeddings/index.md - Overview: embeddings/index.md
- Explicit management: embeddings/embedding_explicit.md - Embedding functions: embeddings/embedding_functions.md
- Implicit management: embeddings/embedding_functions.md - Available models: embeddings/default_embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md - User-defined embedding functions: embeddings/custom_embedding_function.md
- Custom Embedding Functions: embeddings/api.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations: - 🔌 Integrations:
@@ -152,16 +154,18 @@ nav:
- Building an ANN index: ann_indexes.md - Building an ANN index: ann_indexes.md
- Vector Search: search.md - Vector Search: search.md
- Full-text search: fts.md - Full-text search: fts.md
- Hybrid search: hybrid_search.md - Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Managing Embeddings: - Managing Embeddings:
- Overview: embeddings/index.md - Overview: embeddings/index.md
- Explicit management: embeddings/embedding_explicit.md - Embedding functions: embeddings/embedding_functions.md
- Implicit management: embeddings/embedding_functions.md - Available models: embeddings/default_embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md - User-defined embedding functions: embeddings/custom_embedding_function.md
- Custom Embedding Functions: embeddings/api.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations: - Integrations:
@@ -202,6 +206,7 @@ extra_css:
extra_javascript: extra_javascript:
- "extra_js/init_ask_ai_widget.js" - "extra_js/init_ask_ai_widget.js"
- "extra_js/meta_tag.js"
extra: extra:
analytics: analytics:

View File

@@ -17,6 +17,7 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
```python ```python
from lancedb.embeddings import register from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers") @register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction): class SentenceTransformerEmbeddings(TextEmbeddingFunction):
@@ -81,7 +82,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms( model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained self.name, pretrained=self.pretrained
) )
@@ -109,14 +110,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str): if isinstance(query, str):
return [self.generate_text_embeddings(query)] return [self.generate_text_embeddings(query)]
else: else:
PIL = self.safe_import("PIL", "pillow") PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image): if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)] return [self.generate_image_embedding(query)]
else: else:
raise TypeError("OpenClip supports str or PIL Image as query") raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray: def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch") torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text) text = self.sanitize_input(text)
text = self._tokenizer(text) text = self._tokenizer(text)
text.to(self.device) text.to(self.device)
@@ -175,7 +176,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri. The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes. If the image is bytes, it is treated as the raw image bytes.
""" """
torch = self.safe_import("torch") torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https # TODO handle retry and errors for https
image = self._to_pil(image) image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0) image = self._preprocess(image).unsqueeze(0)
@@ -183,7 +184,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image) return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]): def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow") PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes): if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image)) return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image): if isinstance(image, PIL.Image.Image):

View File

@@ -9,6 +9,9 @@ Contains the text embedding functions registered by default.
### Sentence transformers ### Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object. Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description | | Parameter | Type | Default Value | Description |
|---|---|---|---| |---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model | | `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |

View File

@@ -1,141 +0,0 @@
In this workflow, you define your own embedding function and pass it as a callable to LanceDB, invoking it in your code to generate the embeddings. Let's look at some examples.
### Hugging Face
!!! note
Currently, the Hugging Face method is only supported in the Python SDK.
=== "Python"
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
=== "Python"
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
=== "JavaScript"
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## Applying an embedding function to data
=== "Python"
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
=== "JavaScript"
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Simply pass the embedding function created above and LanceDB will use it to generate
embeddings for your data.
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding)
```
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.

View File

@@ -3,61 +3,126 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline. For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! warning !!! warning
Using the implicit embeddings management approach means that you can forget about the manually passing around embedding Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
functions in your code, as long as you don't intend to change it at a later time. If your embedding function changes, However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
you'll have to re-configure your table with the new embedding function and regenerate the embeddings. and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via
table metadata and have LanceDB automatically take care of regenerating the embeddings.
## 1. Define the embedding function ## 1. Define the embedding function
We have some pre-defined embedding functions in the global registry, with more coming soon. Here's let's an implementation of CLIP as example.
```
registry = EmbeddingFunctionRegistry.get_instance()
clip = registry.get("open-clip").create()
``` === "Python"
You can also define your own embedding function by implementing the `EmbeddingFunction` abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next! In the LanceDB python SDK, we define a global embedding function registry with
many different embedding models and even more coming soon.
Here's let's an implementation of CLIP as example.
```python
from lancedb.embeddings import get_registry
registry = get_registry()
clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "JavaScript""
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available.
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## 2. Define the data model or schema ## 2. Define the data model or schema
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
```python === "Python"
class Pets(LanceModel): The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`. ```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
## 3. Create LanceDB table `VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
Now that we have chosen/defined our embedding function and the schema, we can create the table:
```python === "JavaScript"
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
``` For the TypeScript SDK, a schema can be inferred from input data, or an explicit
Arrow schema can be provided.
That's it! We've provided all the information needed to embed the source and query inputs. We can now forget about the model and dimension details and start to build our VectorDB pipeline. ## 3. Create table and add data
## 4. Ingest lots of data and query your table Now that we have chosen/defined our embedding function and the schema,
Any new or incoming data can just be added and it'll be vectorized automatically. we can create the table and ingest data without needing to explicitly generate
the embeddings at all:
```python === "Python"
table.add([{"image_uri": u} for u in uris]) ```python
``` db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
Our OpenCLIP query embedding function supports querying via both text and images: table.add([{"image_uri": u} for u in uris])
```
```python === "JavaScript"
result = table.search("dog")
```
Let's query an image: ```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
```python const table = await db.createTable("vectors", data, embedding)
p = Path("path/to/images/samoyed_100.jpg") ```
query_image = Image.open(p)
table.search(query_image) ## 4. Querying your table
``` Not only can you forget about the embeddings during ingestion, you also don't
need to worry about it when you query the table:
=== "Python"
Our OpenCLIP query embedding function supports querying via both text and images:
```python
results = (
table.search("dog")
.limit(10)
.to_pandas()
)
```
Or we can search using an image:
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
results = (
table.search(query_image)
.limit(10)
.to_pandas()
)
```
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.
--- ---
@@ -100,4 +165,5 @@ rs[2].image
![](../assets/dog_clip_output.png) ![](../assets/dog_clip_output.png)
Now that you have the basic idea about implicit management via embedding functions, let's dive deeper into a [custom API](./api.md) that you can use to implement your own embedding functions. Now that you have the basic idea about LanceDB embedding functions and the embedding function registry,
let's dive deeper into defining your own [custom functions](./custom_embedding_function.md).

View File

@@ -1,8 +1,14 @@
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio. This makes them a very powerful tool for machine learning practitioners. However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs (both commercial and open source) that can be used to generate embeddings from structured/unstructured data. Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
This makes them a very powerful tool for machine learning practitioners.
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
(both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
LanceDB supports 2 methods of vectorizing your raw data into embeddings. LanceDB supports 3 methods of working with embeddings.
1. **Explicit**: By manually calling LanceDB's `with_embedding` function to vectorize your data via an `embed_func` of your choice 1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. **Implicit**: Allow LanceDB to embed the data and queries in the background as they come in, by using the table's `EmbeddingRegistry` information 2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions.
See the [explicit](embedding_explicit.md) and [implicit](embedding_functions.md) embedding sections for more details. For python users, there is also a legacy [with_embeddings API](./legacy.md).
It is retained for compatibility and will be removed in a future version.

View File

@@ -0,0 +1,99 @@
The legacy `with_embeddings` API is for Python only and is deprecated.
### Hugging Face
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
client = openai.OpenAI()
def embed_func(c):
rs = client.embeddings.create(input=c, model="text-embedding-ada-002")
return [record.embedding for record in rs["data"]]
```
## Applying an embedding function to data
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
tbl = db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.

View File

@@ -1,6 +1,5 @@
import pickle import pickle
import re import re
import sys
import zipfile import zipfile
from pathlib import Path from pathlib import Path

View File

@@ -0,0 +1,6 @@
window.addEventListener('load', function() {
var meta = document.createElement('meta');
meta.setAttribute('property', 'og:image');
meta.setAttribute('content', '/assets/lancedb_and_lance.png');
document.head.appendChild(meta);
});

View File

@@ -0,0 +1,49 @@
# Hybrid Search
Hybrid Search is a broad (often misused) term. It can mean anything from combining multiple methods for searching, to applying ranking methods to better sort the results. In this blog, we use the definition of "hybrid search" to mean using a combination of keyword-based and vector search.
## The challenge of (re)ranking search results
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step-reranking.
There are two approaches for reranking search results from multiple sources.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example-Weighted linear combination of semantic search & keyword-based search results.
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example-Cross Encoder models
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset, application specific so it's hard to generalize.
### Example evaluation of hybrid search with Reranking
Here's some evaluation numbers from experiment comparing these re-rankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
<b> With OpenAI ada2 embedding </b>
Vector Search baseline - `0.64`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
| Linear Combination | `0.73` | `0.74` | `0.85` |
| Cross Encoder | `0.71` | `0.70` | `0.77` |
| Cohere | `0.81` | `0.81` | `0.85` |
| ColBERT | `0.68` | `0.68` | `0.73` |
<p>
<img src="https://github.com/AyushExel/assets/assets/15766192/d57b1780-ef27-414c-a5c3-73bee7808a45">
</p>
<b> With OpenAI embedding-v3-small </b>
Vector Search baseline - `0.59`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
| Linear Combination | `0.68` | `0.70` | `0.84` |
| Cross Encoder | `0.72` | `0.72` | `0.79` |
| Cohere | `0.79` | `0.79` | `0.84` |
| ColBERT | `0.70` | `0.70` | `0.76` |
<p>
<img src="https://github.com/AyushExel/assets/assets/15766192/259adfd2-6ec6-4df6-a77d-1456598970dd">
</p>
### Conclusion
The results show that the reranking methods are able to improve the search results. However, the improvement is not consistent across all rerankers. The choice of reranker depends on the dataset and the application. It is also important to note that the reranking methods are not a replacement for the search methods. They are complementary and should be used together to get the best results. The speed to recall tradeoff is also an important factor to consider when choosing the reranker.

View File

@@ -1,6 +1,6 @@
# Hybrid Search # Hybrid Search
LanceDB supports both semantic and keyword-based search. In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques. LanceDB supports both semantic and keyword-based search (also termed full-text search, or FTS). In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
## Hybrid search in LanceDB ## Hybrid search in LanceDB
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic . You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
@@ -69,7 +69,7 @@ reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vec
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas() results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
``` ```
Arguments ### Arguments
---------------- ----------------
* `weight`: `float`, default `0.7`: * `weight`: `float`, default `0.7`:
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`. The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
@@ -91,9 +91,9 @@ reranker = CohereReranker()
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas() results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
``` ```
Arguments ### Arguments
---------------- ----------------
* `model_name`` : str, default `"rerank-english-v2.0"`` * `model_name` : str, default `"rerank-english-v2.0"`
The name of the cross encoder model to use. Available cohere models are: The name of the cross encoder model to use. Available cohere models are:
- rerank-english-v2.0 - rerank-english-v2.0
- rerank-multilingual-v2.0 - rerank-multilingual-v2.0
@@ -117,7 +117,7 @@ results = table.search("harmony hall", query_type="hybrid").rerank(reranker=rera
``` ```
Arguments ### Arguments
---------------- ----------------
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"` * `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html) The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
@@ -143,7 +143,7 @@ reranker = ColbertReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas() results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
``` ```
Arguments ### Arguments
---------------- ----------------
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"` * `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
The name of the cross encoder model to use. The name of the cross encoder model to use.
