Compare commits

..

2 Commits

Author SHA1 Message Date
ayush chaurasia
8debf26b81 update 2024-02-15 21:46:34 +05:30
ayush chaurasia
d2af9fd81d update 2024-02-15 21:40:16 +05:30
171 changed files with 2414 additions and 4762 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.4.11 current_version = 0.4.10
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True
@@ -9,4 +9,4 @@ tag_name = v{new_version}
[bumpversion:file:rust/ffi/node/Cargo.toml] [bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/lancedb/Cargo.toml] [bumpversion:file:rust/vectordb/Cargo.toml]

View File

@@ -33,8 +33,3 @@ rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"
[target.aarch64-apple-darwin] [target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"] rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
# Not all Windows systems have the C runtime installed, so this avoids library
# not found errors on systems that are missing it.
[target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

View File

@@ -1,58 +0,0 @@
# We create a composite action to be re-used both for testing and for releasing
name: build-linux-wheel
description: "Build a manylinux wheel for lance"
inputs:
python-minor-version:
description: "8, 9, 10, 11, 12"
required: true
args:
description: "--release"
required: false
default: ""
arm-build:
description: "Build for arm64 instead of x86_64"
# Note: this does *not* mean the host is arm64, since we might be cross-compiling.
required: false
default: "false"
runs:
using: "composite"
steps:
- name: CONFIRM ARM BUILD
shell: bash
run: |
echo "ARM BUILD: ${{ inputs.arm-build }}"
- name: Build x86_64 Manylinux wheel
if: ${{ inputs.arm-build == 'false' }}
uses: PyO3/maturin-action@v1
with:
command: build
working-directory: python
target: x86_64-unknown-linux-gnu
manylinux: "2_17"
args: ${{ inputs.args }}
before-script-linux: |
set -e
yum install -y openssl-devel \
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$(uname -m).zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip
- name: Build Arm Manylinux Wheel
if: ${{ inputs.arm-build == 'true' }}
uses: PyO3/maturin-action@v1
with:
command: build
working-directory: python
target: aarch64-unknown-linux-gnu
manylinux: "2_24"
args: ${{ inputs.args }}
before-script-linux: |
set -e
apt install -y unzip
if [ $(uname -m) = "x86_64" ]; then
PROTOC_ARCH="x86_64"
else
PROTOC_ARCH="aarch_64"
fi
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$PROTOC_ARCH.zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip

View File

@@ -1,25 +0,0 @@
# We create a composite action to be re-used both for testing and for releasing
name: build_wheel
description: "Build a lance wheel"
inputs:
python-minor-version:
description: "8, 9, 10, 11"
required: true
args:
description: "--release"
required: false
default: ""
runs:
using: "composite"
steps:
- name: Install macos dependency
shell: bash
run: |
brew install protobuf
- name: Build wheel
uses: PyO3/maturin-action@v1
with:
command: build
args: ${{ inputs.args }}
working-directory: python
interpreter: 3.${{ inputs.python-minor-version }}

View File

@@ -1,33 +0,0 @@
# We create a composite action to be re-used both for testing and for releasing
name: build_wheel
description: "Build a lance wheel"
inputs:
python-minor-version:
description: "8, 9, 10, 11"
required: true
args:
description: "--release"
required: false
default: ""
runs:
using: "composite"
steps:
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Build wheel
uses: PyO3/maturin-action@v1
with:
command: build
args: ${{ inputs.args }}
working-directory: python
- uses: actions/upload-artifact@v3
with:
name: windows-wheels
path: python\target\wheels

View File

@@ -26,4 +26,4 @@ jobs:
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
- name: Publish the package - name: Publish the package
run: | run: |
cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }} cargo publish -p vectordb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}

View File

@@ -2,91 +2,30 @@ name: PyPI Publish
on: on:
release: release:
types: [published] types: [ published ]
jobs: jobs:
linux: publish:
timeout-minutes: 60 runs-on: ubuntu-latest
strategy: # Only runs on tags that matches the python-make-release action
matrix: if: startsWith(github.ref, 'refs/tags/python-v')
python-minor-version: ["8"] defaults:
platform: run:
- x86_64 shell: bash
- aarch64 working-directory: python
runs-on: "ubuntu-22.04"
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: 3.${{ matrix.python-minor-version }} python-version: "3.8"
- uses: ./.github/workflows/build_linux_wheel - name: Build distribution
run: |
ls -la
pip install wheel setuptools --upgrade
python setup.py sdist bdist_wheel
- name: Publish
uses: pypa/gh-action-pypi-publish@v1.8.5
with: with:
python-minor-version: ${{ matrix.python-minor-version }} password: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
args: "--release --strip" packages-dir: python/dist
arm-build: ${{ matrix.platform == 'aarch64' }}
- uses: ./.github/workflows/upload_wheel
with:
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi"
mac:
timeout-minutes: 60
runs-on: ${{ matrix.config.runner }}
strategy:
matrix:
python-minor-version: ["8"]
config:
- target: x86_64-apple-darwin
runner: macos-13
- target: aarch64-apple-darwin
runner: macos-14
env:
MACOSX_DEPLOYMENT_TARGET: 10.15
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.12
- uses: ./.github/workflows/build_mac_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip --target ${{ matrix.config.target }}"
- uses: ./.github/workflows/upload_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi"
windows:
timeout-minutes: 60
runs-on: windows-latest
strategy:
matrix:
python-minor-version: ["8"]
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.${{ matrix.python-minor-version }}
- uses: ./.github/workflows/build_windows_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip"
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
- uses: ./.github/workflows/upload_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi"

View File

@@ -14,133 +14,49 @@ concurrency:
cancel-in-progress: true cancel-in-progress: true
jobs: jobs:
lint:
name: "Lint"
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install ruff
run: |
pip install ruff==0.2.2
- name: Format check
run: ruff format --check .
- name: Lint
run: ruff .
doctest:
name: "Doctest"
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
cache: "pip"
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- name: Install
run: |
pip install -e .[tests,dev,embeddings]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install mlx
- name: Doctest
run: pytest --doctest-modules python/lancedb
linux: linux:
name: "Linux: python-3.${{ matrix.python-minor-version }}"
timeout-minutes: 30 timeout-minutes: 30
strategy: strategy:
matrix: matrix:
python-minor-version: ["8", "11"] python-minor-version: [ "8", "11" ]
runs-on: "ubuntu-22.04" runs-on: "ubuntu-22.04"
defaults: defaults:
run: run:
shell: bash shell: bash
working-directory: python working-directory: python
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Install protobuf - name: Set up Python
run: | uses: actions/setup-python@v5
sudo apt update with:
sudo apt install -y protobuf-compiler python-version: 3.${{ matrix.python-minor-version }}
- name: Set up Python - name: Install lancedb
uses: actions/setup-python@v5 run: |
with: pip install -e .[tests]
python-version: 3.${{ matrix.python-minor-version }} pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
- uses: Swatinem/rust-cache@v2 pip install pytest pytest-mock ruff
with: - name: Format check
workspaces: python run: ruff format --check .
- uses: ./.github/workflows/build_linux_wheel - name: Lint
- uses: ./.github/workflows/run_tests run: ruff .
# Make sure wheels are not included in the Rust cache - name: Run tests
- name: Delete wheels run: pytest -m "not slow" -x -v --durations=30 tests
run: rm -rf target/wheels - name: doctest
run: pytest --doctest-modules lancedb
platform: platform:
name: "Mac: ${{ matrix.config.name }}" name: "Platform: ${{ matrix.config.name }}"
timeout-minutes: 30 timeout-minutes: 30
strategy: strategy:
matrix: matrix:
config: config:
- name: x86 - name: x86 Mac
runner: macos-13 runner: macos-13
- name: Arm - name: Arm Mac
runner: macos-14 runner: macos-14
runs-on: "${{ matrix.config.runner }}" - name: x86 Windows
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- uses: ./.github/workflows/build_mac_wheel
- uses: ./.github/workflows/run_tests
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
windows:
name: "Windows: ${{ matrix.config.name }}"
timeout-minutes: 30
strategy:
matrix:
config:
- name: x86
runner: windows-latest runner: windows-latest
runs-on: "${{ matrix.config.runner }}" runs-on: "${{ matrix.config.runner }}"
defaults: defaults:
@@ -148,22 +64,21 @@ jobs:
shell: bash shell: bash
working-directory: python working-directory: python
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v5 uses: actions/setup-python@v5
with: with:
python-version: "3.11" python-version: "3.11"
- uses: Swatinem/rust-cache@v2 - name: Install lancedb
with: run: |
workspaces: python pip install -e .[tests]
- uses: ./.github/workflows/build_windows_wheel pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
- uses: ./.github/workflows/run_tests pip install pytest pytest-mock
# Make sure wheels are not included in the Rust cache - name: Run tests
- name: Delete wheels run: pytest -m "not slow" -x -v --durations=30 tests
run: rm -rf target/wheels
pydantic1x: pydantic1x:
timeout-minutes: 30 timeout-minutes: 30
runs-on: "ubuntu-22.04" runs-on: "ubuntu-22.04"
@@ -172,22 +87,21 @@ jobs:
shell: bash shell: bash
working-directory: python working-directory: python
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Install dependencies - name: Set up Python
run: | uses: actions/setup-python@v5
sudo apt update with:
sudo apt install -y protobuf-compiler python-version: 3.9
- name: Set up Python - name: Install lancedb
uses: actions/setup-python@v5 run: |
with: pip install "pydantic<2"
python-version: 3.9 pip install -e .[tests]
- name: Install lancedb pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
run: | pip install pytest pytest-mock
pip install "pydantic<2" - name: Run tests
pip install -e .[tests] run: pytest -m "not slow" -x -v --durations=30 tests
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 - name: doctest
- name: Run tests run: pytest --doctest-modules lancedb
run: pytest -m "not slow" -x -v --durations=30 python/tests

View File

@@ -1,37 +0,0 @@
name: LanceDb Cloud Integration Test
on:
workflow_run:
workflows: [Rust]
types:
- completed
env:
LANCEDB_PROJECT: ${{ secrets.LANCEDB_PROJECT }}
LANCEDB_API_KEY: ${{ secrets.LANCEDB_API_KEY }}
LANCEDB_REGION: ${{ secrets.LANCEDB_REGION }}
jobs:
test:
timeout-minutes: 30
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: cargo build --all-features
- name: Run Integration test
run: cargo test --tests -- --ignored

View File

@@ -1,17 +0,0 @@
name: run-tests
description: "Install lance wheel and run unit tests"
inputs:
python-minor-version:
required: true
description: "8 9 10 11 12"
runs:
using: "composite"
steps:
- name: Install lancedb
shell: bash
run: |
pip3 install $(ls target/wheels/lancedb-*.whl)[tests,dev]
- name: pytest
shell: bash
run: pytest -m "not slow" -x -v --durations=30 python/python/tests

View File

@@ -119,4 +119,3 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT $env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build cargo build
cargo test cargo test

View File

@@ -1,29 +0,0 @@
name: upload-wheel
description: "Upload wheels to Pypi"
inputs:
os:
required: true
description: "ubuntu-22.04 or macos-13"
repo:
required: false
description: "pypi or testpypi"
default: "pypi"
token:
required: true
description: "release token for the repo"
runs:
using: "composite"
steps:
- name: Install dependencies
shell: bash
run: |
python -m pip install --upgrade pip
pip install twine
- name: Publish wheel
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ inputs.token }}
shell: bash
run: twine upload --repository ${{ inputs.repo }} target/wheels/lancedb-*.whl

7
.gitignore vendored
View File

@@ -22,11 +22,6 @@ python/dist
**/.hypothesis **/.hypothesis
# Compiled Dynamic libraries
*.so
*.dylib
*.dll
## Javascript ## Javascript
*.node *.node
**/node_modules **/node_modules
@@ -39,6 +34,4 @@ dist
## Rust ## Rust
target target
**/sccache.log
Cargo.lock Cargo.lock