@@ -162,7 +162,8 @@ This reranker uses the OpenAI API to combine the results of semantic and full-te
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental. This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
!!! Tip !!! Tip
You might run out of token limit so set the search `limits` based on your token limit. - You might run out of token limit so set the search `limits` based on your token limit.
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
```python ```python
from lancedb.rerankers import OpenaiReranker from lancedb.rerankers import OpenaiReranker
@@ -172,15 +173,15 @@ reranker = OpenaiReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas() results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
``` ```
Arguments ### Arguments
---------------- ----------------
`model_name` : `str`, default `"gpt-3.5-turbo-1106"` * `model_name` : `str`, default `"gpt-4-turbo-preview"`
The name of the cross encoder model to use. The name of the cross encoder model to use.
`column` : `str`, default `"text"` * `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model. The name of the column to use as input to the cross encoder model.
`return_score` : `str`, default `"relevance"` * `return_score` : `str`, default `"relevance"`
options are "relevance" or "all". Only "relevance" is supported for now. options are "relevance" or "all". Only "relevance" is supported for now.
`api_key` : `str`, default `None` * `api_key` : `str`, default `None`
The API key to use. If None, will use the OPENAI_API_KEY environment variable. The API key to use. If None, will use the OPENAI_API_KEY environment variable.
@@ -212,24 +213,30 @@ class MyReranker(Reranker):
``` ```
You can also accept additional arguments like a filter along with fts and vector search results ### Example of a Custom Reranker
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
```python ```python
from lancedb.rerankers import Reranker from typing import List, Union
import pyarrow as pa import pandas as pd
from lancedb.rerankers import CohereReranker
class MyReranker(Reranker): class MofidifiedCohereReranker(CohereReranker):
... def __init__(self, filters: Union[str, List[str]], **kwargs):
super().__init__(**kwargs)
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table, filter: str): filters = filters if isinstance(filters, list) else [filters]
# Use the built-in merging function self.filters = filters
combined_result = self.merge_results(vector_results, fts_results)
# Do something with the combined results & filter
# ...
# Return the combined results def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
return combined_result combined_result = super().rerank_hybrid(query, vector_results, fts_results)
df = combined_result.to_pandas()
for filter in self.filters:
df = df.query("not text.str.contains(@filter)")
return pa.Table.from_pandas(df)
``` ```
!!! tip
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.

View File

@@ -290,7 +290,7 @@
"from lancedb.pydantic import LanceModel, Vector\n", "from lancedb.pydantic import LanceModel, Vector\n",
"\n", "\n",
"class Pets(LanceModel):\n", "class Pets(LanceModel):\n",
" vector: Vector(clip.ndims) = clip.VectorField()\n", " vector: Vector(clip.ndims()) = clip.VectorField()\n",
" image_uri: str = clip.SourceField()\n", " image_uri: str = clip.SourceField()\n",
"\n", "\n",
" @property\n", " @property\n",
@@ -360,7 +360,7 @@
" table = db.create_table(\"pets\", schema=Pets)\n", " table = db.create_table(\"pets\", schema=Pets)\n",
" # use a sampling of 1000 images\n", " # use a sampling of 1000 images\n",
" p = Path(\"~/Downloads/images\").expanduser()\n", " p = Path(\"~/Downloads/images\").expanduser()\n",
" uris = [str(f) for f in p.iterdir()]\n", " uris = [str(f) for f in p.glob(\"*.jpg\")]\n",
" uris = sample(uris, 1000)\n", " uris = sample(uris, 1000)\n",
" table.add(pd.DataFrame({\"image_uri\": uris}))" " table.add(pd.DataFrame({\"image_uri\": uris}))"
] ]
@@ -543,7 +543,7 @@
], ],
"source": [ "source": [
"from PIL import Image\n", "from PIL import Image\n",
"p = Path(\"/Users/changshe/Downloads/images/samoyed_100.jpg\")\n", "p = Path(\"~/Downloads/images/samoyed_100.jpg\").expanduser()\n",
"query_image = Image.open(p)\n", "query_image = Image.open(p)\n",
"query_image" "query_image"
] ]

View File

@@ -23,10 +23,8 @@ from multiprocessing import Pool
import lance import lance
import pyarrow as pa import pyarrow as pa
from datasets import load_dataset from datasets import load_dataset
from PIL import Image
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
import lancedb
MODEL_ID = "openai/clip-vit-base-patch32" MODEL_ID = "openai/clip-vit-base-patch32"

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,9 @@
# DuckDB # DuckDB
LanceDB is very well-integrated with [DuckDB](https://duckdb.org/), an in-process SQL OLAP database. This integration is done via [Arrow](https://duckdb.org/docs/guides/python/sql_on_arrow) . In Python, LanceDB tables can also be queried with [DuckDB](https://duckdb.org/), an in-process SQL OLAP database. This means you can write complex SQL queries to analyze your data in LanceDB.
This integration is done via [Apache Arrow](https://duckdb.org/docs/guides/python/sql_on_arrow), which provides zero-copy data sharing between LanceDB and DuckDB. DuckDB is capable of passing down column selections and basic filters to LanceDB, reducing the amount of data that needs to be scanned to perform your query. Finally, the integration allows streaming data from LanceDB tables, allowing you to aggregate tables that won't fit into memory. All of this uses the same mechanism described in DuckDB's blog post *[DuckDB quacks Arrow](https://duckdb.org/2021/12/03/duck-arrow.html)*.
We can demonstrate this by first installing `duckdb` and `lancedb`. We can demonstrate this by first installing `duckdb` and `lancedb`.
@@ -19,14 +22,15 @@ data = [
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0} {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
] ]
table = db.create_table("pd_table", data=data) table = db.create_table("pd_table", data=data)
arrow_table = table.to_arrow()
``` ```
DuckDB can directly query the `pyarrow.Table` object: To query the table, first call `to_lance` to convert the table to a "dataset", which is an object that can be queried by DuckDB. Then all you need to do is reference that dataset by the same name in your SQL query.
```python ```python
import duckdb import duckdb
arrow_table = table.to_lance()
duckdb.query("SELECT * FROM arrow_table") duckdb.query("SELECT * FROM arrow_table")
``` ```

View File

@@ -14,7 +14,7 @@ excluded_globs = [
"../src/concepts/*.md", "../src/concepts/*.md",
"../src/ann_indexes.md", "../src/ann_indexes.md",
"../src/basic.md", "../src/basic.md",
"../src/hybrid_search.md", "../src/hybrid_search/hybrid_search.md",
] ]
python_prefix = "py" python_prefix = "py"

44
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.4.8", "version": "0.4.10",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.4.8", "version": "0.4.10",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.8", "@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.8", "@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.8", "@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.8", "@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.8" "@lancedb/vectordb-win32-x64-msvc": "0.4.10"
} }
}, },
"node_modules/@75lb/deep-merge": { "node_modules/@75lb/deep-merge": {
@@ -329,9 +329,9 @@
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": { "node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.4.8", "version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.8.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.10.tgz",
"integrity": "sha512-FpnJaw7KmNdD/FtOw9AcmPL5P+L04AcnfPj9ZyEjN8iCwB/qaOGYgdfBv+EbEtfHIsqA12q/1BRduu9KdB6BIA==", "integrity": "sha512-y/uHOGb0g15pvqv5tdTyZ6oN+0QVpBmZDzKFWW6pPbuSZjB2uPqcs+ti0RB+AUdmS21kavVQqaNsw/HLKEGrHA==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -341,9 +341,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-darwin-x64": { "node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.4.8", "version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.8.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.10.tgz",
"integrity": "sha512-RafOEYyZIgphp8wPGuVLFaTc8aAqo0NCO1LQMx0mB0xV96vrdo0Mooivs+dYN3RFfSHtTKPw9O1Jc957Vp1TLg==", "integrity": "sha512-XbfR58OkQpAe0xMSTrwJh9ZjGSzG9EZ7zwO6HfYem8PxcLYAcC6eWRWoSG/T0uObyrPTcYYyvHsp0eNQWYBFAQ==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -353,9 +353,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-arm64-gnu": { "node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.4.8", "version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.8.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.10.tgz",
"integrity": "sha512-WlbYNfj4+v1hBHUluF+hnlG/A0ZaQFdXBTGDfHQniL11o+n3emWm4ujP5nSAoQHXjSH9DaOTGr/N4Mc9Xe+luw==", "integrity": "sha512-x40WKH9b+KxorRmKr9G7fv8p5mMj8QJQvRMA0v6v+nbZHr2FLlAZV+9mvhHOnm4AGIkPP5335cUgv6Qz6hgwkQ==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -365,9 +365,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-x64-gnu": { "node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.4.8", "version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.8.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.10.tgz",
"integrity": "sha512-z+qFJrDqnNEv4JcwYDyt51PHmWjuM/XaOlSjpBnyyuUImeY+QcwctMuyXt8+Q4zhuqQR1AhLKrMwCU+YmMfk5g==", "integrity": "sha512-CTGPpuzlqq2nVjUxI9gAJOT1oBANIovtIaFsOmBSnEAHgX7oeAxKy2b6L/kJzsgqSzvR5vfLwYcWFrr6ZmBxSA==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -377,9 +377,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-win32-x64-msvc": { "node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.4.8", "version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.8.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.10.tgz",
"integrity": "sha512-VjUryVvEA04r0j4lU9pJy84cmjuQm1GhBzbPc8kwbn5voT4A6BPglrlNsU0Zc+j8Fbjyvauzw2lMEcMsF4F0rw==", "integrity": "sha512-Fd7r74coZyrKzkfXg4WthqOL+uKyJyPTia6imcrMNqKOlTGdKmHf02Qi2QxWZrFaabkRYo4Tpn5FeRJ3yYX8CA==",
"cpu": [ "cpu": [
"x64" "x64"
], ],

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.4.8", "version": "0.4.10",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
@@ -85,10 +85,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.8", "@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.8", "@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.8", "@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.8", "@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.8" "@lancedb/vectordb-win32-x64-msvc": "0.4.10"
} }
} }

View File

@@ -14,8 +14,6 @@
import { import {
Field, Field,
type FixedSizeListBuilder,
Float32,
makeBuilder, makeBuilder,
RecordBatchFileWriter, RecordBatchFileWriter,
Utf8, Utf8,
@@ -26,14 +24,19 @@ import {
Table as ArrowTable, Table as ArrowTable,
RecordBatchStreamWriter, RecordBatchStreamWriter,
List, List,
Float64,
RecordBatch, RecordBatch,
makeData, makeData,
Struct, Struct,
type Float type Float,
DataType,
Binary,
Float32
} from 'apache-arrow' } from 'apache-arrow'
import { type EmbeddingFunction } from './index' import { type EmbeddingFunction } from './index'
/*
* Options to control how a column should be converted to a vector array
*/
export class VectorColumnOptions { export class VectorColumnOptions {
/** Vector column type. */ /** Vector column type. */
type: Float = new Float32() type: Float = new Float32()
@@ -45,14 +48,50 @@ export class VectorColumnOptions {
/** Options to control the makeArrowTable call. */ /** Options to control the makeArrowTable call. */
export class MakeArrowTableOptions { export class MakeArrowTableOptions {
/** Provided schema. */ /*
* Schema of the data.
*
* If this is not provided then the data type will be inferred from the
* JS type. Integer numbers will become int64, floating point numbers
* will become float64 and arrays will become variable sized lists with
* the data type inferred from the first element in the array.
*
* The schema must be specified if there are no records (e.g. to make
* an empty table)
*/
schema?: Schema schema?: Schema
/** Vector columns */ /*
* Mapping from vector column name to expected type
*
* Lance expects vector columns to be fixed size list arrays (i.e. tensors)
* However, `makeArrowTable` will not infer this by default (it creates
* variable size list arrays). This field can be used to indicate that a column
* should be treated as a vector column and converted to a fixed size list.
*
* The keys should be the names of the vector columns. The value specifies the
* expected data type of the vector columns.
*
* If `schema` is provided then this field is ignored.
*
* By default, the column named "vector" will be assumed to be a float32
* vector column.
*/
vectorColumns: Record<string, VectorColumnOptions> = { vectorColumns: Record<string, VectorColumnOptions> = {
vector: new VectorColumnOptions() vector: new VectorColumnOptions()
} }
/**
* If true then string columns will be encoded with dictionary encoding
*
* Set this to true if your string columns tend to repeat the same values
* often. For more precise control use the `schema` property to specify the
* data type for individual columns.
*
* If `schema` is provided then this property is ignored.
*/
dictionaryEncodeStrings: boolean = false
constructor (values?: Partial<MakeArrowTableOptions>) { constructor (values?: Partial<MakeArrowTableOptions>) {
Object.assign(this, values) Object.assign(this, values)
} }
@@ -62,8 +101,29 @@ export class MakeArrowTableOptions {
* An enhanced version of the {@link makeTable} function from Apache Arrow * An enhanced version of the {@link makeTable} function from Apache Arrow
* that supports nested fields and embeddings columns. * that supports nested fields and embeddings columns.
* *
* This function converts an array of Record<String, any> (row-major JS objects)
* to an Arrow Table (a columnar structure)
*
* Note that it currently does not support nulls. * Note that it currently does not support nulls.
* *
* If a schema is provided then it will be used to determine the resulting array
* types. Fields will also be reordered to fit the order defined by the schema.
*
* If a schema is not provided then the types will be inferred and the field order
* will be controlled by the order of properties in the first record.
*
* If the input is empty then a schema must be provided to create an empty table.
*
* When a schema is not specified then data types will be inferred. The inference
* rules are as follows:
*
* - boolean => Bool
* - number => Float64
* - String => Utf8
* - Buffer => Binary
* - Record<String, any> => Struct
* - Array<any> => List
*
* @param data input data * @param data input data
* @param options options to control the makeArrowTable call. * @param options options to control the makeArrowTable call.
* *
@@ -86,8 +146,10 @@ export class MakeArrowTableOptions {
* ], { schema }); * ], { schema });
* ``` * ```
* *
* It guesses the vector columns if the schema is not provided. For example, * By default it assumes that the column named `vector` is a vector column
* by default it assumes that the column named `vector` is a vector column. * and it will be converted into a fixed size list array of type float32.
* The `vectorColumns` option can be used to support other vector column
* names and data types.
* *
* ```ts * ```ts
* *
@@ -134,211 +196,304 @@ export function makeArrowTable (
data: Array<Record<string, any>>, data: Array<Record<string, any>>,
options?: Partial<MakeArrowTableOptions> options?: Partial<MakeArrowTableOptions>
): ArrowTable { ): ArrowTable {
if (data.length === 0) { if (data.length === 0 && (options?.schema === undefined || options?.schema === null)) {
throw new Error('At least one record needs to be provided') throw new Error('At least one record or a schema needs to be provided')
} }
const opt = new MakeArrowTableOptions(options !== undefined ? options : {}) const opt = new MakeArrowTableOptions(options !== undefined ? options : {})
const columns: Record<string, Vector> = {} const columns: Record<string, Vector> = {}
// TODO: sample dataset to find missing columns // TODO: sample dataset to find missing columns
const columnNames = Object.keys(data[0]) // Prefer the field ordering of the schema, if present
const columnNames = ((options?.schema) != null) ? (options?.schema?.names as string[]) : Object.keys(data[0])
for (const colName of columnNames) { for (const colName of columnNames) {
const values = data.map((datum) => datum[colName]) if (data.length !== 0 && !Object.prototype.hasOwnProperty.call(data[0], colName)) {
let vector: Vector // The field is present in the schema, but not in the data, skip it
continue
}
// Extract a single column from the records (transpose from row-major to col-major)
let values = data.map((datum) => datum[colName])
// By default (type === undefined) arrow will infer the type from the JS type
let type
if (opt.schema !== undefined) { if (opt.schema !== undefined) {
// Explicit schema is provided, highest priority // If there is a schema provided, then use that for the type instead
vector = vectorFromArray( type = opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
values, if (DataType.isInt(type) && type.bitWidth === 64) {
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type // wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
) values = values.map((v) => {
if (v === null) {
return v
}
return BigInt(v)
})
}
} else { } else {
// Otherwise, check to see if this column is one of the vector columns
// defined by opt.vectorColumns and, if so, use the fixed size list type
const vectorColumnOptions = opt.vectorColumns[colName] const vectorColumnOptions = opt.vectorColumns[colName]
if (vectorColumnOptions !== undefined) { if (vectorColumnOptions !== undefined) {
const fslType = new FixedSizeList( type = newVectorType(values[0].length, vectorColumnOptions.type)
values[0].length,
new Field('item', vectorColumnOptions.type, false)
)
vector = vectorFromArray(values, fslType)
} else {
// Normal case
vector = vectorFromArray(values)
} }
} }
columns[colName] = vector
try {
// Convert an Array of JS values to an arrow vector
columns[colName] = makeVector(values, type, opt.dictionaryEncodeStrings)
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Could not convert column "${colName}" to Arrow: ${error}`)
}
} }
return new ArrowTable(columns) if (opt.schema != null) {
// `new ArrowTable(columns)` infers a schema which may sometimes have
// incorrect nullability (it assumes nullable=true if there are 0 rows)
//
// `new ArrowTable(schema, columns)` will also fail because it will create a
// batch with an inferred schema and then complain that the batch schema
// does not match the provided schema.
//
// To work around this we first create a table with the wrong schema and
// then patch the schema of the batches so we can use
// `new ArrowTable(schema, batches)` which does not do any schema inference
const firstTable = new ArrowTable(columns)
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const batchesFixed = firstTable.batches.map(batch => new RecordBatch(opt.schema!, batch.data))
return new ArrowTable(opt.schema, batchesFixed)
} else {
return new ArrowTable(columns)
}
} }
// Converts an Array of records into an Arrow Table, optionally applying an embeddings function to it. /**
* Create an empty Arrow table with the provided schema
*/
export function makeEmptyTable (schema: Schema): ArrowTable {
return makeArrowTable([], { schema })
}
// Helper function to convert Array<Array<any>> to a variable sized list array
function makeListVector (lists: any[][]): Vector<any> {
if (lists.length === 0 || lists[0].length === 0) {
throw Error('Cannot infer list vector from empty array or empty list')
}
const sampleList = lists[0]
let inferredType
try {
const sampleVector = makeVector(sampleList)
inferredType = sampleVector.type
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Cannot infer list vector. Cannot infer inner type: ${error}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', inferredType, true))
})
for (const list of lists) {
listBuilder.append(list)
}
return listBuilder.finish().toVector()
}
// Helper function to convert an Array of JS values to an Arrow Vector
function makeVector (values: any[], type?: DataType, stringAsDictionary?: boolean): Vector<any> {
if (type !== undefined) {
// No need for inference, let Arrow create it
return vectorFromArray(values, type)
}
if (values.length === 0) {
throw Error('makeVector requires at least one value or the type must be specfied')
}
const sampleValue = values.find(val => val !== null && val !== undefined)
if (sampleValue === undefined) {
throw Error('makeVector cannot infer the type if all values are null or undefined')
}
if (Array.isArray(sampleValue)) {
// Default Arrow inference doesn't handle list types
return makeListVector(values)
} else if (Buffer.isBuffer(sampleValue)) {
// Default Arrow inference doesn't handle Buffer
return vectorFromArray(values, new Binary())
} else if (!(stringAsDictionary ?? false) && (typeof sampleValue === 'string' || sampleValue instanceof String)) {
// If the type is string then don't use Arrow's default inference unless dictionaries are requested
// because it will always use dictionary encoding for strings
return vectorFromArray(values, new Utf8())
} else {
// Convert a JS array of values to an arrow vector
return vectorFromArray(values)
}
}
async function applyEmbeddings<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<ArrowTable> {
if (embeddings == null) {
return table
}
// Convert from ArrowTable to Record<String, Vector>
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
const name = table.schema.fields[idx].name
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const vec = table.getChildAt(idx)!
return [name, vec]
})
const newColumns = Object.fromEntries(colEntries)
const sourceColumn = newColumns[embeddings.sourceColumn]
const destColumn = embeddings.destColumn ?? 'vector'
const innerDestType = embeddings.embeddingDataType ?? new Float32()
if (sourceColumn === undefined) {
throw new Error(`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`)
}
if (table.numRows === 0) {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
// We have an empty table and it already has the embedding column so no work needs to be done
// Note: we don't return an error like we did below because this is a common occurrence. For example,
// if we call convertToTable with 0 records and a schema that includes the embedding
return table
}
if (embeddings.embeddingDimension !== undefined) {
const destType = newVectorType(embeddings.embeddingDimension, innerDestType)
newColumns[destColumn] = makeVector([], destType)
} else if (schema != null) {
const destField = schema.fields.find(f => f.name === destColumn)
if (destField != null) {
newColumns[destColumn] = makeVector([], destField.type)
} else {
throw new Error(`Attempt to apply embeddings to an empty table failed because schema was missing embedding column '${destColumn}'`)
}
} else {
throw new Error('Attempt to apply embeddings to an empty table when the embeddings function does not specify `embeddingDimension`')
}
} else {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
throw new Error(`Attempt to apply embeddings to table failed because column ${destColumn} already existed`)
}
if (table.batches.length > 1) {
throw new Error('Internal error: `makeArrowTable` unexpectedly created a table with more than one batch')
}
const values = sourceColumn.toArray()
const vectors = await embeddings.embed(values as T[])
if (vectors.length !== values.length) {
throw new Error('Embedding function did not return an embedding for each input element')
}
const destType = newVectorType(vectors[0].length, innerDestType)
newColumns[destColumn] = makeVector(vectors, destType)
}
const newTable = new ArrowTable(newColumns)
if (schema != null) {
if (schema.fields.find(f => f.name === destColumn) === undefined) {
throw new Error(`When using embedding functions and specifying a schema the schema should include the embedding column but the column ${destColumn} was missing`)
}
return alignTable(newTable, schema)
}
return newTable
}
/*
* Convert an Array of records into an Arrow Table, optionally applying an
* embeddings function to it.
*
* This function calls `makeArrowTable` first to create the Arrow Table.
* Any provided `makeTableOptions` (e.g. a schema) will be passed on to
* that call.
*
* The embedding function will be passed a column of values (based on the
* `sourceColumn` of the embedding function) and expects to receive back
* number[][] which will be converted into a fixed size list column. By
* default this will be a fixed size list of Float32 but that can be
* customized by the `embeddingDataType` property of the embedding function.
*
* If a schema is provided in `makeTableOptions` then it should include the
* embedding columns. If no schema is provded then embedding columns will
* be placed at the end of the table, after all of the input columns.