View File

@@ -5,8 +5,17 @@ repos:
- id: check-yaml - id: check-yaml
- id: end-of-file-fixer - id: end-of-file-fixer
- id: trailing-whitespace - id: trailing-whitespace
- repo: https://github.com/psf/black
rev: 22.12.0
hooks:
- id: black
- repo: https://github.com/astral-sh/ruff-pre-commit - repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version. # Ruff version.
rev: v0.2.2 rev: v0.0.277
hooks: hooks:
- id: ruff - id: ruff
- repo: https://github.com/pycqa/isort
rev: 5.12.0
hooks:
- id: isort
name: isort (python)

View File

@@ -1,5 +1,5 @@
[workspace] [workspace]
members = ["rust/ffi/node", "rust/lancedb", "nodejs", "python"] members = ["rust/ffi/node", "rust/vectordb", "nodejs"]
# Python package needs to be built by maturin. # Python package needs to be built by maturin.
exclude = ["python"] exclude = ["python"]
resolver = "2" resolver = "2"
@@ -14,10 +14,10 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"] categories = ["database-implementations"]
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.10.1", "features" = ["dynamodb"] } lance = { "version" = "=0.9.16", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.10.1" } lance-index = { "version" = "=0.9.16" }
lance-linalg = { "version" = "=0.10.1" } lance-linalg = { "version" = "=0.9.16" }
lance-testing = { "version" = "=0.10.1" } lance-testing = { "version" = "=0.9.16" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "50.0", optional = false } arrow = { version = "50.0", optional = false }
arrow-array = "50.0" arrow-array = "50.0"

View File

@@ -1,27 +0,0 @@
#Simple base dockerfile that supports basic dependencies required to run lance with FTS and Hybrid Search
#Usage docker build -t lancedb:latest -f Dockerfile .
FROM python:3.10-slim-buster
# Install Rust
RUN apt-get update && apt-get install -y curl build-essential && \
curl https://sh.rustup.rs -sSf | sh -s -- -y
# Set the environment variable for Rust
ENV PATH="/root/.cargo/bin:${PATH}"
# Install protobuf compiler
RUN apt-get install -y protobuf-compiler && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN apt-get -y update &&\
apt-get -y upgrade && \
apt-get -y install git
# Verify installations
RUN python --version && \
rustc --version && \
protoc --version
RUN pip install tantivy lancedb

View File

@@ -57,16 +57,6 @@ plugins:
- https://arrow.apache.org/docs/objects.inv - https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv - https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter - mkdocs-jupyter
- ultralytics:
verbose: True
enabled: True
default_image: "assets/lancedb_and_lance.png" # Default image for all pages
add_image: True # Automatically add meta image
add_keywords: True # Add page keywords in the header tag
add_share_buttons: True # Add social share buttons
add_authors: False # Display page authors
add_desc: False
add_dates: False
markdown_extensions: markdown_extensions:
- admonition - admonition
@@ -109,9 +99,10 @@ nav:
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- 🧬 Managing embeddings: - 🧬 Managing embeddings:
- Overview: embeddings/index.md - Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md - Explicit management: embeddings/embedding_explicit.md
- Available models: embeddings/default_embedding_functions.md - Implicit management: embeddings/embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md - Available Functions: embeddings/default_embedding_functions.md
- Custom Embedding Functions: embeddings/api.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations: - 🔌 Integrations:
@@ -173,9 +164,10 @@ nav:
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Managing Embeddings: - Managing Embeddings:
- Overview: embeddings/index.md - Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md - Explicit management: embeddings/embedding_explicit.md
- Available models: embeddings/default_embedding_functions.md - Implicit management: embeddings/embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md - Available Functions: embeddings/default_embedding_functions.md
- Custom Embedding Functions: embeddings/api.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations: - Integrations:

View File

@@ -2,5 +2,4 @@ mkdocs==1.5.3
mkdocs-jupyter==0.24.1 mkdocs-jupyter==0.24.1
mkdocs-material==9.5.3 mkdocs-material==9.5.3
mkdocstrings[python]==0.20.0 mkdocstrings[python]==0.20.0
pydantic pydantic
mkdocs-ultralytics-plugin==0.0.44

View File

@@ -0,0 +1,141 @@
In this workflow, you define your own embedding function and pass it as a callable to LanceDB, invoking it in your code to generate the embeddings. Let's look at some examples.
### Hugging Face
!!! note
Currently, the Hugging Face method is only supported in the Python SDK.
=== "Python"
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
=== "Python"
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
=== "JavaScript"
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## Applying an embedding function to data
=== "Python"
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
=== "JavaScript"
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Simply pass the embedding function created above and LanceDB will use it to generate
embeddings for your data.
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding)
```
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.

View File

@@ -3,126 +3,61 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline. For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! warning !!! warning
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself. Using the implicit embeddings management approach means that you can forget about the manually passing around embedding
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function functions in your code, as long as you don't intend to change it at a later time. If your embedding function changes,
and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via you'll have to re-configure your table with the new embedding function and regenerate the embeddings.
table metadata and have LanceDB automatically take care of regenerating the embeddings.
## 1. Define the embedding function ## 1. Define the embedding function
We have some pre-defined embedding functions in the global registry, with more coming soon. Here's let's an implementation of CLIP as example.
```
registry = EmbeddingFunctionRegistry.get_instance()
clip = registry.get("open-clip").create()
=== "Python" ```
In the LanceDB python SDK, we define a global embedding function registry with You can also define your own embedding function by implementing the `EmbeddingFunction` abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
many different embedding models and even more coming soon.
Here's let's an implementation of CLIP as example.
```python
from lancedb.embeddings import get_registry
registry = get_registry()
clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "JavaScript""
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available.
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## 2. Define the data model or schema ## 2. Define the data model or schema
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
=== "Python" ```python
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how: class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
```python `VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`. ## 3. Create LanceDB table
Now that we have chosen/defined our embedding function and the schema, we can create the table:
=== "JavaScript" ```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
For the TypeScript SDK, a schema can be inferred from input data, or an explicit ```
Arrow schema can be provided.
## 3. Create table and add data That's it! We've provided all the information needed to embed the source and query inputs. We can now forget about the model and dimension details and start to build our VectorDB pipeline.
Now that we have chosen/defined our embedding function and the schema, ## 4. Ingest lots of data and query your table
we can create the table and ingest data without needing to explicitly generate Any new or incoming data can just be added and it'll be vectorized automatically.
the embeddings at all:
=== "Python" ```python
```python table.add([{"image_uri": u} for u in uris])
db = lancedb.connect("~/lancedb") ```
table = db.create_table("pets", schema=Pets)
table.add([{"image_uri": u} for u in uris]) Our OpenCLIP query embedding function supports querying via both text and images:
```
=== "JavaScript" ```python
result = table.search("dog")
```
```javascript Let's query an image:
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding) ```python
``` p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
## 4. Querying your table table.search(query_image)
Not only can you forget about the embeddings during ingestion, you also don't ```
need to worry about it when you query the table:
=== "Python"
Our OpenCLIP query embedding function supports querying via both text and images:
```python
results = (
table.search("dog")
.limit(10)
.to_pandas()
)
```
Or we can search using an image:
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
results = (
table.search(query_image)
.limit(10)
.to_pandas()
)
```
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.
--- ---
@@ -165,5 +100,4 @@ rs[2].image
![](../assets/dog_clip_output.png) ![](../assets/dog_clip_output.png)
Now that you have the basic idea about LanceDB embedding functions and the embedding function registry, Now that you have the basic idea about implicit management via embedding functions, let's dive deeper into a [custom API](./api.md) that you can use to implement your own embedding functions.
let's dive deeper into defining your own [custom functions](./custom_embedding_function.md).

View File

@@ -1,14 +1,8 @@
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio. Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio. This makes them a very powerful tool for machine learning practitioners. However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs (both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
This makes them a very powerful tool for machine learning practitioners.
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
(both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
LanceDB supports 3 methods of working with embeddings. LanceDB supports 2 methods of vectorizing your raw data into embeddings.
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB. 1. **Explicit**: By manually calling LanceDB's `with_embedding` function to vectorize your data via an `embed_func` of your choice
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background. 2. **Implicit**: Allow LanceDB to embed the data and queries in the background as they come in, by using the table's `EmbeddingRegistry` information
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions.
For python users, there is also a legacy [with_embeddings API](./legacy.md). See the [explicit](embedding_explicit.md) and [implicit](embedding_functions.md) embedding sections for more details.
It is retained for compatibility and will be removed in a future version.