*/
export async function convertToTable<T> ( export async function convertToTable<T> (
data: Array<Record<string, unknown>>, data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T> embeddings?: EmbeddingFunction<T>,
makeTableOptions?: Partial<MakeArrowTableOptions>
): Promise<ArrowTable> { ): Promise<ArrowTable> {
if (data.length === 0) { const table = makeArrowTable(data, makeTableOptions)
throw new Error('At least one record needs to be provided') return await applyEmbeddings(table, embeddings, makeTableOptions?.schema)
}
const columns = Object.keys(data[0])
const records: Record<string, Vector> = {}
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const vectorSize = (data[0].vector as any[]).length
const listBuilder = newVectorBuilder(vectorSize)
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
throw new Error(`Invalid vector size, expected ${vectorSize}`)
}
listBuilder.append(datum[columnsKey])
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
const values = []
for (const datum of data) {
values.push(datum[columnsKey])
}
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
records.vector = vectorFromArray(
vectors,
newVectorType(vectors[0].length)
)
}
if (typeof values[0] === 'string') {
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
records[columnsKey] = vectorFromArray(values, new Utf8())
} else if (Array.isArray(values[0])) {
const elementType = getElementType(values[0])
let innerType
if (elementType === 'string') {
innerType = new Utf8()
} else if (elementType === 'number') {
innerType = new Float64()
} else {
// TODO: pass in schema if it exists, else keep going to the next element
throw new Error(`Unsupported array element type ${elementType}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', innerType, true))
})
for (const value of values) {
listBuilder.append(value)
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
// TODO if this is a struct field then recursively align the subfields
records[columnsKey] = vectorFromArray(values)
}
}
}
return new ArrowTable(records)
}
function getElementType (arr: any[]): string {
if (arr.length === 0) {
return 'undefined'
}
return typeof arr[0]
}
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
return makeBuilder({
type: newVectorType(dim)
})
} }
// Creates the Arrow Type for a Vector column with dimension `dim` // Creates the Arrow Type for a Vector column with dimension `dim`
function newVectorType (dim: number): FixedSizeList<Float32> { function newVectorType <T extends Float> (dim: number, innerType: T): FixedSizeList<T> {
// Somewhere we always default to have the elements nullable, so we need to set it to true // Somewhere we always default to have the elements nullable, so we need to set it to true
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements // otherwise we often get schema mismatches because the stored data always has schema with nullable elements
const children = new Field<Float32>('item', new Float32(), true) const children = new Field<T>('item', innerType, true)
return new FixedSizeList(dim, children) return new FixedSizeList(dim, children)
} }
// Converts an Array of records into Arrow IPC format /**
* Serialize an Array of records into a buffer using the Arrow IPC File serialization
*
* This function will call `convertToTable` and pass on `embeddings` and `schema`
*
* `schema` is required if data is empty
*/
export async function fromRecordsToBuffer<T> ( export async function fromRecordsToBuffer<T> (
data: Array<Record<string, unknown>>, data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>, embeddings?: EmbeddingFunction<T>,
schema?: Schema schema?: Schema
): Promise<Buffer> { ): Promise<Buffer> {
let table = await convertToTable(data, embeddings) const table = await convertToTable(data, embeddings, { schema })
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchFileWriter.writeAll(table) const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
} }
// Converts an Array of records into Arrow IPC stream format /**
* Serialize an Array of records into a buffer using the Arrow IPC Stream serialization
*
* This function will call `convertToTable` and pass on `embeddings` and `schema`
*
* `schema` is required if data is empty
*/
export async function fromRecordsToStreamBuffer<T> ( export async function fromRecordsToStreamBuffer<T> (
data: Array<Record<string, unknown>>, data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>, embeddings?: EmbeddingFunction<T>,
schema?: Schema schema?: Schema
): Promise<Buffer> { ): Promise<Buffer> {
let table = await convertToTable(data, embeddings) const table = await convertToTable(data, embeddings, { schema })
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchStreamWriter.writeAll(table) const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
} }
// Converts an Arrow Table into Arrow IPC format /**
* Serialize an Arrow Table into a buffer using the Arrow IPC File serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
export async function fromTableToBuffer<T> ( export async function fromTableToBuffer<T> (
table: ArrowTable, table: ArrowTable,
embeddings?: EmbeddingFunction<T>, embeddings?: EmbeddingFunction<T>,
schema?: Schema schema?: Schema
): Promise<Buffer> { ): Promise<Buffer> {
if (embeddings !== undefined) { const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const source = table.getChild(embeddings.sourceColumn) const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings)
if (source === null) {
throw new Error(
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
} }
// Converts an Arrow Table into Arrow IPC stream format /**
* Serialize an Arrow Table into a buffer using the Arrow IPC Stream serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
export async function fromTableToStreamBuffer<T> ( export async function fromTableToStreamBuffer<T> (
table: ArrowTable, table: ArrowTable,
embeddings?: EmbeddingFunction<T>, embeddings?: EmbeddingFunction<T>,
schema?: Schema schema?: Schema
): Promise<Buffer> { ): Promise<Buffer> {
if (embeddings !== undefined) { const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const source = table.getChild(embeddings.sourceColumn) const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings)
if (source === null) {
throw new Error(
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
} }

View File

@@ -12,18 +12,53 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
import { type Float } from 'apache-arrow'
/** /**
* An embedding function that automatically creates vector representation for a given column. * An embedding function that automatically creates vector representation for a given column.
*/ */
export interface EmbeddingFunction<T> { export interface EmbeddingFunction<T> {
/** /**
* The name of the column that will be used as input for the Embedding Function. * The name of the column that will be used as input for the Embedding Function.
*/ */
sourceColumn: string sourceColumn: string
/** /**
* Creates a vector representation for the given values. * The data type of the embedding
*/ *
* The embedding function should return `number`. This will be converted into
* an Arrow float array. By default this will be Float32 but this property can
* be used to control the conversion.
*/
embeddingDataType?: Float
/**
* The dimension of the embedding
*
* This is optional, normally this can be determined by looking at the results of
* `embed`. If this is not specified, and there is an attempt to apply the embedding
* to an empty table, then that process will fail.
*/
embeddingDimension?: number
/**
* The name of the column that will contain the embedding
*
* By default this is "vector"
*/
destColumn?: string
/**
* Should the source column be excluded from the resulting table
*
* By default the source column is included. Set this to true and
* only the embedding will be stored.
*/
excludeSource?: boolean
/**
* Creates a vector representation for the given values.
*/
embed: (data: T[]) => Promise<number[][]> embed: (data: T[]) => Promise<number[][]>
} }

View File

@@ -49,7 +49,7 @@ const {
export { Query } export { Query }
export type { EmbeddingFunction } export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai' export { OpenAIEmbeddingFunction } from './embedding/openai'
export { makeArrowTable, type MakeArrowTableOptions } from './arrow' export { convertToTable, makeArrowTable, type MakeArrowTableOptions } from './arrow'
const defaultAwsRegion = 'us-west-2' const defaultAwsRegion = 'us-west-2'

View File

@@ -13,9 +13,10 @@
// limitations under the License. // limitations under the License.
import { describe } from 'mocha' import { describe } from 'mocha'
import { assert } from 'chai' import { assert, expect, use as chaiUse } from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import { fromTableToBuffer, makeArrowTable } from '../arrow' import { convertToTable, fromTableToBuffer, makeArrowTable, makeEmptyTable } from '../arrow'
import { import {
Field, Field,
FixedSizeList, FixedSizeList,
@@ -24,21 +25,79 @@ import {
Int32, Int32,
tableFromIPC, tableFromIPC,
Schema, Schema,
Float64 Float64,
type Table,
Binary,
Bool,
Utf8,
Struct,
List,
DataType,
Dictionary,
Int64
} from 'apache-arrow' } from 'apache-arrow'
import { type EmbeddingFunction } from '../embedding/embedding_function'
describe('Apache Arrow tables', function () { chaiUse(chaiAsPromised)
it('customized schema', async function () {
function sampleRecords (): Array<Record<string, any>> {
return [
{
binary: Buffer.alloc(5),
boolean: false,
number: 7,
string: 'hello',
struct: { x: 0, y: 0 },
list: ['anime', 'action', 'comedy']
}
]
}
// Helper method to verify various ways to create a table
async function checkTableCreation (tableCreationMethod: (records: any, recordsReversed: any, schema: Schema) => Promise<Table>): Promise<void> {
const records = sampleRecords()
const recordsReversed = [{
list: ['anime', 'action', 'comedy'],
struct: { x: 0, y: 0 },
string: 'hello',
number: 7,
boolean: false,
binary: Buffer.alloc(5)
}]
const schema = new Schema([
new Field('binary', new Binary(), false),
new Field('boolean', new Bool(), false),
new Field('number', new Float64(), false),
new Field('string', new Utf8(), false),
new Field('struct', new Struct([
new Field('x', new Float64(), false),
new Field('y', new Float64(), false)
])),
new Field('list', new List(new Field('item', new Utf8(), false)), false)
])
const table = await tableCreationMethod(records, recordsReversed, schema)
schema.fields.forEach((field, idx) => {
const actualField = table.schema.fields[idx]
assert.isFalse(actualField.nullable)
assert.equal(table.getChild(field.name)?.type.toString(), field.type.toString())
assert.equal(table.getChildAt(idx)?.type.toString(), field.type.toString())
})
}
describe('The function makeArrowTable', function () {
it('will use data types from a provided schema instead of inference', async function () {
const schema = new Schema([ const schema = new Schema([
new Field('a', new Int32()), new Field('a', new Int32()),
new Field('b', new Float32()), new Field('b', new Float32()),
new Field('c', new FixedSizeList(3, new Field('item', new Float16()))) new Field('c', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('d', new Int64())
]) ])
const table = makeArrowTable( const table = makeArrowTable(
[ [
{ a: 1, b: 2, c: [1, 2, 3] }, { a: 1, b: 2, c: [1, 2, 3], d: 9 },
{ a: 4, b: 5, c: [4, 5, 6] }, { a: 4, b: 5, c: [4, 5, 6], d: 10 },
{ a: 7, b: 8, c: [7, 8, 9] } { a: 7, b: 8, c: [7, 8, 9], d: null }
], ],
{ schema } { schema }
) )
@@ -52,13 +111,13 @@ describe('Apache Arrow tables', function () {
assert.deepEqual(actualSchema, schema) assert.deepEqual(actualSchema, schema)
}) })
it('default vector column', async function () { it('will assume the column `vector` is FixedSizeList<Float32> by default', async function () {
const schema = new Schema([ const schema = new Schema([
new Field('a', new Float64()), new Field('a', new Float64()),
new Field('b', new Float64()), new Field('b', new Float64()),
new Field( new Field(
'vector', 'vector',
new FixedSizeList(3, new Field('item', new Float32())) new FixedSizeList(3, new Field('item', new Float32(), true))
) )
]) ])
const table = makeArrowTable([ const table = makeArrowTable([
@@ -76,12 +135,12 @@ describe('Apache Arrow tables', function () {
assert.deepEqual(actualSchema, schema) assert.deepEqual(actualSchema, schema)
}) })
it('2 vector columns', async function () { it('can support multiple vector columns', async function () {
const schema = new Schema([ const schema = new Schema([
new Field('a', new Float64()), new Field('a', new Float64()),
new Field('b', new Float64()), new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))), new Field('vec1', new FixedSizeList(3, new Field('item', new Float16(), true))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16()))) new Field('vec2', new FixedSizeList(3, new Field('item', new Float16(), true)))
]) ])
const table = makeArrowTable( const table = makeArrowTable(
[ [
@@ -105,4 +164,157 @@ describe('Apache Arrow tables', function () {
const actualSchema = actual.schema const actualSchema = actual.schema
assert.deepEqual(actualSchema, schema) assert.deepEqual(actualSchema, schema)
}) })
it('will allow different vector column types', async function () {
const table = makeArrowTable(
[
{ fp16: [1], fp32: [1], fp64: [1] }
],
{
vectorColumns: {
fp16: { type: new Float16() },
fp32: { type: new Float32() },
fp64: { type: new Float64() }
}
}
)
assert.equal(table.getChild('fp16')?.type.children[0].type.toString(), new Float16().toString())
assert.equal(table.getChild('fp32')?.type.children[0].type.toString(), new Float32().toString())
assert.equal(table.getChild('fp64')?.type.children[0].type.toString(), new Float64().toString())
})
it('will use dictionary encoded strings if asked', async function () {
const table = makeArrowTable([{ str: 'hello' }])
assert.isTrue(DataType.isUtf8(table.getChild('str')?.type))
const tableWithDict = makeArrowTable([{ str: 'hello' }], { dictionaryEncodeStrings: true })
assert.isTrue(DataType.isDictionary(tableWithDict.getChild('str')?.type))
const schema = new Schema([
new Field('str', new Dictionary(new Utf8(), new Int32()))
])
const tableWithDict2 = makeArrowTable([{ str: 'hello' }], { schema })
assert.isTrue(DataType.isDictionary(tableWithDict2.getChild('str')?.type))
})
it('will infer data types correctly', async function () {
await checkTableCreation(async (records) => makeArrowTable(records))
})
it('will allow a schema to be provided', async function () {
await checkTableCreation(async (records, _, schema) => makeArrowTable(records, { schema }))
})
it('will use the field order of any provided schema', async function () {
await checkTableCreation(async (_, recordsReversed, schema) => makeArrowTable(recordsReversed, { schema }))
})
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => makeArrowTable([], { schema }))
})
})
class DummyEmbedding implements EmbeddingFunction<string> {
public readonly sourceColumn = 'string'
public readonly embeddingDimension = 2
public readonly embeddingDataType = new Float16()
async embed (data: string[]): Promise<number[][]> {
return data.map(
() => [0.0, 0.0]
)
}
}
class DummyEmbeddingWithNoDimension implements EmbeddingFunction<string> {
public readonly sourceColumn = 'string'
async embed (data: string[]): Promise<number[][]> {
return data.map(
() => [0.0, 0.0]
)
}
}
describe('convertToTable', function () {
it('will infer data types correctly', async function () {
await checkTableCreation(async (records) => await convertToTable(records))
})
it('will allow a schema to be provided', async function () {
await checkTableCreation(async (records, _, schema) => await convertToTable(records, undefined, { schema }))
})
it('will use the field order of any provided schema', async function () {
await checkTableCreation(async (_, recordsReversed, schema) => await convertToTable(recordsReversed, undefined, { schema }))
})
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => await convertToTable([], undefined, { schema }))
})
it('will apply embeddings', async function () {
const records = sampleRecords()
const table = await convertToTable(records, new DummyEmbedding())
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
})
it('will fail if missing the embedding source column', async function () {
return await expect(convertToTable([{ id: 1 }], new DummyEmbedding())).to.be.rejectedWith("'string' was not present")
})
it('use embeddingDimension if embedding missing from table', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false)
])
// Simulate getting an empty Arrow table (minus embedding) from some other source
// In other words, we aren't starting with records
const table = makeEmptyTable(schema)
// If the embedding specifies the dimension we are fine
await fromTableToBuffer(table, new DummyEmbedding())
// We can also supply a schema and should be ok
const schemaWithEmbedding = new Schema([
new Field('string', new Utf8(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
])
await fromTableToBuffer(table, new DummyEmbeddingWithNoDimension(), schemaWithEmbedding)
// Otherwise we will get an error
return await expect(fromTableToBuffer(table, new DummyEmbeddingWithNoDimension())).to.be.rejectedWith('does not specify `embeddingDimension`')
})
it('will apply embeddings to an empty table', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
])
const table = await convertToTable([], new DummyEmbedding(), { schema })
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
})
it('will complain if embeddings present but schema missing embedding column', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false)
])
return await expect(convertToTable([], new DummyEmbedding(), { schema })).to.be.rejectedWith('column vector was missing')
})
it('will provide a nice error if run twice', async function () {
const records = sampleRecords()
const table = await convertToTable(records, new DummyEmbedding())
// fromTableToBuffer will try and apply the embeddings again
return await expect(fromTableToBuffer(table, new DummyEmbedding())).to.be.rejectedWith('already existed')
})
})
describe('makeEmptyTable', function () {
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => makeEmptyTable(schema))
})
}) })

View File

@@ -9,6 +9,6 @@
"declaration": true, "declaration": true,
"outDir": "./dist", "outDir": "./dist",
"strict": true, "strict": true,
// "esModuleInterop": true, "sourceMap": true,
} }
} }

View File

@@ -23,5 +23,8 @@ napi = { version = "2.15", default-features = false, features = [
] } ] }
napi-derive = "2" napi-derive = "2"
# Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] }
[build-dependencies] [build-dependencies]
napi-build = "2.1" napi-build = "2.1"

View File

@@ -14,6 +14,7 @@
import { makeArrowTable, toBuffer } from "../vectordb/arrow"; import { makeArrowTable, toBuffer } from "../vectordb/arrow";
import { import {
Int64,
Field, Field,
FixedSizeList, FixedSizeList,
Float16, Float16,
@@ -104,3 +105,16 @@ test("2 vector columns", function () {
const actualSchema = actual.schema; const actualSchema = actual.schema;
expect(actualSchema.toString()).toEqual(schema.toString()); expect(actualSchema.toString()).toEqual(schema.toString());
}); });
test("handles int64", function() {
// https://github.com/lancedb/lancedb/issues/960
const schema = new Schema([
new Field("x", new Int64(), true)
]);
const table = makeArrowTable([
{ x: 1 },
{ x: 2 },
{ x: 3 }
], { schema });
expect(table.schema).toEqual(schema);
})

View File

@@ -13,6 +13,7 @@
// limitations under the License. // limitations under the License.
import { import {
Int64,
Field, Field,
FixedSizeList, FixedSizeList,
Float, Float,
@@ -23,6 +24,7 @@ import {
Vector, Vector,
vectorFromArray, vectorFromArray,
tableToIPC, tableToIPC,
DataType,
} from "apache-arrow"; } from "apache-arrow";
/** Data type accepted by NodeJS SDK */ /** Data type accepted by NodeJS SDK */
@@ -137,15 +139,18 @@ export function makeArrowTable(
const columnNames = Object.keys(data[0]); const columnNames = Object.keys(data[0]);
for (const colName of columnNames) { for (const colName of columnNames) {
// eslint-disable-next-line @typescript-eslint/no-unsafe-return // eslint-disable-next-line @typescript-eslint/no-unsafe-return
const values = data.map((datum) => datum[colName]); let values = data.map((datum) => datum[colName]);
let vector: Vector; let vector: Vector;
if (opt.schema !== undefined) { if (opt.schema !== undefined) {
// Explicit schema is provided, highest priority // Explicit schema is provided, highest priority
vector = vectorFromArray( const fieldType: DataType | undefined = opt.schema.fields.filter((f) => f.name === colName)[0]?.type as DataType;
values, if (fieldType instanceof Int64) {
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type // wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
); // eslint-disable-next-line @typescript-eslint/no-unsafe-argument
values = values.map((v) => BigInt(v));
}
vector = vectorFromArray(values, fieldType);
} else { } else {
const vectorColumnOptions = opt.vectorColumns[colName]; const vectorColumnOptions = opt.vectorColumns[colName];
if (vectorColumnOptions !== undefined) { if (vectorColumnOptions !== undefined) {

View File

@@ -73,7 +73,7 @@ export class Table {
/** Return Schema as empty Arrow IPC file. */ /** Return Schema as empty Arrow IPC file. */
schema(): Buffer schema(): Buffer
add(buf: Buffer): Promise<void> add(buf: Buffer): Promise<void>
countRows(filter?: string): Promise<bigint> countRows(filter?: string | undefined | null): Promise<bigint>
delete(predicate: string): Promise<void> delete(predicate: string): Promise<void>
createIndex(): IndexBuilder createIndex(): IndexBuilder
query(): Query query(): Query

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.5.4 current_version = 0.5.6
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -13,8 +13,9 @@
import importlib.metadata import importlib.metadata
import os import os
from concurrent.futures import ThreadPoolExecutor
from datetime import timedelta from datetime import timedelta
from typing import Optional from typing import Optional, Union
__version__ = importlib.metadata.version("lancedb") __version__ = importlib.metadata.version("lancedb")
@@ -32,6 +33,7 @@ def connect(
region: str = "us-east-1", region: str = "us-east-1",
host_override: Optional[str] = None, host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None, read_consistency_interval: Optional[timedelta] = None,
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
) -> DBConnection: ) -> DBConnection:
"""Connect to a LanceDB database. """Connect to a LanceDB database.
@@ -58,7 +60,14 @@ def connect(
the last check, then the table will be checked for updates. Note: this the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are consistency only applies to read operations. Write operations are
always consistent. always consistent.
request_thread_pool: int or ThreadPoolExecutor, optional
The thread pool to use for making batch requests to the LanceDB Cloud API.
If an integer, then a ThreadPoolExecutor will be created with that
number of threads. If None, then a ThreadPoolExecutor will be created
with the default number of threads. If a ThreadPoolExecutor, then that
executor will be used for making requests. This is for LanceDB Cloud
only and is only used when making batch requests (i.e., passing in
multiple queries to the search method at once).