View File

@@ -1,99 +0,0 @@
The legacy `with_embeddings` API is for Python only and is deprecated.
### Hugging Face
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
client = openai.OpenAI()
def embed_func(c):
rs = client.embeddings.create(input=c, model="text-embedding-ada-002")
return [record.embedding for record in rs["data"]]
```
## Applying an embedding function to data
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
tbl = db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.

View File

@@ -1,5 +1,6 @@
import pickle import pickle
import re import re
import sys
import zipfile import zipfile
from pathlib import Path from pathlib import Path

View File

@@ -636,70 +636,6 @@ The `values` parameter is used to provide the new values for the columns as lite
When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards. When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards.
## Consistency
In LanceDB OSS, users can set the `read_consistency_interval` parameter on connections to achieve different levels of read consistency. This parameter determines how frequently the database synchronizes with the underlying storage system to check for updates made by other processes. If another process updates a table, the database will not see the changes until the next synchronization.
There are three possible settings for `read_consistency_interval`:
1. **Unset (default)**: The database does not check for updates to tables made by other processes. This provides the best query performance, but means that clients may not see the most up-to-date data. This setting is suitable for applications where the data does not change during the lifetime of the table reference.
2. **Zero seconds (Strong consistency)**: The database checks for updates on every read. This provides the strongest consistency guarantees, ensuring that all clients see the latest committed data. However, it has the most overhead. This setting is suitable when consistency matters more than having high QPS.
3. **Custom interval (Eventual consistency)**: The database checks for updates at a custom interval, such as every 5 seconds. This provides eventual consistency, allowing for some lag between write and read operations. Performance wise, this is a middle ground between strong consistency and no consistency check. This setting is suitable for applications where immediate consistency is not critical, but clients should see updated data eventually.
!!! tip "Consistency in LanceDB Cloud"
This is only tune-able in LanceDB OSS. In LanceDB Cloud, readers are always eventually consistent.
=== "Python"
To set strong consistency, use `timedelta(0)`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb",. read_consistency_interval=timedelta(0))
table = db.open_table("my_table")
```
For eventual consistency, use a custom `timedelta`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb", read_consistency_interval=timedelta(seconds=5))
table = db.open_table("my_table")
```
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
```python
db = lancedb.connect("./.lancedb")
table = db.open_table("my_table")
# (Other writes happen to my_table from another process)
# Check for updates
table.checkout_latest()
```
=== "JavaScript/Typescript"
To set strong consistency, use `0`:
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table");
```
For eventual consistency, specify the update interval as seconds:
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table");
```
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
Once it does, we can show manual consistency check for Node as well.
-->
## What's next? ## What's next?
Learn the best practices on creating an ANN index and getting the most out of it. Learn the best practices on creating an ANN index and getting the most out of it.

View File

@@ -290,7 +290,7 @@
"from lancedb.pydantic import LanceModel, Vector\n", "from lancedb.pydantic import LanceModel, Vector\n",
"\n", "\n",
"class Pets(LanceModel):\n", "class Pets(LanceModel):\n",
" vector: Vector(clip.ndims()) = clip.VectorField()\n", " vector: Vector(clip.ndims) = clip.VectorField()\n",
" image_uri: str = clip.SourceField()\n", " image_uri: str = clip.SourceField()\n",
"\n", "\n",
" @property\n", " @property\n",
@@ -360,7 +360,7 @@
" table = db.create_table(\"pets\", schema=Pets)\n", " table = db.create_table(\"pets\", schema=Pets)\n",
" # use a sampling of 1000 images\n", " # use a sampling of 1000 images\n",
" p = Path(\"~/Downloads/images\").expanduser()\n", " p = Path(\"~/Downloads/images\").expanduser()\n",
" uris = [str(f) for f in p.glob(\"*.jpg\")]\n", " uris = [str(f) for f in p.iterdir()]\n",
" uris = sample(uris, 1000)\n", " uris = sample(uris, 1000)\n",
" table.add(pd.DataFrame({\"image_uri\": uris}))" " table.add(pd.DataFrame({\"image_uri\": uris}))"
] ]
@@ -543,7 +543,7 @@
], ],
"source": [ "source": [
"from PIL import Image\n", "from PIL import Image\n",
"p = Path(\"~/Downloads/images/samoyed_100.jpg\").expanduser()\n", "p = Path(\"/Users/changshe/Downloads/images/samoyed_100.jpg\")\n",
"query_image = Image.open(p)\n", "query_image = Image.open(p)\n",
"query_image" "query_image"
] ]

View File

@@ -23,8 +23,10 @@ from multiprocessing import Pool
import lance import lance
import pyarrow as pa import pyarrow as pa
from datasets import load_dataset from datasets import load_dataset
from PIL import Image
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
import lancedb
MODEL_ID = "openai/clip-vit-base-patch32" MODEL_ID = "openai/clip-vit-base-patch32"

View File

@@ -1,9 +1,6 @@
# DuckDB # DuckDB
In Python, LanceDB tables can also be queried with [DuckDB](https://duckdb.org/), an in-process SQL OLAP database. This means you can write complex SQL queries to analyze your data in LanceDB. LanceDB is very well-integrated with [DuckDB](https://duckdb.org/), an in-process SQL OLAP database. This integration is done via [Arrow](https://duckdb.org/docs/guides/python/sql_on_arrow) .
This integration is done via [Apache Arrow](https://duckdb.org/docs/guides/python/sql_on_arrow), which provides zero-copy data sharing between LanceDB and DuckDB. DuckDB is capable of passing down column selections and basic filters to LanceDB, reducing the amount of data that needs to be scanned to perform your query. Finally, the integration allows streaming data from LanceDB tables, allowing you to aggregate tables that won't fit into memory. All of this uses the same mechanism described in DuckDB's blog post *[DuckDB quacks Arrow](https://duckdb.org/2021/12/03/duck-arrow.html)*.
We can demonstrate this by first installing `duckdb` and `lancedb`. We can demonstrate this by first installing `duckdb` and `lancedb`.
@@ -22,15 +19,14 @@ data = [
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0} {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
] ]
table = db.create_table("pd_table", data=data) table = db.create_table("pd_table", data=data)
arrow_table = table.to_arrow()
``` ```
To query the table, first call `to_lance` to convert the table to a "dataset", which is an object that can be queried by DuckDB. Then all you need to do is reference that dataset by the same name in your SQL query. DuckDB can directly query the `pyarrow.Table` object:
```python ```python
import duckdb import duckdb
arrow_table = table.to_lance()
duckdb.query("SELECT * FROM arrow_table") duckdb.query("SELECT * FROM arrow_table")
``` ```

44
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.4.11", "version": "0.4.10",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.4.11", "version": "0.4.10",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.11", "@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.11", "@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.11", "@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.11", "@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.11" "@lancedb/vectordb-win32-x64-msvc": "0.4.10"
} }
}, },
"node_modules/@75lb/deep-merge": { "node_modules/@75lb/deep-merge": {
@@ -329,9 +329,9 @@
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": { "node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.4.11", "version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.11.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.10.tgz",
"integrity": "sha512-JDOKmFnuJPFkA7ZmrzBJolROwSjWr7yMvAbi40uLBc25YbbVezodd30u2EFtIwWwtk1GqNYRZ49FZOElKYeC/Q==", "integrity": "sha512-y/uHOGb0g15pvqv5tdTyZ6oN+0QVpBmZDzKFWW6pPbuSZjB2uPqcs+ti0RB+AUdmS21kavVQqaNsw/HLKEGrHA==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -341,9 +341,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-darwin-x64": { "node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.4.11", "version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.11.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.10.tgz",
"integrity": "sha512-iy6r+8tp2v1EFgJV52jusXtxgO6NY6SkpOdX41xPqN2mQWMkfUAR9Xtks1mgknjPOIKH4MRc8ZS0jcW/UWmilQ==", "integrity": "sha512-XbfR58OkQpAe0xMSTrwJh9ZjGSzG9EZ7zwO6HfYem8PxcLYAcC6eWRWoSG/T0uObyrPTcYYyvHsp0eNQWYBFAQ==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -353,9 +353,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-arm64-gnu": { "node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.4.11", "version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.11.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.10.tgz",
"integrity": "sha512-5K6IVcTMuH0SZBjlqB5Gg39WC889FpTwIWKufxzQMMXrzxo5J3lKUHVoR28RRlNhDF2d9kZXBEyCpIfDFsV9iQ==", "integrity": "sha512-x40WKH9b+KxorRmKr9G7fv8p5mMj8QJQvRMA0v6v+nbZHr2FLlAZV+9mvhHOnm4AGIkPP5335cUgv6Qz6hgwkQ==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -365,9 +365,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-x64-gnu": { "node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.4.11", "version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.11.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.10.tgz",
"integrity": "sha512-hF9ZChsdqKqqnivOzd9mE7lC3PmhZadXtwThi2RrsPiOLoEaGDfmr6Ni3amVQnB3bR8YEJtTxdQxe0NC4uW/8g==", "integrity": "sha512-CTGPpuzlqq2nVjUxI9gAJOT1oBANIovtIaFsOmBSnEAHgX7oeAxKy2b6L/kJzsgqSzvR5vfLwYcWFrr6ZmBxSA==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -377,9 +377,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-win32-x64-msvc": { "node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.4.11", "version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.11.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.10.tgz",
"integrity": "sha512-0+9ut1ccKoqIyGxsVixwx3771Z+DXpl5WfSmOeA8kf3v3jlOg2H+0YUahiXLDid2ju+yeLPrAUYm7A1gKHVhew==", "integrity": "sha512-Fd7r74coZyrKzkfXg4WthqOL+uKyJyPTia6imcrMNqKOlTGdKmHf02Qi2QxWZrFaabkRYo4Tpn5FeRJ3yYX8CA==",
"cpu": [ "cpu": [
"x64" "x64"
], ],

View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.4.11", "version": "0.4.10",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
"scripts": { "scripts": {
"tsc": "tsc -b", "tsc": "tsc -b",
"build": "npm run tsc && cargo-cp-artifact --artifact cdylib lancedb-node index.node -- cargo build --message-format=json", "build": "npm run tsc && cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release", "build-release": "npm run build -- --release",
"test": "npm run tsc && mocha -recursive dist/test", "test": "npm run tsc && mocha -recursive dist/test",
"integration-test": "npm run tsc && mocha -recursive dist/integration_test", "integration-test": "npm run tsc && mocha -recursive dist/integration_test",
@@ -61,12 +61,10 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"dependencies": { "dependencies": {
"@neon-rs/load": "^0.0.74",
"axios": "^1.4.0"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2", "@apache-arrow/ts": "^14.0.2",
"apache-arrow": "^14.0.2" "@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
}, },
"os": [ "os": [
"darwin", "darwin",
@@ -87,10 +85,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.11", "@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.11", "@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.11", "@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.11", "@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.11" "@lancedb/vectordb-win32-x64-msvc": "0.4.10"
} }
} }

View File

@@ -42,10 +42,7 @@ const {
tableCompactFiles, tableCompactFiles,
tableListIndices, tableListIndices,
tableIndexStats, tableIndexStats,
tableSchema, tableSchema
tableAddColumns,
tableAlterColumns,
tableDropColumns
// eslint-disable-next-line @typescript-eslint/no-var-requires // eslint-disable-next-line @typescript-eslint/no-var-requires
} = require('../native.js') } = require('../native.js')
@@ -99,19 +96,6 @@ export interface ConnectionOptions {
* This is useful for local testing. * This is useful for local testing.
*/ */
hostOverride?: string hostOverride?: string
/**
* (For LanceDB OSS only): The interval, in seconds, at which to check for
* updates to the table from other processes. If None, then consistency is not
* checked. For performance reasons, this is the default. For strong
* consistency, set this to zero seconds. Then every read will check for
* updates from other processes. As a compromise, you can set this to a
* non-zero value for eventual consistency. If more than that interval
* has passed since the last check, then the table will be checked for updates.
* Note: this consistency only applies to read operations. Write operations are
* always consistent.
*/
readConsistencyInterval?: number
} }
function getAwsArgs (opts: ConnectionOptions): any[] { function getAwsArgs (opts: ConnectionOptions): any[] {
@@ -197,8 +181,7 @@ export async function connect (
opts.awsCredentials?.accessKeyId, opts.awsCredentials?.accessKeyId,
opts.awsCredentials?.secretKey, opts.awsCredentials?.secretKey,
opts.awsCredentials?.sessionToken, opts.awsCredentials?.sessionToken,
opts.awsRegion, opts.awsRegion
opts.readConsistencyInterval
) )
return new LocalConnection(db, opts) return new LocalConnection(db, opts)
} }
@@ -503,59 +486,6 @@ export interface Table<T = number[]> {
filter(value: string): Query<T> filter(value: string): Query<T>
schema: Promise<Schema> schema: Promise<Schema>
// TODO: Support BatchUDF
/**
* Add new columns with defined values.
*
* @param newColumnTransforms pairs of column names and the SQL expression to use
* to calculate the value of the new column. These
* expressions will be evaluated for each row in the
* table, and can reference existing columns in the table.
*/
addColumns(newColumnTransforms: Array<{ name: string, valueSql: string }>): Promise<void>
/**
* Alter the name or nullability of columns.
*
* @param columnAlterations One or more alterations to apply to columns.
*/
alterColumns(columnAlterations: ColumnAlteration[]): Promise<void>
/**
* Drop one or more columns from the dataset
*
* This is a metadata-only operation and does not remove the data from the
* underlying storage. In order to remove the data, you must subsequently
* call ``compact_files`` to rewrite the data without the removed columns and
* then call ``cleanup_files`` to remove the old files.
*
* @param columnNames The names of the columns to drop. These can be nested
* column references (e.g. "a.b.c") or top-level column
* names (e.g. "a").
*/
dropColumns(columnNames: string[]): Promise<void>
}
/**
* A definition of a column alteration. The alteration changes the column at
* `path` to have the new name `name`, to be nullable if `nullable` is true,
* and to have the data type `data_type`. At least one of `rename` or `nullable`
* must be provided.
*/
export interface ColumnAlteration {
/**
* The path to the column to alter. This is a dot-separated path to the column.
* If it is a top-level column then it is just the name of the column. If it is
* a nested column then it is the path to the column, e.g. "a.b.c" for a column
* `c` nested inside a column `b` nested inside a column `a`.
*/
path: string
rename?: string
/**
* Set the new nullability. Note that a nullable column cannot be made non-nullable.
*/
nullable?: boolean
} }
export interface UpdateArgs { export interface UpdateArgs {
@@ -1084,18 +1014,6 @@ export class LocalTable<T = number[]> implements Table<T> {
return false return false
} }
} }
async addColumns (newColumnTransforms: Array<{ name: string, valueSql: string }>): Promise<void> {
return tableAddColumns.call(this._tbl, newColumnTransforms)
}
async alterColumns (columnAlterations: ColumnAlteration[]): Promise<void> {
return tableAlterColumns.call(this._tbl, columnAlterations)
}
async dropColumns (columnNames: string[]): Promise<void> {
return tableDropColumns.call(this._tbl, columnNames)
}
} }
export interface CleanupStats { export interface CleanupStats {

View File

@@ -25,8 +25,7 @@ import {
type UpdateArgs, type UpdateArgs,
type UpdateSqlArgs, type UpdateSqlArgs,
makeArrowTable, makeArrowTable,
type MergeInsertArgs, type MergeInsertArgs
type ColumnAlteration
} from '../index' } from '../index'
import { Query } from '../query' import { Query } from '../query'
@@ -475,16 +474,4 @@ export class RemoteTable<T = number[]> implements Table<T> {
numUnindexedRows: results.data.num_unindexed_rows numUnindexedRows: results.data.num_unindexed_rows
} }
} }
async addColumns (newColumnTransforms: Array<{ name: string, valueSql: string }>): Promise<void> {
throw new Error('Add columns is not yet supported in LanceDB Cloud.')
}
async alterColumns (columnAlterations: ColumnAlteration[]): Promise<void> {
throw new Error('Alter columns is not yet supported in LanceDB Cloud.')
}
async dropColumns (columnNames: string[]): Promise<void> {
throw new Error('Drop columns is not yet supported in LanceDB Cloud.')
}
} }

View File

@@ -37,10 +37,8 @@ import {
Utf8, Utf8,
Table as ArrowTable, Table as ArrowTable,
vectorFromArray, vectorFromArray,
Float64,
Float32, Float32,
Float16, Float16
Int64
} from 'apache-arrow' } from 'apache-arrow'
const expect = chai.expect const expect = chai.expect
@@ -198,7 +196,7 @@ describe('LanceDB client', function () {
const table = await con.openTable('vectors') const table = await con.openTable('vectors')
const results = await table const results = await table
.search([0.1, 0.1]) .search([0.1, 0.1])
.select(['is_active', 'vector']) .select(['is_active'])
.execute() .execute()
assert.equal(results.length, 2) assert.equal(results.length, 2)
// vector and _distance are always returned // vector and _distance are always returned
@@ -1059,63 +1057,3 @@ describe('Compact and cleanup', function () {
assert.equal(await table.countRows(), 3) assert.equal(await table.countRows(), 3)
}) })
}) })
describe('schema evolution', function () {
// Create a new sample table
it('can add a new column to the schema', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const table = await con.createTable('vectors', [
{ id: 1n, vector: [0.1, 0.2] }
])
await table.addColumns([{ name: 'price', valueSql: 'cast(10.0 as float)' }])
const expectedSchema = new Schema([
new Field('id', new Int64()),
new Field('vector', new FixedSizeList(2, new Field('item', new Float32(), true))),
new Field('price', new Float32())
])
expect(await table.schema).to.deep.equal(expectedSchema)
})
it('can alter the columns in the schema', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema([
new Field('id', new Int64(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float32(), true))),
new Field('price', new Float64(), false)
])
const table = await con.createTable('vectors', [
{ id: 1n, vector: [0.1, 0.2], price: 10.0 }
])
expect(await table.schema).to.deep.equal(schema)
await table.alterColumns([
{ path: 'id', rename: 'new_id' },
{ path: 'price', nullable: true }
])
const expectedSchema = new Schema([
new Field('new_id', new Int64(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float32(), true))),
new Field('price', new Float64(), true)
])
expect(await table.schema).to.deep.equal(expectedSchema)
})
it('can drop a column from the schema', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const table = await con.createTable('vectors', [
{ id: 1n, vector: [0.1, 0.2] }
])
await table.dropColumns(['vector'])
const expectedSchema = new Schema([
new Field('id', new Int64(), false)
])
expect(await table.schema).to.deep.equal(expectedSchema)
})
})

View File

@@ -18,5 +18,5 @@ module.exports = {
"@typescript-eslint/method-signature-style": "off", "@typescript-eslint/method-signature-style": "off",
"@typescript-eslint/no-explicit-any": "off", "@typescript-eslint/no-explicit-any": "off",
}, },
ignorePatterns: ["node_modules/", "dist/", "build/", "lancedb/native.*"], ignorePatterns: ["node_modules/", "dist/", "build/", "vectordb/native.*"],
}; };

View File

@@ -1,5 +1,5 @@
[package] [package]
name = "lancedb-nodejs" name = "vectordb-nodejs"
edition.workspace = true edition.workspace = true
version = "0.0.0" version = "0.0.0"
license.workspace = true license.workspace = true
@@ -16,7 +16,7 @@ arrow-ipc.workspace = true
futures.workspace = true futures.workspace = true
lance-linalg.workspace = true lance-linalg.workspace = true
lance.workspace = true lance.workspace = true
lancedb = { path = "../rust/lancedb" } vectordb = { path = "../rust/vectordb" }
napi = { version = "2.15", default-features = false, features = [ napi = { version = "2.15", default-features = false, features = [
"napi7", "napi7",
"async" "async"

View File

@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
import { makeArrowTable, toBuffer } from "../lancedb/arrow"; import { makeArrowTable, toBuffer } from "../vectordb/arrow";
import { import {
Int64, Int64,
Field, Field,

View File

@@ -29,6 +29,6 @@ test("open database", async () => {
const tbl = await db.createTable("test", [{ id: 1 }, { id: 2 }]); const tbl = await db.createTable("test", [{ id: 1 }, { id: 2 }]);
expect(await db.tableNames()).toStrictEqual(["test"]); expect(await db.tableNames()).toStrictEqual(["test"]);
const schema = await tbl.schema(); const schema = tbl.schema;
expect(schema).toEqual(new Schema([new Field("id", new Float64(), true)])); expect(schema).toEqual(new Schema([new Field("id", new Float64(), true)]));
}); });

View File

@@ -17,7 +17,7 @@ import * as path from "path";
import * as fs from "fs"; import * as fs from "fs";
import { connect } from "../dist"; import { connect } from "../dist";
import { Schema, Field, Float32, Int32, FixedSizeList, Int64, Float64 } from "apache-arrow"; import { Schema, Field, Float32, Int32, FixedSizeList } from "apache-arrow";
import { makeArrowTable } from "../dist/arrow"; import { makeArrowTable } from "../dist/arrow";
describe("Test creating index", () => { describe("Test creating index", () => {
@@ -181,102 +181,3 @@ describe("Test creating index", () => {
// TODO: check index type. // TODO: check index type.
}); });
}); });
describe("Read consistency interval", () => {
let tmpDir: string;
beforeEach(() => {
tmpDir = fs.mkdtempSync(path.join(os.tmpdir(), "read-consistency-"));
});
// const intervals = [undefined, 0, 0.1];
const intervals = [0];
test.each(intervals)("read consistency interval %p", async (interval) => {
const db = await connect({ uri: tmpDir });
const table = await db.createTable("my_table", [{ id: 1 }]);
const db2 = await connect({ uri: tmpDir, readConsistencyInterval: interval });
const table2 = await db2.openTable("my_table");
expect(await table2.countRows()).toEqual(await table.countRows());
await table.add([{ id: 2 }]);
if (interval === undefined) {
expect(await table2.countRows()).toEqual(1n);
// TODO: once we implement time travel we can uncomment this part of the test.
// await table2.checkout_latest();
// expect(await table2.countRows()).toEqual(2);
} else if (interval === 0) {
expect(await table2.countRows()).toEqual(2n);
} else {
// interval == 0.1
expect(await table2.countRows()).toEqual(1n);
await new Promise(r => setTimeout(r, 100));
expect(await table2.countRows()).toEqual(2n);
}
});
});
describe('schema evolution', function () {
let tmpDir: string;
beforeEach(() => {
tmpDir = fs.mkdtempSync(path.join(os.tmpdir(), "schema-evolution-"));
});
// Create a new sample table
it('can add a new column to the schema', async function () {
const con = await connect(tmpDir)
const table = await con.createTable('vectors', [
{ id: 1n, vector: [0.1, 0.2] }
])
await table.addColumns([{ name: 'price', valueSql: 'cast(10.0 as float)' }])
const expectedSchema = new Schema([
new Field('id', new Int64(), true),
new Field('vector', new FixedSizeList(2, new Field('item', new Float32(), true)), true),
new Field('price', new Float32(), false)
])
expect(await table.schema()).toEqual(expectedSchema)
});
it('can alter the columns in the schema', async function () {
const con = await connect(tmpDir)
const schema = new Schema([
new Field('id', new Int64(), true),
new Field('vector', new FixedSizeList(2, new Field('item', new Float32(), true)), true),
new Field('price', new Float64(), false)
])
const table = await con.createTable('vectors', [
{ id: 1n, vector: [0.1, 0.2] }
])
// Can create a non-nullable column only through addColumns at the moment.
await table.addColumns([{ name: 'price', valueSql: 'cast(10.0 as double)' }])
expect(await table.schema()).toEqual(schema)
await table.alterColumns([
{ path: 'id', rename: 'new_id' },
{ path: 'price', nullable: true }
])
const expectedSchema = new Schema([
new Field('new_id', new Int64(), true),
new Field('vector', new FixedSizeList(2, new Field('item', new Float32(), true)), true),
new Field('price', new Float64(), true)
])
expect(await table.schema()).toEqual(expectedSchema)
});
it('can drop a column from the schema', async function () {
const con = await connect(tmpDir)
const table = await con.createTable('vectors', [
{ id: 1n, vector: [0.1, 0.2] }
])
await table.dropColumns(['vector'])
const expectedSchema = new Schema([
new Field('id', new Int64(), true)
])
expect(await table.schema()).toEqual(expectedSchema)
});
});

View File

@@ -1,3 +1,3 @@
# `lancedb-darwin-arm64` # `vectordb-darwin-arm64`
This is the **aarch64-apple-darwin** binary for `lancedb` This is the **aarch64-apple-darwin** binary for `vectordb`

View File

@@ -1,5 +1,5 @@
{ {
"name": "lancedb-darwin-arm64", "name": "vectordb-darwin-arm64",
"version": "0.4.3", "version": "0.4.3",
"os": [ "os": [
"darwin" "darwin"
@@ -7,9 +7,9 @@
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
"main": "lancedb.darwin-arm64.node", "main": "vectordb.darwin-arm64.node",
"files": [ "files": [
"lancedb.darwin-arm64.node" "vectordb.darwin-arm64.node"
], ],
"license": "MIT", "license": "MIT",
"engines": { "engines": {

View File

@@ -1,3 +1,3 @@
# `lancedb-darwin-x64` # `vectordb-darwin-x64`
This is the **x86_64-apple-darwin** binary for `lancedb` This is the **x86_64-apple-darwin** binary for `vectordb`

View File

@@ -1,5 +1,5 @@
{ {
"name": "lancedb-darwin-x64", "name": "vectordb-darwin-x64",
"version": "0.4.3", "version": "0.4.3",
"os": [ "os": [
"darwin" "darwin"
@@ -7,9 +7,9 @@
"cpu": [ "cpu": [
"x64" "x64"
], ],
"main": "lancedb.darwin-x64.node", "main": "vectordb.darwin-x64.node",
"files": [ "files": [
"lancedb.darwin-x64.node" "vectordb.darwin-x64.node"
], ],
"license": "MIT", "license": "MIT",
"engines": { "engines": {

View File

@@ -1,3 +1,3 @@
# `lancedb-linux-arm64-gnu` # `vectordb-linux-arm64-gnu`
This is the **aarch64-unknown-linux-gnu** binary for `lancedb` This is the **aarch64-unknown-linux-gnu** binary for `vectordb`