Examples Examples
-------- --------
@@ -86,5 +95,9 @@ def connect(
api_key = os.environ.get("LANCEDB_API_KEY") api_key = os.environ.get("LANCEDB_API_KEY")
if api_key is None: if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}") raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
return RemoteDBConnection(uri, api_key, region, host_override) if isinstance(request_thread_pool, int):
request_thread_pool = ThreadPoolExecutor(request_thread_pool)
return RemoteDBConnection(
uri, api_key, region, host_override, request_thread_pool=request_thread_pool
)
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval) return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)

View File

@@ -10,7 +10,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import importlib
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import List, Union from typing import List, Union
@@ -91,25 +90,6 @@ class EmbeddingFunction(BaseModel, ABC):
texts = texts.combine_chunks().to_pylist() texts = texts.combine_chunks().to_pylist()
return texts return texts
@classmethod
def safe_import(cls, module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_model_dump(self): def safe_model_dump(self):
from ..pydantic import PYDANTIC_VERSION from ..pydantic import PYDANTIC_VERSION

View File

@@ -19,6 +19,7 @@ import numpy as np
from lancedb.pydantic import PYDANTIC_VERSION from lancedb.pydantic import PYDANTIC_VERSION
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import TEXT from .utils import TEXT
@@ -183,8 +184,8 @@ class BedRockText(TextEmbeddingFunction):
boto3.client boto3.client
The boto3 client for Amazon Bedrock service The boto3 client for Amazon Bedrock service
""" """
botocore = self.safe_import("botocore") botocore = attempt_import_or_raise("botocore")
boto3 = self.safe_import("boto3") boto3 = attempt_import_or_raise("boto3")
session_kwargs = {"region_name": self.region} session_kwargs = {"region_name": self.region}
client_kwargs = {**session_kwargs} client_kwargs = {**session_kwargs}

View File

@@ -16,6 +16,7 @@ from typing import ClassVar, List, Union
import numpy as np import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import api_key_not_found_help from .utils import api_key_not_found_help
@@ -84,7 +85,7 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
return [emb for emb in rs.embeddings] return [emb for emb in rs.embeddings]
def _init_client(self): def _init_client(self):
cohere = self.safe_import("cohere") cohere = attempt_import_or_raise("cohere")
if CohereEmbeddingFunction.client is None: if CohereEmbeddingFunction.client is None:
if os.environ.get("COHERE_API_KEY") is None: if os.environ.get("COHERE_API_KEY") is None:
api_key_not_found_help("cohere") api_key_not_found_help("cohere")

View File

@@ -19,6 +19,7 @@ import numpy as np
from lancedb.pydantic import PYDANTIC_VERSION from lancedb.pydantic import PYDANTIC_VERSION
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import TEXT, api_key_not_found_help from .utils import TEXT, api_key_not_found_help
@@ -134,7 +135,7 @@ class GeminiText(TextEmbeddingFunction):
@cached_property @cached_property
def client(self): def client(self):
genai = self.safe_import("google.generativeai", "google.generativeai") genai = attempt_import_or_raise("google.generativeai", "google.generativeai")
if not os.environ.get("GOOGLE_API_KEY"): if not os.environ.get("GOOGLE_API_KEY"):
api_key_not_found_help("google") api_key_not_found_help("google")

View File

@@ -14,6 +14,7 @@ from typing import List, Union
import numpy as np import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import weak_lru from .utils import weak_lru
@@ -122,7 +123,7 @@ class GteEmbeddings(TextEmbeddingFunction):
return Model() return Model()
else: else:
sentence_transformers = self.safe_import( sentence_transformers = attempt_import_or_raise(
"sentence_transformers", "sentence-transformers" "sentence_transformers", "sentence-transformers"
) )
return sentence_transformers.SentenceTransformer( return sentence_transformers.SentenceTransformer(

View File

@@ -14,6 +14,7 @@ from typing import List
import numpy as np import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import TEXT, weak_lru from .utils import TEXT, weak_lru
@@ -102,9 +103,9 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
# convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly # convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly
source_instruction: str = "represent the document for retrieval" source_instruction: str = "represent the document for retrieval"
query_instruction: str = ( query_instruction: (
"represent the document for retrieving the most similar documents" str
) ) = "represent the document for retrieving the most similar documents"
@weak_lru(maxsize=1) @weak_lru(maxsize=1)
def ndims(self): def ndims(self):
@@ -131,10 +132,10 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
@weak_lru(maxsize=1) @weak_lru(maxsize=1)
def get_model(self): def get_model(self):
instructor_embedding = self.safe_import( instructor_embedding = attempt_import_or_raise(
"InstructorEmbedding", "InstructorEmbedding" "InstructorEmbedding", "InstructorEmbedding"
) )
torch = self.safe_import("torch", "torch") torch = attempt_import_or_raise("torch", "torch")
model = instructor_embedding.INSTRUCTOR(self.name) model = instructor_embedding.INSTRUCTOR(self.name)
if self.quantize: if self.quantize:

View File

@@ -21,6 +21,7 @@ import pyarrow as pa
from pydantic import PrivateAttr from pydantic import PrivateAttr
from tqdm import tqdm from tqdm import tqdm
from ..util import attempt_import_or_raise
from .base import EmbeddingFunction from .base import EmbeddingFunction
from .registry import register from .registry import register
from .utils import IMAGES, url_retrieve from .utils import IMAGES, url_retrieve
@@ -50,7 +51,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip") open_clip = attempt_import_or_raise("open_clip", "open-clip")
model, _, preprocess = open_clip.create_model_and_transforms( model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained self.name, pretrained=self.pretrained
) )
@@ -78,14 +79,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str): if isinstance(query, str):
return [self.generate_text_embeddings(query)] return [self.generate_text_embeddings(query)]
else: else:
PIL = self.safe_import("PIL", "pillow") PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image): if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)] return [self.generate_image_embedding(query)]
else: else:
raise TypeError("OpenClip supports str or PIL Image as query") raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray: def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch") torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text) text = self.sanitize_input(text)
text = self._tokenizer(text) text = self._tokenizer(text)
text.to(self.device) text.to(self.device)
@@ -144,7 +145,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri. The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes. If the image is bytes, it is treated as the raw image bytes.
""" """
torch = self.safe_import("torch") torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https # TODO handle retry and errors for https
image = self._to_pil(image) image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0) image = self._preprocess(image).unsqueeze(0)
@@ -152,7 +153,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image) return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]): def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow") PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes): if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image)) return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image): if isinstance(image, PIL.Image.Image):

View File

@@ -16,6 +16,7 @@ from typing import List, Optional, Union
import numpy as np import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import api_key_not_found_help from .utils import api_key_not_found_help
@@ -68,7 +69,7 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
@cached_property @cached_property
def _openai_client(self): def _openai_client(self):
openai = self.safe_import("openai") openai = attempt_import_or_raise("openai")
if not os.environ.get("OPENAI_API_KEY"): if not os.environ.get("OPENAI_API_KEY"):
api_key_not_found_help("openai") api_key_not_found_help("openai")

View File

@@ -14,6 +14,7 @@ from typing import List, Union
import numpy as np import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import weak_lru from .utils import weak_lru
@@ -75,7 +76,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
TODO: use lru_cache instead with a reasonable/configurable maxsize TODO: use lru_cache instead with a reasonable/configurable maxsize
""" """
sentence_transformers = self.safe_import( sentence_transformers = attempt_import_or_raise(
"sentence_transformers", "sentence-transformers" "sentence_transformers", "sentence-transformers"
) )
return sentence_transformers.SentenceTransformer(self.name, device=self.device) return sentence_transformers.SentenceTransformer(self.name, device=self.device)

View File

@@ -26,7 +26,7 @@ import pyarrow as pa
from lance.vector import vec_to_table from lance.vector import vec_to_table
from retry import retry from retry import retry
from ..util import safe_import_pandas from ..util import deprecated, safe_import_pandas
from ..utils.general import LOGGER from ..utils.general import LOGGER
pd = safe_import_pandas() pd = safe_import_pandas()
@@ -38,6 +38,7 @@ IMAGES = Union[
] ]
@deprecated
def with_embeddings( def with_embeddings(
func: Callable, func: Callable,
data: DATA, data: DATA,

View File

@@ -24,7 +24,7 @@ import pyarrow as pa
import pydantic import pydantic
from . import __version__ from . import __version__
from .common import VEC, VECTOR_COLUMN_NAME from .common import VEC
from .rerankers.base import Reranker from .rerankers.base import Reranker
from .rerankers.linear_combination import LinearCombinationReranker from .rerankers.linear_combination import LinearCombinationReranker
from .util import safe_import_pandas from .util import safe_import_pandas
@@ -75,7 +75,7 @@ class Query(pydantic.BaseModel):
tuning advice. tuning advice.
""" """
vector_column: str = VECTOR_COLUMN_NAME vector_column: Optional[str] = None
# vector to search for # vector to search for
vector: Union[List[float], List[List[float]]] vector: Union[List[float], List[List[float]]]
@@ -403,7 +403,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self, self,
table: "Table", table: "Table",
query: Union[np.ndarray, list, "PIL.Image.Image"], query: Union[np.ndarray, list, "PIL.Image.Image"],
vector_column: str = VECTOR_COLUMN_NAME, vector_column: str,
): ):
super().__init__(table) super().__init__(table)
self._query = query self._query = query

View File

@@ -14,6 +14,7 @@
import inspect import inspect
import logging import logging
import uuid import uuid
from concurrent.futures import ThreadPoolExecutor
from typing import Iterable, List, Optional, Union from typing import Iterable, List, Optional, Union
from urllib.parse import urlparse from urllib.parse import urlparse
@@ -39,6 +40,7 @@ class RemoteDBConnection(DBConnection):
api_key: str, api_key: str,
region: str, region: str,
host_override: Optional[str] = None, host_override: Optional[str] = None,
request_thread_pool: Optional[ThreadPoolExecutor] = None,
): ):
"""Connect to a remote LanceDB database.""" """Connect to a remote LanceDB database."""
parsed = urlparse(db_url) parsed = urlparse(db_url)
@@ -49,6 +51,7 @@ class RemoteDBConnection(DBConnection):
self._client = RestfulLanceDBClient( self._client = RestfulLanceDBClient(
self.db_name, region, api_key, host_override self.db_name, region, api_key, host_override
) )
self._request_thread_pool = request_thread_pool
def __repr__(self) -> str: def __repr__(self) -> str:
return f"RemoteConnect(name={self.db_name})" return f"RemoteConnect(name={self.db_name})"

View File

@@ -13,6 +13,7 @@
import logging import logging
import uuid import uuid
from concurrent.futures import Future
from functools import cached_property from functools import cached_property
from typing import Dict, Optional, Union from typing import Dict, Optional, Union
@@ -24,7 +25,7 @@ from lancedb.merge import LanceMergeInsertBuilder
from ..query import LanceVectorQueryBuilder from ..query import LanceVectorQueryBuilder
from ..table import Query, Table, _sanitize_data from ..table import Query, Table, _sanitize_data
from ..util import value_to_sql from ..util import inf_vector_column_query, value_to_sql
from .arrow import to_ipc_binary from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE from .client import ARROW_STREAM_CONTENT_TYPE
from .db import RemoteDBConnection from .db import RemoteDBConnection
@@ -198,7 +199,9 @@ class RemoteTable(Table):
) )
def search( def search(
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME self,
query: Union[VEC, str],
vector_column_name: Optional[str] = None,
) -> LanceVectorQueryBuilder: ) -> LanceVectorQueryBuilder:
"""Create a search query to find the nearest neighbors """Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search] of the given query vector. We currently support [vector search][search]
@@ -217,7 +220,7 @@ class RemoteTable(Table):
... ] ... ]
>>> table = db.create_table("my_table", data) # doctest: +SKIP >>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> query = [0.4, 1.4, 2.4] >>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector") # doctest: +SKIP >>> (table.search(query) # doctest: +SKIP
... .where("original_width > 1000", prefilter=True) # doctest: +SKIP ... .where("original_width > 1000", prefilter=True) # doctest: +SKIP
... .select(["caption", "original_width"]) # doctest: +SKIP ... .select(["caption", "original_width"]) # doctest: +SKIP
... .limit(2) # doctest: +SKIP ... .limit(2) # doctest: +SKIP
@@ -236,9 +239,14 @@ class RemoteTable(Table):
- If None then the select/where/limit clauses are applied to filter - If None then the select/where/limit clauses are applied to filter
the table the table
vector_column_name: str vector_column_name: str, optional
The name of the vector column to search. The name of the vector column to search.
*default "vector"*
- If not specified then the vector column is inferred from
the table schema
- If the table has multiple vector columns then the *vector_column_name*
needs to be specified. Otherwise, an error is raised.