View File

@@ -1,5 +1,5 @@
{ {
"name": "lancedb-linux-arm64-gnu", "name": "vectordb-linux-arm64-gnu",
"version": "0.4.3", "version": "0.4.3",
"os": [ "os": [
"linux" "linux"
@@ -7,9 +7,9 @@
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
"main": "lancedb.linux-arm64-gnu.node", "main": "vectordb.linux-arm64-gnu.node",
"files": [ "files": [
"lancedb.linux-arm64-gnu.node" "vectordb.linux-arm64-gnu.node"
], ],
"license": "MIT", "license": "MIT",
"engines": { "engines": {

View File

@@ -1,3 +1,3 @@
# `lancedb-linux-x64-gnu` # `vectordb-linux-x64-gnu`
This is the **x86_64-unknown-linux-gnu** binary for `lancedb` This is the **x86_64-unknown-linux-gnu** binary for `vectordb`

View File

@@ -1,5 +1,5 @@
{ {
"name": "lancedb-linux-x64-gnu", "name": "vectordb-linux-x64-gnu",
"version": "0.4.3", "version": "0.4.3",
"os": [ "os": [
"linux" "linux"
@@ -7,9 +7,9 @@
"cpu": [ "cpu": [
"x64" "x64"
], ],
"main": "lancedb.linux-x64-gnu.node", "main": "vectordb.linux-x64-gnu.node",
"files": [ "files": [
"lancedb.linux-x64-gnu.node" "vectordb.linux-x64-gnu.node"
], ],
"license": "MIT", "license": "MIT",
"engines": { "engines": {

1087
nodejs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,10 +1,10 @@
{ {
"name": "lancedb", "name": "vectordb",
"version": "0.4.3", "version": "0.4.3",
"main": "./dist/index.js", "main": "./dist/index.js",
"types": "./dist/index.d.ts", "types": "./dist/index.d.ts",
"napi": { "napi": {
"name": "lancedb-nodejs", "name": "vectordb-nodejs",
"triples": { "triples": {
"defaults": false, "defaults": false,
"additional": [ "additional": [
@@ -18,7 +18,7 @@
"license": "Apache 2.0", "license": "Apache 2.0",
"devDependencies": { "devDependencies": {
"@napi-rs/cli": "^2.18.0", "@napi-rs/cli": "^2.18.0",
"@types/jest": "^29.1.2", "@types/jest": "^29.5.11",
"@typescript-eslint/eslint-plugin": "^6.19.0", "@typescript-eslint/eslint-plugin": "^6.19.0",
"@typescript-eslint/parser": "^6.19.0", "@typescript-eslint/parser": "^6.19.0",
"eslint": "^8.56.0", "eslint": "^8.56.0",
@@ -45,24 +45,23 @@
], ],
"scripts": { "scripts": {
"artifacts": "napi artifacts", "artifacts": "napi artifacts",
"build:native": "napi build --platform --release --js lancedb/native.js --dts lancedb/native.d.ts dist/", "build:native": "napi build --platform --release --js vectordb/native.js --dts vectordb/native.d.ts dist/",
"build:debug": "napi build --platform --dts ../lancedb/native.d.ts --js ../lancedb/native.js dist/", "build:debug": "napi build --platform --dts ../vectordb/native.d.ts --js ../vectordb/native.js dist/",
"build": "npm run build:debug && tsc -b", "build": "npm run build:debug && tsc -b",
"docs": "typedoc --plugin typedoc-plugin-markdown lancedb/index.ts", "docs": "typedoc --plugin typedoc-plugin-markdown vectordb/index.ts",
"lint": "eslint lancedb --ext .js,.ts", "lint": "eslint vectordb --ext .js,.ts",
"prepublishOnly": "napi prepublish -t npm", "prepublishOnly": "napi prepublish -t npm",
"//": "maxWorkers=1 is workaround for bigint issue in jest: https://github.com/jestjs/jest/issues/11617#issuecomment-1068732414", "test": "npm run build && jest",
"test": "npm run build && jest --maxWorkers=1",
"universal": "napi universal", "universal": "napi universal",
"version": "napi version" "version": "napi version"
}, },
"optionalDependencies": { "optionalDependencies": {
"lancedb-darwin-arm64": "0.4.3", "vectordb-darwin-arm64": "0.4.3",
"lancedb-darwin-x64": "0.4.3", "vectordb-darwin-x64": "0.4.3",
"lancedb-linux-arm64-gnu": "0.4.3", "vectordb-linux-arm64-gnu": "0.4.3",
"lancedb-linux-x64-gnu": "0.4.3" "vectordb-linux-x64-gnu": "0.4.3"
}, },
"peerDependencies": { "dependencies": {
"apache-arrow": "^15.0.0" "apache-arrow": "^15.0.0"
} }
} }

View File

@@ -12,40 +12,29 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use std::sync::Arc;
use napi::bindgen_prelude::*; use napi::bindgen_prelude::*;
use napi_derive::*; use napi_derive::*;
use crate::table::Table; use crate::table::Table;
use crate::ConnectionOptions; use vectordb::connection::{Connection as LanceDBConnection, Database};
use lancedb::connection::{ConnectBuilder, Connection as LanceDBConnection}; use vectordb::ipc::ipc_file_to_batches;
use lancedb::ipc::ipc_file_to_batches;
#[napi] #[napi]
pub struct Connection { pub struct Connection {
conn: LanceDBConnection, conn: Arc<dyn LanceDBConnection>,
} }
#[napi] #[napi]
impl Connection { impl Connection {
/// Create a new Connection instance from the given URI. /// Create a new Connection instance from the given URI.
#[napi(factory)] #[napi(factory)]
pub async fn new(options: ConnectionOptions) -> napi::Result<Self> { pub async fn new(uri: String) -> napi::Result<Self> {
let mut builder = ConnectBuilder::new(&options.uri);
if let Some(api_key) = options.api_key {
builder = builder.api_key(&api_key);
}
if let Some(host_override) = options.host_override {
builder = builder.host_override(&host_override);
}
if let Some(interval) = options.read_consistency_interval {
builder =
builder.read_consistency_interval(std::time::Duration::from_secs_f64(interval));
}
Ok(Self { Ok(Self {
conn: builder conn: Arc::new(Database::connect(&uri).await.map_err(|e| {
.execute() napi::Error::from_reason(format!("Failed to connect to database: {}", e))
.await })?),
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?,
}) })
} }
@@ -70,8 +59,7 @@ impl Connection {
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?; .map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
let tbl = self let tbl = self
.conn .conn
.create_table(&name, Box::new(batches)) .create_table(&name, Box::new(batches), None)
.execute()
.await .await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?; .map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
Ok(Table::new(tbl)) Ok(Table::new(tbl))
@@ -82,7 +70,6 @@ impl Connection {
let tbl = self let tbl = self
.conn .conn
.open_table(&name) .open_table(&name)
.execute()
.await .await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?; .map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
Ok(Table::new(tbl)) Ok(Table::new(tbl))

View File

@@ -40,12 +40,12 @@ impl From<MetricType> for LanceMetricType {
#[napi] #[napi]
pub struct IndexBuilder { pub struct IndexBuilder {
inner: lancedb::index::IndexBuilder, inner: vectordb::index::IndexBuilder,
} }
#[napi] #[napi]
impl IndexBuilder { impl IndexBuilder {
pub fn new(tbl: &dyn lancedb::Table) -> Self { pub fn new(tbl: &dyn vectordb::Table) -> Self {
let inner = tbl.create_index(&[]); let inner = tbl.create_index(&[]);
Self { inner } Self { inner }
} }

View File

@@ -14,9 +14,9 @@
use futures::StreamExt; use futures::StreamExt;
use lance::io::RecordBatchStream; use lance::io::RecordBatchStream;
use lancedb::ipc::batches_to_ipc_file;
use napi::bindgen_prelude::*; use napi::bindgen_prelude::*;
use napi_derive::napi; use napi_derive::napi;
use vectordb::ipc::batches_to_ipc_file;
/** Typescript-style Async Iterator over RecordBatches */ /** Typescript-style Async Iterator over RecordBatches */
#[napi] #[napi]

View File

@@ -22,21 +22,10 @@ mod query;
mod table; mod table;
#[napi(object)] #[napi(object)]
#[derive(Debug)]
pub struct ConnectionOptions { pub struct ConnectionOptions {
pub uri: String, pub uri: String,
pub api_key: Option<String>, pub api_key: Option<String>,
pub host_override: Option<String>, pub host_override: Option<String>,
/// (For LanceDB OSS only): The interval, in seconds, at which to check for
/// updates to the table from other processes. If None, then consistency is not
/// checked. For performance reasons, this is the default. For strong
/// consistency, set this to zero seconds. Then every read will check for
/// updates from other processes. As a compromise, you can set this to a
/// non-zero value for eventual consistency. If more than that interval
/// has passed since the last check, then the table will be checked for updates.
/// Note: this consistency only applies to read operations. Write operations are
/// always consistent.
pub read_consistency_interval: Option<f64>,
} }
/// Write mode for writing a table. /// Write mode for writing a table.
@@ -55,5 +44,5 @@ pub struct WriteOptions {
#[napi] #[napi]
pub async fn connect(options: ConnectionOptions) -> napi::Result<Connection> { pub async fn connect(options: ConnectionOptions) -> napi::Result<Connection> {
Connection::new(options).await Connection::new(options.uri.clone()).await
} }

View File

@@ -12,9 +12,9 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use lancedb::query::Query as LanceDBQuery;
use napi::bindgen_prelude::*; use napi::bindgen_prelude::*;
use napi_derive::napi; use napi_derive::napi;
use vectordb::query::Query as LanceDBQuery;
use crate::{iterator::RecordBatchIterator, table::Table}; use crate::{iterator::RecordBatchIterator, table::Table};

View File

@@ -13,13 +13,9 @@
// limitations under the License. // limitations under the License.
use arrow_ipc::writer::FileWriter; use arrow_ipc::writer::FileWriter;
use lance::dataset::ColumnAlteration as LanceColumnAlteration;
use lancedb::{
ipc::ipc_file_to_batches,
table::{AddDataOptions, TableRef},
};
use napi::bindgen_prelude::*; use napi::bindgen_prelude::*;
use napi_derive::napi; use napi_derive::napi;
use vectordb::{ipc::ipc_file_to_batches, table::TableRef};
use crate::index::IndexBuilder; use crate::index::IndexBuilder;
use crate::query::Query; use crate::query::Query;
@@ -37,12 +33,8 @@ impl Table {
/// Return Schema as empty Arrow IPC file. /// Return Schema as empty Arrow IPC file.
#[napi] #[napi]
pub async fn schema(&self) -> napi::Result<Buffer> { pub fn schema(&self) -> napi::Result<Buffer> {
let schema = let mut writer = FileWriter::try_new(vec![], &self.table.schema())
self.table.schema().await.map_err(|e| {
napi::Error::from_reason(format!("Failed to create IPC file: {}", e))
})?;
let mut writer = FileWriter::try_new(vec![], &schema)
.map_err(|e| napi::Error::from_reason(format!("Failed to create IPC file: {}", e)))?; .map_err(|e| napi::Error::from_reason(format!("Failed to create IPC file: {}", e)))?;
writer writer
.finish() .finish()
@@ -56,15 +48,12 @@ impl Table {
pub async fn add(&self, buf: Buffer) -> napi::Result<()> { pub async fn add(&self, buf: Buffer) -> napi::Result<()> {
let batches = ipc_file_to_batches(buf.to_vec()) let batches = ipc_file_to_batches(buf.to_vec())
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?; .map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
self.table self.table.add(Box::new(batches), None).await.map_err(|e| {
.add(Box::new(batches), AddDataOptions::default()) napi::Error::from_reason(format!(
.await "Failed to add batches to table {}: {}",
.map_err(|e| { self.table, e
napi::Error::from_reason(format!( ))
"Failed to add batches to table {}: {}", })
self.table, e
))
})
} }
#[napi] #[napi]
@@ -96,106 +85,4 @@ impl Table {
pub fn query(&self) -> Query { pub fn query(&self) -> Query {
Query::new(self) Query::new(self)
} }
#[napi]
pub async fn add_columns(&self, transforms: Vec<AddColumnsSql>) -> napi::Result<()> {
let transforms = transforms
.into_iter()
.map(|sql| (sql.name, sql.value_sql))
.collect::<Vec<_>>();
let transforms = lance::dataset::NewColumnTransform::SqlExpressions(transforms);
self.table
.add_columns(transforms, None)
.await
.map_err(|err| {
napi::Error::from_reason(format!(
"Failed to add columns to table {}: {}",
self.table, err
))
})?;
Ok(())
}
#[napi]
pub async fn alter_columns(&self, alterations: Vec<ColumnAlteration>) -> napi::Result<()> {
for alteration in &alterations {
if alteration.rename.is_none() && alteration.nullable.is_none() {
return Err(napi::Error::from_reason(
"Alteration must have a 'rename' or 'nullable' field.",
));
}
}
let alterations = alterations
.into_iter()
.map(LanceColumnAlteration::from)
.collect::<Vec<_>>();
self.table
.alter_columns(&alterations)
.await
.map_err(|err| {
napi::Error::from_reason(format!(
"Failed to alter columns in table {}: {}",
self.table, err
))
})?;
Ok(())
}
#[napi]
pub async fn drop_columns(&self, columns: Vec<String>) -> napi::Result<()> {
let col_refs = columns.iter().map(String::as_str).collect::<Vec<_>>();
self.table.drop_columns(&col_refs).await.map_err(|err| {
napi::Error::from_reason(format!(
"Failed to drop columns from table {}: {}",
self.table, err
))
})?;
Ok(())
}
}
/// A definition of a column alteration. The alteration changes the column at
/// `path` to have the new name `name`, to be nullable if `nullable` is true,
/// and to have the data type `data_type`. At least one of `rename` or `nullable`
/// must be provided.
#[napi(object)]
pub struct ColumnAlteration {
/// The path to the column to alter. This is a dot-separated path to the column.
/// If it is a top-level column then it is just the name of the column. If it is
/// a nested column then it is the path to the column, e.g. "a.b.c" for a column
/// `c` nested inside a column `b` nested inside a column `a`.
pub path: String,
/// The new name of the column. If not provided then the name will not be changed.
/// This must be distinct from the names of all other columns in the table.
pub rename: Option<String>,
/// Set the new nullability. Note that a nullable column cannot be made non-nullable.
pub nullable: Option<bool>,
}
impl From<ColumnAlteration> for LanceColumnAlteration {
fn from(js: ColumnAlteration) -> Self {
let ColumnAlteration {
path,
rename,
nullable,
} = js;
Self {
path,
rename,
nullable,
// TODO: wire up this field
data_type: None,
}
}
}
/// A definition of a new column to add to a table.
#[napi(object)]
pub struct AddColumnsSql {
/// The name of the new column.
pub name: String,
/// The values to populate the new column with, as a SQL expression.
/// The expression can reference other columns in the table.
pub value_sql: String,
} }

View File

@@ -1,8 +1,8 @@
{ {
"include": [ "include": [
"lancedb/*.ts", "vectordb/*.ts",
"lancedb/**/*.ts", "vectordb/**/*.ts",
"lancedb/*.js", "vectordb/*.js",
], ],
"compilerOptions": { "compilerOptions": {
"target": "es2022", "target": "es2022",
@@ -18,7 +18,7 @@
], ],
"typedocOptions": { "typedocOptions": {
"entryPoints": [ "entryPoints": [
"lancedb/index.ts" "vectordb/index.ts"
], ],
"out": "../docs/src/javascript/", "out": "../docs/src/javascript/",
"visibilityFilters": { "visibilityFilters": {

View File

@@ -53,12 +53,12 @@ export async function connect(
opts = Object.assign( opts = Object.assign(
{ {
uri: "", uri: "",
apiKey: undefined, apiKey: "",
hostOverride: undefined, hostOverride: "",
}, },
args args
); );
} }
const nativeConn = await NativeConnection.new(opts); const nativeConn = await NativeConnection.new(opts.uri);
return new Connection(nativeConn); return new Connection(nativeConn);
} }

View File

@@ -12,54 +12,10 @@ export const enum MetricType {
Cosine = 1, Cosine = 1,
Dot = 2 Dot = 2
} }
/**
* A definition of a column alteration. The alteration changes the column at
* `path` to have the new name `name`, to be nullable if `nullable` is true,
* and to have the data type `data_type`. At least one of `rename` or `nullable`
* must be provided.
*/
export interface ColumnAlteration {
/**
* The path to the column to alter. This is a dot-separated path to the column.
* If it is a top-level column then it is just the name of the column. If it is
* a nested column then it is the path to the column, e.g. "a.b.c" for a column
* `c` nested inside a column `b` nested inside a column `a`.
*/
path: string
/**
* The new name of the column. If not provided then the name will not be changed.
* This must be distinct from the names of all other columns in the table.
*/
rename?: string
/** Set the new nullability. Note that a nullable column cannot be made non-nullable. */
nullable?: boolean
}
/** A definition of a new column to add to a table. */
export interface AddColumnsSql {
/** The name of the new column. */
name: string
/**
* The values to populate the new column with, as a SQL expression.
* The expression can reference other columns in the table.
*/
valueSql: string
}
export interface ConnectionOptions { export interface ConnectionOptions {
uri: string uri: string
apiKey?: string apiKey?: string
hostOverride?: string hostOverride?: string
/**
* (For LanceDB OSS only): The interval, in seconds, at which to check for
* updates to the table from other processes. If None, then consistency is not
* checked. For performance reasons, this is the default. For strong
* consistency, set this to zero seconds. Then every read will check for
* updates from other processes. As a compromise, you can set this to a
* non-zero value for eventual consistency. If more than that interval
* has passed since the last check, then the table will be checked for updates.
* Note: this consistency only applies to read operations. Write operations are
* always consistent.
*/
readConsistencyInterval?: number
} }
/** Write mode for writing a table. */ /** Write mode for writing a table. */
export const enum WriteMode { export const enum WriteMode {
@@ -74,7 +30,7 @@ export interface WriteOptions {
export function connect(options: ConnectionOptions): Promise<Connection> export function connect(options: ConnectionOptions): Promise<Connection>
export class Connection { export class Connection {
/** Create a new Connection instance from the given URI. */ /** Create a new Connection instance from the given URI. */
static new(options: ConnectionOptions): Promise<Connection> static new(uri: string): Promise<Connection>
/** List all tables in the dataset. */ /** List all tables in the dataset. */
tableNames(): Promise<Array<string>> tableNames(): Promise<Array<string>>
/** /**
@@ -115,13 +71,10 @@ export class Query {
} }
export class Table { export class Table {
/** Return Schema as empty Arrow IPC file. */ /** Return Schema as empty Arrow IPC file. */
schema(): Promise<Buffer> schema(): Buffer
add(buf: Buffer): Promise<void> add(buf: Buffer): Promise<void>
countRows(filter?: string | undefined | null): Promise<bigint> countRows(filter?: string | undefined | null): Promise<bigint>
delete(predicate: string): Promise<void> delete(predicate: string): Promise<void>
createIndex(): IndexBuilder createIndex(): IndexBuilder
query(): Query query(): Query
addColumns(transforms: Array<AddColumnsSql>): Promise<void>
alterColumns(alterations: Array<ColumnAlteration>): Promise<void>
dropColumns(columns: Array<string>): Promise<void>
} }