Returns Returns
------- -------
@@ -253,6 +261,8 @@ class RemoteTable(Table):
- and also the "_distance" column which is the distance between the query - and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
""" """
if vector_column_name is None:
vector_column_name = inf_vector_column_query(self.schema)
return LanceVectorQueryBuilder(self, query, vector_column_name) return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
@@ -261,15 +271,28 @@ class RemoteTable(Table):
and len(query.vector) > 0 and len(query.vector) > 0
and not isinstance(query.vector[0], float) and not isinstance(query.vector[0], float)
): ):
if self._conn._request_thread_pool is None:
def submit(name, q):
f = Future()
f.set_result(self._conn._client.query(name, q))
return f
else:
def submit(name, q):
return self._conn._request_thread_pool.submit(
self._conn._client.query, name, q
)
results = [] results = []
for v in query.vector: for v in query.vector:
v = list(v) v = list(v)
q = query.copy() q = query.copy()
q.vector = v q.vector = v
results.append(self._conn._client.query(self._name, q)) results.append(submit(self._name, q))
return pa.concat_tables( return pa.concat_tables(
[add_index(r.to_arrow(), i) for i, r in enumerate(results)] [add_index(r.result().to_arrow(), i) for i, r in enumerate(results)]
) )
else: else:
result = self._conn._client.query(self._name, query) result = self._conn._client.query(self._name, query)

View File

@@ -4,7 +4,7 @@ from typing import Union
import pyarrow as pa import pyarrow as pa
from ..util import safe_import from ..util import attempt_import_or_raise
from .base import Reranker from .base import Reranker
@@ -41,7 +41,7 @@ class CohereReranker(Reranker):
@cached_property @cached_property
def _client(self): def _client(self):
cohere = safe_import("cohere") cohere = attempt_import_or_raise("cohere")
if os.environ.get("COHERE_API_KEY") is None and self.api_key is None: if os.environ.get("COHERE_API_KEY") is None and self.api_key is None:
raise ValueError( raise ValueError(
"COHERE_API_KEY not set. Either set it in your environment or \ "COHERE_API_KEY not set. Either set it in your environment or \

View File

@@ -2,7 +2,7 @@ from functools import cached_property
import pyarrow as pa import pyarrow as pa
from ..util import safe_import from ..util import attempt_import_or_raise
from .base import Reranker from .base import Reranker
@@ -29,7 +29,9 @@ class ColbertReranker(Reranker):
super().__init__(return_score) super().__init__(return_score)
self.model_name = model_name self.model_name = model_name
self.column = column self.column = column
self.torch = safe_import("torch") # import here for faster ops later self.torch = attempt_import_or_raise(
"torch"
) # import here for faster ops later
def rerank_hybrid( def rerank_hybrid(
self, self,
@@ -80,7 +82,7 @@ class ColbertReranker(Reranker):
@cached_property @cached_property
def _model(self): def _model(self):
transformers = safe_import("transformers") transformers = attempt_import_or_raise("transformers")
tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name) tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name)
model = transformers.AutoModel.from_pretrained(self.model_name) model = transformers.AutoModel.from_pretrained(self.model_name)

View File

@@ -3,7 +3,7 @@ from typing import Union
import pyarrow as pa import pyarrow as pa
from ..util import safe_import from ..util import attempt_import_or_raise
from .base import Reranker from .base import Reranker
@@ -32,7 +32,7 @@ class CrossEncoderReranker(Reranker):
return_score="relevance", return_score="relevance",
): ):
super().__init__(return_score) super().__init__(return_score)
torch = safe_import("torch") torch = attempt_import_or_raise("torch")
self.model_name = model_name self.model_name = model_name
self.column = column self.column = column
self.device = device self.device = device
@@ -41,7 +41,7 @@ class CrossEncoderReranker(Reranker):
@cached_property @cached_property
def model(self): def model(self):
sbert = safe_import("sentence_transformers") sbert = attempt_import_or_raise("sentence_transformers")
cross_encoder = sbert.CrossEncoder(self.model_name) cross_encoder = sbert.CrossEncoder(self.model_name)
return cross_encoder return cross_encoder

View File

@@ -5,7 +5,7 @@ from typing import Optional
import pyarrow as pa import pyarrow as pa
from ..util import safe_import from ..util import attempt_import_or_raise
from .base import Reranker from .base import Reranker
@@ -17,7 +17,7 @@ class OpenaiReranker(Reranker):
Parameters Parameters
---------- ----------
model_name : str, default "gpt-3.5-turbo-1106 " model_name : str, default "gpt-4-turbo-preview"
The name of the cross encoder model to use. The name of the cross encoder model to use.
column : str, default "text" column : str, default "text"
The name of the column to use as input to the cross encoder model. The name of the column to use as input to the cross encoder model.
@@ -29,7 +29,7 @@ class OpenaiReranker(Reranker):
def __init__( def __init__(
self, self,
model_name: str = "gpt-3.5-turbo-1106", model_name: str = "gpt-4-turbo-preview",
column: str = "text", column: str = "text",
return_score="relevance", return_score="relevance",
api_key: Optional[str] = None, api_key: Optional[str] = None,
@@ -93,7 +93,9 @@ class OpenaiReranker(Reranker):
@cached_property @cached_property
def _client(self): def _client(self):
openai = safe_import("openai") # TODO: force version or handle versions < 1.0 openai = attempt_import_or_raise(
"openai"
) # TODO: force version or handle versions < 1.0
if os.environ.get("OPENAI_API_KEY") is None and self.api_key is None: if os.environ.get("OPENAI_API_KEY") is None and self.api_key is None:
raise ValueError( raise ValueError(
"OPENAI_API_KEY not set. Either set it in your environment or \ "OPENAI_API_KEY not set. Either set it in your environment or \

View File

@@ -36,6 +36,7 @@ from .pydantic import LanceModel, model_to_dict
from .query import LanceQueryBuilder, Query from .query import LanceQueryBuilder, Query
from .util import ( from .util import (
fs_from_uri, fs_from_uri,
inf_vector_column_query,
join_uri, join_uri,
safe_import_pandas, safe_import_pandas,
safe_import_polars, safe_import_polars,
@@ -413,7 +414,7 @@ class Table(ABC):
def search( def search(
self, self,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None, query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: Optional[str] = None,
query_type: str = "auto", query_type: str = "auto",
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors """Create a search query to find the nearest neighbors
@@ -433,7 +434,7 @@ class Table(ABC):
... ] ... ]
>>> table = db.create_table("my_table", data) >>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4] >>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector") >>> (table.search(query)
... .where("original_width > 1000", prefilter=True) ... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"]) ... .select(["caption", "original_width"])
... .limit(2) ... .limit(2)
@@ -452,11 +453,16 @@ class Table(ABC):
- If None then the select/where/limit clauses are applied to filter - If None then the select/where/limit clauses are applied to filter
the table the table
vector_column_name: str vector_column_name: str, optional
The name of the vector column to search. The name of the vector column to search.
The vector column needs to be a pyarrow fixed size list type The vector column needs to be a pyarrow fixed size list type
*default "vector"*
- If not specified then the vector column is inferred from
the table schema
- If the table has multiple vector columns then the *vector_column_name*
needs to be specified. Otherwise, an error is raised.
query_type: str query_type: str
*default "auto"*. *default "auto"*.
Acceptable types are: "vector", "fts", "hybrid", or "auto" Acceptable types are: "vector", "fts", "hybrid", or "auto"
@@ -1193,7 +1199,7 @@ class LanceTable(Table):
def search( def search(
self, self,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None, query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: Optional[str] = None,
query_type: str = "auto", query_type: str = "auto",
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors """Create a search query to find the nearest neighbors
@@ -1211,7 +1217,7 @@ class LanceTable(Table):
... ] ... ]
>>> table = db.create_table("my_table", data) >>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4] >>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector") >>> (table.search(query)
... .where("original_width > 1000", prefilter=True) ... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"]) ... .select(["caption", "original_width"])
... .limit(2) ... .limit(2)
@@ -1230,8 +1236,17 @@ class LanceTable(Table):
- If None then the select/[where][sql]/limit clauses are applied - If None then the select/[where][sql]/limit clauses are applied
to filter the table to filter the table
vector_column_name: str, default "vector" vector_column_name: str, optional
The name of the vector column to search. The name of the vector column to search.
The vector column needs to be a pyarrow fixed size list type
*default "vector"*
- If not specified then the vector column is inferred from
the table schema
- If the table has multiple vector columns then the *vector_column_name*
needs to be specified. Otherwise, an error is raised.
query_type: str, default "auto" query_type: str, default "auto"
"vector", "fts", or "auto" "vector", "fts", or "auto"
If "auto" then the query type is inferred from the query; If "auto" then the query type is inferred from the query;
@@ -1249,6 +1264,8 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
""" """
if vector_column_name is None and query is not None:
vector_column_name = inf_vector_column_query(self.schema)
register_event("search_table") register_event("search_table")
return LanceQueryBuilder.create( return LanceQueryBuilder.create(
self, query, query_type, vector_column_name=vector_column_name self, query, query_type, vector_column_name=vector_column_name
@@ -1435,6 +1452,7 @@ class LanceTable(Table):
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
ds = self.to_lance() ds = self.to_lance()
return ds.to_table( return ds.to_table(
columns=query.columns, columns=query.columns,
filter=query.filter, filter=query.filter,

View File

@@ -11,15 +11,18 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import functools
import importlib import importlib
import os import os
import pathlib import pathlib
import warnings
from datetime import date, datetime from datetime import date, datetime
from functools import singledispatch from functools import singledispatch
from typing import Tuple, Union from typing import Tuple, Union
from urllib.parse import urlparse from urllib.parse import urlparse
import numpy as np import numpy as np
import pyarrow as pa
import pyarrow.fs as pa_fs import pyarrow.fs as pa_fs
@@ -115,7 +118,7 @@ def join_uri(base: Union[str, pathlib.Path], *parts: str) -> str:
return "/".join([p.rstrip("/") for p in [base, *parts]]) return "/".join([p.rstrip("/") for p in [base, *parts]])
def safe_import(module: str, mitigation=None): def attempt_import_or_raise(module: str, mitigation=None):
""" """
Import the specified module. If the module is not installed, Import the specified module. If the module is not installed,
raise an ImportError with a helpful message. raise an ImportError with a helpful message.
@@ -152,6 +155,44 @@ def safe_import_polars():
return None return None
def inf_vector_column_query(schema: pa.Schema) -> str:
"""
Get the vector column name
Parameters
----------
schema : pa.Schema
The schema of the vector column.
Returns
-------
str: the vector column name.
"""
vector_col_name = ""
vector_col_count = 0
for field_name in schema.names:
field = schema.field(field_name)
if pa.types.is_fixed_size_list(field.type) and pa.types.is_floating(
field.type.value_type
):
vector_col_count += 1
if vector_col_count > 1:
raise ValueError(
"Schema has more than one vector column. "
"Please specify the vector column name "
"for vector search"
)
break
elif vector_col_count == 1:
vector_col_name = field_name
if vector_col_count == 0:
raise ValueError(
"There is no vector column in the data. "
"Please specify the vector column name for vector search"
)
return vector_col_name
@singledispatch @singledispatch
def value_to_sql(value): def value_to_sql(value):
raise NotImplementedError("SQL conversion is not implemented for this type") raise NotImplementedError("SQL conversion is not implemented for this type")
@@ -200,3 +241,25 @@ def _(value: list):
@value_to_sql.register(np.ndarray) @value_to_sql.register(np.ndarray)
def _(value: np.ndarray): def _(value: np.ndarray):
return value_to_sql(value.tolist()) return value_to_sql(value.tolist())
def deprecated(func):
"""This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used."""