View File

@@ -32,24 +32,24 @@ switch (platform) {
case 'android': case 'android':
switch (arch) { switch (arch) {
case 'arm64': case 'arm64':
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.android-arm64.node')) localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.android-arm64.node'))
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.android-arm64.node') nativeBinding = require('./vectordb-nodejs.android-arm64.node')
} else { } else {
nativeBinding = require('lancedb-android-arm64') nativeBinding = require('vectordb-android-arm64')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
} }
break break
case 'arm': case 'arm':
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.android-arm-eabi.node')) localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.android-arm-eabi.node'))
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.android-arm-eabi.node') nativeBinding = require('./vectordb-nodejs.android-arm-eabi.node')
} else { } else {
nativeBinding = require('lancedb-android-arm-eabi') nativeBinding = require('vectordb-android-arm-eabi')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
@@ -63,13 +63,13 @@ switch (platform) {
switch (arch) { switch (arch) {
case 'x64': case 'x64':
localFileExisted = existsSync( localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.win32-x64-msvc.node') join(__dirname, 'vectordb-nodejs.win32-x64-msvc.node')
) )
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.win32-x64-msvc.node') nativeBinding = require('./vectordb-nodejs.win32-x64-msvc.node')
} else { } else {
nativeBinding = require('lancedb-win32-x64-msvc') nativeBinding = require('vectordb-win32-x64-msvc')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
@@ -77,13 +77,13 @@ switch (platform) {
break break
case 'ia32': case 'ia32':
localFileExisted = existsSync( localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.win32-ia32-msvc.node') join(__dirname, 'vectordb-nodejs.win32-ia32-msvc.node')
) )
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.win32-ia32-msvc.node') nativeBinding = require('./vectordb-nodejs.win32-ia32-msvc.node')
} else { } else {
nativeBinding = require('lancedb-win32-ia32-msvc') nativeBinding = require('vectordb-win32-ia32-msvc')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
@@ -91,13 +91,13 @@ switch (platform) {
break break
case 'arm64': case 'arm64':
localFileExisted = existsSync( localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.win32-arm64-msvc.node') join(__dirname, 'vectordb-nodejs.win32-arm64-msvc.node')
) )
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.win32-arm64-msvc.node') nativeBinding = require('./vectordb-nodejs.win32-arm64-msvc.node')
} else { } else {
nativeBinding = require('lancedb-win32-arm64-msvc') nativeBinding = require('vectordb-win32-arm64-msvc')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
@@ -108,23 +108,23 @@ switch (platform) {
} }
break break
case 'darwin': case 'darwin':
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.darwin-universal.node')) localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.darwin-universal.node'))
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.darwin-universal.node') nativeBinding = require('./vectordb-nodejs.darwin-universal.node')
} else { } else {
nativeBinding = require('lancedb-darwin-universal') nativeBinding = require('vectordb-darwin-universal')
} }
break break
} catch {} } catch {}
switch (arch) { switch (arch) {
case 'x64': case 'x64':
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.darwin-x64.node')) localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.darwin-x64.node'))
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.darwin-x64.node') nativeBinding = require('./vectordb-nodejs.darwin-x64.node')
} else { } else {
nativeBinding = require('lancedb-darwin-x64') nativeBinding = require('vectordb-darwin-x64')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
@@ -132,13 +132,13 @@ switch (platform) {
break break
case 'arm64': case 'arm64':
localFileExisted = existsSync( localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.darwin-arm64.node') join(__dirname, 'vectordb-nodejs.darwin-arm64.node')
) )
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.darwin-arm64.node') nativeBinding = require('./vectordb-nodejs.darwin-arm64.node')
} else { } else {
nativeBinding = require('lancedb-darwin-arm64') nativeBinding = require('vectordb-darwin-arm64')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
@@ -152,12 +152,12 @@ switch (platform) {
if (arch !== 'x64') { if (arch !== 'x64') {
throw new Error(`Unsupported architecture on FreeBSD: ${arch}`) throw new Error(`Unsupported architecture on FreeBSD: ${arch}`)
} }
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.freebsd-x64.node')) localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.freebsd-x64.node'))
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.freebsd-x64.node') nativeBinding = require('./vectordb-nodejs.freebsd-x64.node')
} else { } else {
nativeBinding = require('lancedb-freebsd-x64') nativeBinding = require('vectordb-freebsd-x64')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
@@ -168,26 +168,26 @@ switch (platform) {
case 'x64': case 'x64':
if (isMusl()) { if (isMusl()) {
localFileExisted = existsSync( localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-x64-musl.node') join(__dirname, 'vectordb-nodejs.linux-x64-musl.node')
) )
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-x64-musl.node') nativeBinding = require('./vectordb-nodejs.linux-x64-musl.node')
} else { } else {
nativeBinding = require('lancedb-linux-x64-musl') nativeBinding = require('vectordb-linux-x64-musl')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
} }
} else { } else {
localFileExisted = existsSync( localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-x64-gnu.node') join(__dirname, 'vectordb-nodejs.linux-x64-gnu.node')
) )
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-x64-gnu.node') nativeBinding = require('./vectordb-nodejs.linux-x64-gnu.node')
} else { } else {
nativeBinding = require('lancedb-linux-x64-gnu') nativeBinding = require('vectordb-linux-x64-gnu')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
@@ -197,26 +197,26 @@ switch (platform) {
case 'arm64': case 'arm64':
if (isMusl()) { if (isMusl()) {
localFileExisted = existsSync( localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-arm64-musl.node') join(__dirname, 'vectordb-nodejs.linux-arm64-musl.node')
) )
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-arm64-musl.node') nativeBinding = require('./vectordb-nodejs.linux-arm64-musl.node')
} else { } else {
nativeBinding = require('lancedb-linux-arm64-musl') nativeBinding = require('vectordb-linux-arm64-musl')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
} }
} else { } else {
localFileExisted = existsSync( localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-arm64-gnu.node') join(__dirname, 'vectordb-nodejs.linux-arm64-gnu.node')
) )
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-arm64-gnu.node') nativeBinding = require('./vectordb-nodejs.linux-arm64-gnu.node')
} else { } else {
nativeBinding = require('lancedb-linux-arm64-gnu') nativeBinding = require('vectordb-linux-arm64-gnu')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
@@ -225,13 +225,13 @@ switch (platform) {
break break
case 'arm': case 'arm':
localFileExisted = existsSync( localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-arm-gnueabihf.node') join(__dirname, 'vectordb-nodejs.linux-arm-gnueabihf.node')
) )
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-arm-gnueabihf.node') nativeBinding = require('./vectordb-nodejs.linux-arm-gnueabihf.node')
} else { } else {
nativeBinding = require('lancedb-linux-arm-gnueabihf') nativeBinding = require('vectordb-linux-arm-gnueabihf')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
@@ -240,26 +240,26 @@ switch (platform) {
case 'riscv64': case 'riscv64':
if (isMusl()) { if (isMusl()) {
localFileExisted = existsSync( localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-riscv64-musl.node') join(__dirname, 'vectordb-nodejs.linux-riscv64-musl.node')
) )
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-riscv64-musl.node') nativeBinding = require('./vectordb-nodejs.linux-riscv64-musl.node')
} else { } else {
nativeBinding = require('lancedb-linux-riscv64-musl') nativeBinding = require('vectordb-linux-riscv64-musl')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
} }
} else { } else {
localFileExisted = existsSync( localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-riscv64-gnu.node') join(__dirname, 'vectordb-nodejs.linux-riscv64-gnu.node')
) )
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-riscv64-gnu.node') nativeBinding = require('./vectordb-nodejs.linux-riscv64-gnu.node')
} else { } else {
nativeBinding = require('lancedb-linux-riscv64-gnu') nativeBinding = require('vectordb-linux-riscv64-gnu')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e
@@ -268,13 +268,13 @@ switch (platform) {
break break
case 's390x': case 's390x':
localFileExisted = existsSync( localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-s390x-gnu.node') join(__dirname, 'vectordb-nodejs.linux-s390x-gnu.node')
) )
try { try {
if (localFileExisted) { if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-s390x-gnu.node') nativeBinding = require('./vectordb-nodejs.linux-s390x-gnu.node')
} else { } else {
nativeBinding = require('lancedb-linux-s390x-gnu') nativeBinding = require('vectordb-linux-s390x-gnu')
} }
} catch (e) { } catch (e) {
loadError = e loadError = e

View File

@@ -13,7 +13,7 @@
// limitations under the License. // limitations under the License.
import { Schema, tableFromIPC } from "apache-arrow"; import { Schema, tableFromIPC } from "apache-arrow";
import { AddColumnsSql, ColumnAlteration, Table as _NativeTable } from "./native"; import { Table as _NativeTable } from "./native";
import { toBuffer, Data } from "./arrow"; import { toBuffer, Data } from "./arrow";
import { Query } from "./query"; import { Query } from "./query";
import { IndexBuilder } from "./indexer"; import { IndexBuilder } from "./indexer";
@@ -32,8 +32,8 @@ export class Table {
} }
/** Get the schema of the table. */ /** Get the schema of the table. */
async schema(): Promise<Schema> { get schema(): Schema {
const schemaBuf = await this.inner.schema(); const schemaBuf = this.inner.schema();
const tbl = tableFromIPC(schemaBuf); const tbl = tableFromIPC(schemaBuf);
return tbl.schema; return tbl.schema;
} }
@@ -150,42 +150,4 @@ export class Table {
} }
return q; return q;
} }
// TODO: Support BatchUDF
/**
* Add new columns with defined values.
*
* @param newColumnTransforms pairs of column names and the SQL expression to use
* to calculate the value of the new column. These
* expressions will be evaluated for each row in the
* table, and can reference existing columns in the table.
*/
async addColumns(newColumnTransforms: AddColumnsSql[]): Promise<void> {
await this.inner.addColumns(newColumnTransforms);
}
/**
* Alter the name or nullability of columns.
*
* @param columnAlterations One or more alterations to apply to columns.
*/
async alterColumns(columnAlterations: ColumnAlteration[]): Promise<void> {
await this.inner.alterColumns(columnAlterations);
}
/**
* Drop one or more columns from the dataset
*
* This is a metadata-only operation and does not remove the data from the
* underlying storage. In order to remove the data, you must subsequently
* call ``compact_files`` to rewrite the data without the removed columns and
* then call ``cleanup_files`` to remove the old files.
*
* @param columnNames The names of the columns to drop. These can be nested
* column references (e.g. "a.b.c") or top-level column
* names (e.g. "a").
*/
async dropColumns(columnNames: string[]): Promise<void> {
await this.inner.dropColumns(columnNames);
}
} }

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.6.1 current_version = 0.5.5
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -1,26 +0,0 @@
[package]
name = "lancedb-python"
version = "0.4.10"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true
repository.workspace = true
keywords.workspace = true
categories.workspace = true
[lib]
name = "_lancedb"
crate-type = ["cdylib"]
[dependencies]
lancedb = { path = "../rust/lancedb" }
env_logger = "0.10"
pyo3 = { version = "0.20", features = ["extension-module", "abi3-py38"] }
pyo3-asyncio = { version = "0.20", features = ["attributes", "tokio-runtime"] }
# Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] }
[build-dependencies]
pyo3-build-config = { version = "0.20.3", features = ["extension-module", "abi3-py38"] }

View File

@@ -20,10 +20,10 @@ results = table.search([0.1, 0.3]).limit(20).to_list()
print(results) print(results)
``` ```
## Development ## Development
LanceDb is based on the rust crate `lancedb` and is built with maturin. In order to build with maturin Create a virtual environment and activate it:
you will either need a conda environment or a virtual environment (venv).
```bash ```bash
python -m venv venv python -m venv venv
@@ -33,15 +33,7 @@ python -m venv venv
Install the necessary packages: Install the necessary packages:
```bash ```bash
python -m pip install .[tests,dev] python -m pip install .
```
To build the python package you can use maturin:
```bash
# This will build the rust bindings and place them in the appropriate place
# in your venv or conda environment
matruin develop
``` ```
To run the unit tests: To run the unit tests:
@@ -53,7 +45,7 @@ pytest
To run the doc tests: To run the doc tests:
```bash ```bash
pytest --doctest-modules python/lancedb pytest --doctest-modules lancedb
``` ```
To run linter and automatically fix all errors: To run linter and automatically fix all errors:
@@ -69,27 +61,31 @@ If any packages are missing, install them with:
pip install <PACKAGE_NAME> pip install <PACKAGE_NAME>
``` ```
___ ___
For **Windows** users, there may be errors when installing packages, so these commands may be helpful: For **Windows** users, there may be errors when installing packages, so these commands may be helpful:
Activate the virtual environment: Activate the virtual environment:
```bash ```bash
. .\venv\Scripts\activate . .\venv\Scripts\activate
``` ```
You may need to run the installs separately: You may need to run the installs separately:
```bash ```bash
pip install -e .[tests] pip install -e .[tests]
pip install -e .[dev] pip install -e .[dev]
``` ```
`tantivy` requires `rust` to be installed, so install it with `conda`, as it doesn't support windows installation:
`tantivy` requires `rust` to be installed, so install it with `conda`, as it doesn't support windows installation:
```bash ```bash
pip install wheel pip install wheel
pip install cargo pip install cargo
conda install rust conda install rust
pip install tantivy pip install tantivy
``` ```
To run the unit tests:
```bash
pytest
```

View File

@@ -1,3 +0,0 @@
fn main() {
pyo3_build_config::add_extension_module_link_args();
}

View File

@@ -0,0 +1,90 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.metadata
import os
from datetime import timedelta
from typing import Optional
__version__ = importlib.metadata.version("lancedb")
from .common import URI
from .db import DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection
from .schema import vector # noqa: F401
from .utils import sentry_log # noqa: F401
def connect(
uri: URI,
*,
api_key: Optional[str] = None,
region: str = "us-east-1",
host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None,
) -> DBConnection:
"""Connect to a LanceDB database.
Parameters
----------
uri: str or Path
The uri of the database.
api_key: str, optional
If presented, connect to LanceDB cloud.
Otherwise, connect to a database on file system or cloud storage.
Can be set via environment variable `LANCEDB_API_KEY`.
region: str, default "us-east-1"
The region to use for LanceDB Cloud.
host_override: str, optional
The override url for LanceDB Cloud.
read_consistency_interval: timedelta, default None
(For LanceDB OSS only)
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are
always consistent.
Examples
--------
For a local directory, provide a path for the database:
>>> import lancedb
>>> db = lancedb.connect("~/.lancedb")
For object storage, use a URI prefix:
>>> db = lancedb.connect("s3://my-bucket/lancedb")
Connect to LancdDB cloud:
>>> db = lancedb.connect("db://my_database", api_key="ldb_...")
Returns
-------
conn : DBConnection
A connection to a LanceDB database.
"""
if isinstance(uri, str) and uri.startswith("db://"):
if api_key is None:
api_key = os.environ.get("LANCEDB_API_KEY")
if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
return RemoteDBConnection(uri, api_key, region, host_override)
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)

View File

@@ -34,7 +34,3 @@ class Credential(str):
def __str__(self) -> str: def __str__(self) -> str:
return "********" return "********"
def sanitize_uri(uri: URI) -> str:
return str(uri)

View File

@@ -28,7 +28,6 @@ from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
if TYPE_CHECKING: if TYPE_CHECKING:
from datetime import timedelta from datetime import timedelta
from ._lancedb import Connection as LanceDbConnection
from .common import DATA, URI from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel from .pydantic import LanceModel
@@ -41,21 +40,14 @@ class DBConnection(EnforceOverrides):
def table_names( def table_names(
self, page_token: Optional[str] = None, limit: int = 10 self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]: ) -> Iterable[str]:
"""List all tables in this database, in sorted order """List all table in this database
Parameters Parameters
---------- ----------
page_token: str, optional page_token: str, optional
The token to use for pagination. If not present, start from the beginning. The token to use for pagination. If not present, start from the beginning.
Typically, this token is last table name from the previous page.
Only supported by LanceDb Cloud.
limit: int, default 10 limit: int, default 10
The size of the page to return. The size of the page to return.
Only supported by LanceDb Cloud.
Returns
-------
Iterable of str
""" """
pass pass
@@ -420,254 +412,3 @@ class LanceDBConnection(DBConnection):
def drop_database(self): def drop_database(self):
filesystem, path = fs_from_uri(self.uri) filesystem, path = fs_from_uri(self.uri)
filesystem.delete_dir(path) filesystem.delete_dir(path)
class AsyncConnection(EnforceOverrides):
"""An active LanceDB connection interface."""
@abstractmethod
async def table_names(
self, *, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""List all tables in this database, in sorted order
Parameters
----------
page_token: str, optional
The token to use for pagination. If not present, start from the beginning.
Typically, this token is last table name from the previous page.
Only supported by LanceDb Cloud.
limit: int, default 10
The size of the page to return.
Only supported by LanceDb Cloud.
Returns
-------
Iterable of str
"""
pass
@abstractmethod
async def create_table(
self,
name: str,
data: Optional[DATA] = None,
schema: Optional[Union[pa.Schema, LanceModel]] = None,
mode: str = "create",
exist_ok: bool = False,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
Parameters
----------
name: str
The name of the table.
data: The data to initialize the table, *optional*
User must provide at least one of `data` or `schema`.
Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
schema: The schema of the table, *optional*
Acceptable types are:
- pyarrow.Schema
- [LanceModel][lancedb.pydantic.LanceModel]
mode: str; default "create"
The mode to use when creating the table.
Can be either "create" or "overwrite".
By default, if the table already exists, an exception is raised.
If you want to overwrite the table, use mode="overwrite".
exist_ok: bool, default False
If a table by the same name already exists, then raise an exception
if exist_ok=False. If exist_ok=True, then open the existing table;
it will not add the provided data but will validate against any
schema that's specified.
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
LanceTable
A reference to the newly created table.
!!! note
The vector index won't be created by default.
To create the index, call the `create_index` method on the table.
Examples
--------
Can create with list of tuples or dictionaries:
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data)
LanceTable(connection=..., name="my_table")
>>> db["my_table"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
lat: double
long: double
----
vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]]
long: [[-122.7,-74.1]]
You can also pass a pandas DataFrame:
>>> import pandas as pd
>>> data = pd.DataFrame({
... "vector": [[1.1, 1.2], [0.2, 1.8]],
... "lat": [45.5, 40.1],
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data)
LanceTable(connection=..., name="table2")
>>> db["table2"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
lat: double
long: double
----
vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]]
long: [[-122.7,-74.1]]
Data is converted to Arrow before being written to disk. For maximum
control over how data is saved, either provide the PyArrow schema to
convert to or else provide a [PyArrow Table](pyarrow.Table) directly.
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema)
LanceTable(connection=..., name="table3")
>>> db["table3"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
lat: float
long: float
----
vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]]
long: [[-122.7,-74.1]]
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
>>> import pyarrow as pa
>>> def make_batches():
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]],
... pa.list_(pa.float32(), 2)),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
... ["vector", "item", "price"],
... )
>>> schema=pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(connection=..., name="table4")
"""
raise NotImplementedError
async def open_table(self, name: str) -> Table:
"""Open a Lance Table in the database.
Parameters
----------
name: str
The name of the table.
Returns
-------
A LanceTable object representing the table.
"""
raise NotImplementedError
async def drop_table(self, name: str):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
"""
raise NotImplementedError
async def drop_database(self):
"""
Drop database
This is the same thing as dropping all the tables
"""
raise NotImplementedError
class AsyncLanceDBConnection(AsyncConnection):
def __init__(self, connection: LanceDbConnection):
self._inner = connection
async def __repr__(self) -> str:
pass
@override
async def table_names(
self,
*,
page_token=None,
limit=None,
) -> Iterable[str]:
return await self._inner.table_names()
@override
async def create_table(
self,
name: str,
data: Optional[DATA] = None,
schema: Optional[Union[pa.Schema, LanceModel]] = None,
mode: str = "create",
exist_ok: bool = False,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> LanceTable:
raise NotImplementedError
@override
async def open_table(self, name: str) -> LanceTable:
raise NotImplementedError
@override
async def drop_table(self, name: str, ignore_missing: bool = False):
raise NotImplementedError
@override
async def drop_database(self):
raise NotImplementedError

View File

@@ -103,9 +103,9 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
# convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly # convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly
source_instruction: str = "represent the document for retrieval" source_instruction: str = "represent the document for retrieval"
query_instruction: str = ( query_instruction: (
"represent the document for retrieving the most similar documents" str
) ) = "represent the document for retrieving the most similar documents"
@weak_lru(maxsize=1) @weak_lru(maxsize=1)
def ndims(self): def ndims(self):

View File

@@ -26,7 +26,7 @@ import pyarrow as pa
from lance.vector import vec_to_table from lance.vector import vec_to_table
from retry import retry from retry import retry
from ..util import deprecated, safe_import_pandas from ..util import safe_import_pandas
from ..utils.general import LOGGER from ..utils.general import LOGGER
pd = safe_import_pandas() pd = safe_import_pandas()
@@ -36,10 +36,8 @@ TEXT = Union[str, List[str], pa.Array, pa.ChunkedArray, np.ndarray]
IMAGES = Union[ IMAGES = Union[
str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray
] ]
AUDIO = Union[str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray]
@deprecated
def with_embeddings( def with_embeddings(
func: Callable, func: Callable,
data: DATA, data: DATA,

View File

@@ -12,7 +12,6 @@
# limitations under the License. # limitations under the License.
"""Full text search index using tantivy-py""" """Full text search index using tantivy-py"""
import os import os
from typing import List, Tuple from typing import List, Tuple

View File

@@ -16,7 +16,7 @@ from __future__ import annotations
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from concurrent.futures import ThreadPoolExecutor from concurrent.futures import ThreadPoolExecutor
from pathlib import Path from pathlib import Path
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple, Type, Union from typing import TYPE_CHECKING, List, Literal, Optional, Tuple, Type, Union
import deprecation import deprecation
import numpy as np import numpy as np
@@ -93,7 +93,7 @@ class Query(pydantic.BaseModel):
metric: str = "L2" metric: str = "L2"
# which columns to return in the results # which columns to return in the results
columns: Optional[Union[List[str], Dict[str, str]]] = None columns: Optional[List[str]] = None
# optional query parameters for tuning the results, # optional query parameters for tuning the results,
# e.g. `{"nprobes": "10", "refine_factor": "10"}` # e.g. `{"nprobes": "10", "refine_factor": "10"}`
@@ -321,25 +321,20 @@ class LanceQueryBuilder(ABC):
self._limit = limit self._limit = limit
return self return self
def select(self, columns: Union[list[str], dict[str, str]]) -> LanceQueryBuilder: def select(self, columns: list) -> LanceQueryBuilder:
"""Set the columns to return. """Set the columns to return.
Parameters Parameters
---------- ----------
columns: list of str, or dict of str to str default None columns: list
List of column names to be fetched. The columns to return.
Or a dictionary of column names to SQL expressions.
All columns are fetched if None or unspecified.
Returns Returns
------- -------
LanceQueryBuilder LanceQueryBuilder
The LanceQueryBuilder object. The LanceQueryBuilder object.
""" """
if isinstance(columns, list) or isinstance(columns, dict): self._columns = columns
self._columns = columns
else:
raise ValueError("columns must be a list or a dictionary")
return self return self
def where(self, where: str, prefilter: bool = False) -> LanceQueryBuilder: def where(self, where: str, prefilter: bool = False) -> LanceQueryBuilder:
@@ -397,7 +392,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
>>> (table.search([0.4, 0.4]) >>> (table.search([0.4, 0.4])
... .metric("cosine") ... .metric("cosine")
... .where("b < 10") ... .where("b < 10")
... .select(["b", "vector"]) ... .select(["b"])
... .limit(2) ... .limit(2)
... .to_pandas()) ... .to_pandas())
b vector _distance b vector _distance

View File

@@ -14,7 +14,6 @@
import inspect import inspect
import logging import logging
import uuid import uuid
from concurrent.futures import ThreadPoolExecutor
from typing import Iterable, List, Optional, Union from typing import Iterable, List, Optional, Union
from urllib.parse import urlparse from urllib.parse import urlparse
@@ -40,7 +39,6 @@ class RemoteDBConnection(DBConnection):
api_key: str, api_key: str,
region: str, region: str,
host_override: Optional[str] = None, host_override: Optional[str] = None,
request_thread_pool: Optional[ThreadPoolExecutor] = None,
): ):
"""Connect to a remote LanceDB database.""" """Connect to a remote LanceDB database."""
parsed = urlparse(db_url) parsed = urlparse(db_url)
@@ -51,7 +49,6 @@ class RemoteDBConnection(DBConnection):
self._client = RestfulLanceDBClient( self._client = RestfulLanceDBClient(
self.db_name, region, api_key, host_override self.db_name, region, api_key, host_override
) )
self._request_thread_pool = request_thread_pool
def __repr__(self) -> str: def __repr__(self) -> str:
return f"RemoteConnect(name={self.db_name})" return f"RemoteConnect(name={self.db_name})"

View File

@@ -13,9 +13,8 @@
import logging import logging
import uuid import uuid
from concurrent.futures import Future
from functools import cached_property from functools import cached_property
from typing import Dict, Iterable, Optional, Union from typing import Dict, Optional, Union
import pyarrow as pa import pyarrow as pa
from lance import json_to_schema from lance import json_to_schema
@@ -271,29 +270,15 @@ class RemoteTable(Table):
and len(query.vector) > 0 and len(query.vector) > 0
and not isinstance(query.vector[0], float) and not isinstance(query.vector[0], float)
): ):
if self._conn._request_thread_pool is None:
def submit(name, q):
f = Future()
f.set_result(self._conn._client.query(name, q))
return f
else:
def submit(name, q):
return self._conn._request_thread_pool.submit(
self._conn._client.query, name, q
)
results = [] results = []
for v in query.vector: for v in query.vector:
v = list(v) v = list(v)
q = query.copy() q = query.copy()
q.vector = v q.vector = v
results.append(submit(self._name, q)) results.append(self._conn._client.query(self._name, q))
return pa.concat_tables( return pa.concat_tables(
[add_index(r.result().to_arrow(), i) for i, r in enumerate(results)] [add_index(r.to_arrow(), i) for i, r in enumerate(results)]
) )
else: else:
result = self._conn._client.query(self._name, query) result = self._conn._client.query(self._name, query)
@@ -474,21 +459,6 @@ class RemoteTable(Table):
"count_rows() is not yet supported on the LanceDB cloud" "count_rows() is not yet supported on the LanceDB cloud"
) )
def add_columns(self, transforms: Dict[str, str]):
raise NotImplementedError(
"add_columns() is not yet supported on the LanceDB cloud"
)
def alter_columns(self, alterations: Iterable[Dict[str, str]]):
raise NotImplementedError(
"alter_columns() is not yet supported on the LanceDB cloud"
)
def drop_columns(self, columns: Iterable[str]):
raise NotImplementedError(
"drop_columns() is not yet supported on the LanceDB cloud"
)
def add_index(tbl: pa.Table, i: int) -> pa.Table: def add_index(tbl: pa.Table, i: int) -> pa.Table:
return tbl.add_column( return tbl.add_column(

Some files were not shown because too many files have changed in this diff Show More