@functools.wraps(func)
def new_func(*args, **kwargs):
warnings.simplefilter("always", DeprecationWarning) # turn off filter
warnings.warn(
(
f"Function {func.__name__} is deprecated and will be "
"removed in a future version"
),
category=DeprecationWarning,
stacklevel=2,
)
warnings.simplefilter("default", DeprecationWarning) # reset filter
return func(*args, **kwargs)
return new_func

View File

@@ -1,9 +1,9 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.5.4" version = "0.5.6"
dependencies = [ dependencies = [
"deprecation", "deprecation",
"pylance==0.9.15", "pylance==0.9.16",
"ratelimiter~=1.0", "ratelimiter~=1.0",
"retry>=0.9.2", "retry>=0.9.2",
"tqdm>=4.27.0", "tqdm>=4.27.0",

View File

@@ -69,10 +69,14 @@ def test_basic_text_embeddings(alias, tmp_path):
) )
query = "greetings" query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0] actual = (
table.search(query, vector_column_name="vector").limit(1).to_pydantic(Words)[0]
)
vec = func.compute_query_embeddings(query)[0] vec = func.compute_query_embeddings(query)[0]
expected = table.search(vec).limit(1).to_pydantic(Words)[0] expected = (
table.search(vec, vector_column_name="vector").limit(1).to_pydantic(Words)[0]
)
assert actual.text == expected.text assert actual.text == expected.text
assert actual.text == "hello world" assert actual.text == "hello world"
assert not np.allclose(actual.vector, actual.vector2) assert not np.allclose(actual.vector, actual.vector2)
@@ -116,7 +120,11 @@ def test_openclip(tmp_path):
) )
# text search # text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0] actual = (
table.search("man's best friend", vector_column_name="vector")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == "dog" assert actual.label == "dog"
frombytes = ( frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes") table.search("man's best friend", vector_column_name="vec_from_bytes")
@@ -130,7 +138,11 @@ def test_openclip(tmp_path):
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg" query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes)) query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0] actual = (
table.search(query_image, vector_column_name="vector")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == "dog" assert actual.label == "dog"
other = ( other = (
table.search(query_image, vector_column_name="vec_from_bytes") table.search(query_image, vector_column_name="vec_from_bytes")

View File

@@ -38,4 +38,5 @@ def test_remote_db():
setattr(conn, "_client", FakeLanceDBClient()) setattr(conn, "_client", FakeLanceDBClient())
table = conn["test"] table = conn["test"]
table.schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), 2))])
table.search([1.0, 2.0]).to_pandas() table.search([1.0, 2.0]).to_pandas()

View File

@@ -710,6 +710,59 @@ def test_empty_query(db):
assert len(df) == 100 assert len(df) == 100
def test_search_with_schema_inf_single_vector(db):
class MyTable(LanceModel):
text: str
vector_col: Vector(10)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
)
v1 = np.random.randn(10)
v2 = np.random.randn(10)
data = [
{"vector_col": v1, "text": "foo"},
{"vector_col": v2, "text": "bar"},
]
df = pd.DataFrame(data)
table.add(df)
q = np.random.randn(10)
result1 = table.search(q, vector_column_name="vector_col").limit(1).to_pandas()
result2 = table.search(q).limit(1).to_pandas()
assert result1["text"].iloc[0] == result2["text"].iloc[0]
def test_search_with_schema_inf_multiple_vector(db):
class MyTable(LanceModel):
text: str
vector1: Vector(10)
vector2: Vector(10)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
)
v1 = np.random.randn(10)
v2 = np.random.randn(10)
data = [
{"vector1": v1, "vector2": v2, "text": "foo"},
{"vector1": v2, "vector2": v1, "text": "bar"},
]
df = pd.DataFrame(data)
table.add(df)
q = np.random.randn(10)
with pytest.raises(ValueError):
table.search(q).limit(1).to_pandas()
def test_compact_cleanup(db): def test_compact_cleanup(db):
table = LanceTable.create( table = LanceTable.create(
db, db,
@@ -750,10 +803,8 @@ def test_count_rows(db):
assert table.count_rows(filter="text='bar'") == 1 assert table.count_rows(filter="text='bar'") == 1
def test_hybrid_search(db): def test_hybrid_search(db, tmp_path):
# hardcoding temporarily.. this test is failing with tmp_path mockdb. db = MockDB(str(tmp_path))
# Probably not being parsed right by the fts
db = MockDB("~/lancedb_")
# Create a LanceDB table schema with a vector and a text column # Create a LanceDB table schema with a vector and a text column
emb = EmbeddingFunctionRegistry.get_instance().get("test")() emb = EmbeddingFunctionRegistry.get_instance().get("test")()

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb-node" name = "vectordb-node"
version = "0.4.8" version = "0.4.10"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license.workspace = true license.workspace = true
edition.workspace = true edition.workspace = true
@@ -31,3 +31,6 @@ object_store = { workspace = true, features = ["aws"] }
snafu = { workspace = true } snafu = { workspace = true }
async-trait = "0" async-trait = "0"
env_logger = "0" env_logger = "0"
# Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] }

View File

@@ -17,10 +17,7 @@ use neon::types::buffer::TypedArray;
use crate::error::ResultExt; use crate::error::ResultExt;
pub fn vec_str_to_array<'a, C: Context<'a>>( pub fn vec_str_to_array<'a, C: Context<'a>>(vec: &[String], cx: &mut C) -> JsResult<'a, JsArray> {
vec: &Vec<String>,
cx: &mut C,
) -> JsResult<'a, JsArray> {
let a = JsArray::new(cx, vec.len() as u32); let a = JsArray::new(cx, vec.len() as u32);
for (i, s) in vec.iter().enumerate() { for (i, s) in vec.iter().enumerate() {
let v = cx.string(s); let v = cx.string(s);

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb" name = "vectordb"
version = "0.4.8" version = "0.4.10"
edition.workspace = true edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications" description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true license.workspace = true

View File

@@ -422,13 +422,11 @@ mod tests {
let tmp_dir = tempdir().unwrap(); let tmp_dir = tempdir().unwrap();
let uri = std::fs::canonicalize(tmp_dir.path().to_str().unwrap()).unwrap(); let uri = std::fs::canonicalize(tmp_dir.path().to_str().unwrap()).unwrap();
let mut relative_anacestors = vec![];
let current_dir = std::env::current_dir().unwrap(); let current_dir = std::env::current_dir().unwrap();
let mut ancestors = current_dir.ancestors(); let ancestors = current_dir.ancestors();
while let Some(_) = ancestors.next() { let relative_ancestors = vec![".."; ancestors.count()];
relative_anacestors.push("..");
} let relative_root = std::path::PathBuf::from(relative_ancestors.join("/"));
let relative_root = std::path::PathBuf::from(relative_anacestors.join("/"));
let relative_uri = relative_root.join(&uri); let relative_uri = relative_root.join(&uri);
let db = Database::connect(relative_uri.to_str().unwrap()) let db = Database::connect(relative_uri.to_str().unwrap())

View File

@@ -357,12 +357,14 @@ mod test {
let db = Database::connect(dir1.to_str().unwrap()).await.unwrap(); let db = Database::connect(dir1.to_str().unwrap()).await.unwrap();
let mut param = WriteParams::default(); let mut param = WriteParams::default();
let mut store_params = ObjectStoreParams::default(); let store_params = ObjectStoreParams {
store_params.object_store_wrapper = Some(object_store_wrapper); object_store_wrapper: Some(object_store_wrapper),
..Default::default()
};
param.store_params = Some(store_params); param.store_params = Some(store_params);
let mut datagen = BatchGenerator::new(); let mut datagen = BatchGenerator::new();
datagen = datagen.col(Box::new(IncrementingInt32::default())); datagen = datagen.col(Box::<IncrementingInt32>::default());
datagen = datagen.col(Box::new(RandomVector::default().named("vector".into()))); datagen = datagen.col(Box::new(RandomVector::default().named("vector".into())));
let res = db let res = db

View File

@@ -257,7 +257,7 @@ mod tests {
assert_eq!(query.query_vector.unwrap(), new_vector); assert_eq!(query.query_vector.unwrap(), new_vector);
assert_eq!(query.limit.unwrap(), 100); assert_eq!(query.limit.unwrap(), 100);
assert_eq!(query.nprobes, 1000); assert_eq!(query.nprobes, 1000);
assert_eq!(query.use_index, true); assert!(query.use_index);
assert_eq!(query.metric_type, Some(MetricType::Cosine)); assert_eq!(query.metric_type, Some(MetricType::Cosine));
assert_eq!(query.refine_factor, Some(999)); assert_eq!(query.refine_factor, Some(999));
} }

View File

@@ -888,12 +888,12 @@ mod tests {
let batches = make_test_batches(); let batches = make_test_batches();
let _ = batches.schema().clone(); let _ = batches.schema().clone();
NativeTable::create(&uri, "test", batches, None, None) NativeTable::create(uri, "test", batches, None, None)
.await .await
.unwrap(); .unwrap();
let batches = make_test_batches(); let batches = make_test_batches();
let result = NativeTable::create(&uri, "test", batches, None, None).await; let result = NativeTable::create(uri, "test", batches, None, None).await;
assert!(matches!( assert!(matches!(
result.unwrap_err(), result.unwrap_err(),
Error::TableAlreadyExists { .. } Error::TableAlreadyExists { .. }
@@ -906,7 +906,7 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap(); let uri = tmp_dir.path().to_str().unwrap();
let batches = make_test_batches(); let batches = make_test_batches();
let table = NativeTable::create(&uri, "test", batches, None, None) let table = NativeTable::create(uri, "test", batches, None, None)
.await .await
.unwrap(); .unwrap();
@@ -924,7 +924,7 @@ mod tests {
let batches = make_test_batches(); let batches = make_test_batches();
let schema = batches.schema().clone(); let schema = batches.schema().clone();
let table = NativeTable::create(&uri, "test", batches, None, None) let table = NativeTable::create(uri, "test", batches, None, None)
.await .await
.unwrap(); .unwrap();
assert_eq!(table.count_rows(None).await.unwrap(), 10); assert_eq!(table.count_rows(None).await.unwrap(), 10);
@@ -952,7 +952,7 @@ mod tests {
// Create a dataset with i=0..10 // Create a dataset with i=0..10
let batches = merge_insert_test_batches(0, 0); let batches = merge_insert_test_batches(0, 0);
let table = NativeTable::create(&uri, "test", batches, None, None) let table = NativeTable::create(uri, "test", batches, None, None)
.await .await
.unwrap(); .unwrap();
assert_eq!(table.count_rows(None).await.unwrap(), 10); assert_eq!(table.count_rows(None).await.unwrap(), 10);
@@ -1149,12 +1149,8 @@ mod tests {
Arc::new(LargeStringArray::from_iter_values(vec![ Arc::new(LargeStringArray::from_iter_values(vec![
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
])), ])),
Arc::new(Float32Array::from_iter_values( Arc::new(Float32Array::from_iter_values((0..10).map(|i| i as f32))),
(0..10).into_iter().map(|i| i as f32), Arc::new(Float64Array::from_iter_values((0..10).map(|i| i as f64))),
)),
Arc::new(Float64Array::from_iter_values(
(0..10).into_iter().map(|i| i as f64),
)),
Arc::new(Into::<BooleanArray>::into(vec![ Arc::new(Into::<BooleanArray>::into(vec![
true, false, true, false, true, false, true, false, true, false, true, false, true, false, true, false, true, false, true, false,
])), ])),
@@ -1163,14 +1159,14 @@ mod tests {
Arc::new(TimestampMillisecondArray::from_iter_values(0..10)), Arc::new(TimestampMillisecondArray::from_iter_values(0..10)),
Arc::new( Arc::new(
create_fixed_size_list( create_fixed_size_list(
Float32Array::from_iter_values((0..20).into_iter().map(|i| i as f32)), Float32Array::from_iter_values((0..20).map(|i| i as f32)),
2, 2,
) )
.unwrap(), .unwrap(),
), ),
Arc::new( Arc::new(
create_fixed_size_list( create_fixed_size_list(
Float64Array::from_iter_values((0..20).into_iter().map(|i| i as f64)), Float64Array::from_iter_values((0..20).map(|i| i as f64)),
2, 2,
) )
.unwrap(), .unwrap(),
@@ -1307,7 +1303,7 @@ mod tests {
original: Arc<dyn object_store::ObjectStore>, original: Arc<dyn object_store::ObjectStore>,
) -> Arc<dyn object_store::ObjectStore> { ) -> Arc<dyn object_store::ObjectStore> {
self.called.store(true, Ordering::Relaxed); self.called.store(true, Ordering::Relaxed);
return original; original
} }
} }
@@ -1324,8 +1320,10 @@ mod tests {
let wrapper = Arc::new(NoOpCacheWrapper::default()); let wrapper = Arc::new(NoOpCacheWrapper::default());
let mut object_store_params = ObjectStoreParams::default(); let object_store_params = ObjectStoreParams {
object_store_params.object_store_wrapper = Some(wrapper.clone()); object_store_wrapper: Some(wrapper.clone()),
..Default::default()
};
let param = ReadParams { let param = ReadParams {
store_options: Some(object_store_params), store_options: Some(object_store_params),
..Default::default() ..Default::default()