Compare commits

..

39 Commits

Author SHA1 Message Date
Lance Release
fb26f31beb [python] Bump version: 0.6.6 → 0.6.7 2024-04-04 23:43:04 +00:00
Lance Release
7c138c54c4 Updating package-lock.json 2024-04-04 21:40:08 +00:00
Lance Release
e9011b71b1 Bump version: 0.4.15 → 0.4.16 2024-04-04 21:39:58 +00:00
Will Jones
1b605ecc3b chore: upgrade to lance-0.10.9 (#1192) 2024-04-04 14:39:24 -07:00
QianZhu
bcc879b74a add a default value for search.limit to be consistent with python sdk (#1191)
Changed the default value for search.limit to be 10
2024-04-04 12:22:10 -07:00
Bert
fad0b76159 ensure table names are uri encoded for tables (#1189)
This prevents an issue where users can do something like:
```js
db.createTable('my-table#123123')
```
The server has logic to determine that '#' character is not allowed in
the table name, but currently this is being returned as 404 error
because it routes to `/v1/my-table#123123/create` and `#123123/create`
will not be parsed as part of path
2024-04-04 10:48:07 -07:00
Will Jones
8364d589ab feat: ship fp16kernels in Python wheels (#1148)
Same deal as https://github.com/lancedb/lance/pull/2098
2024-04-04 09:33:34 -07:00
Lei Xu
8687735bea chore: bump to 0.10.8 (#1187) 2024-04-03 16:52:32 -07:00
QianZhu
f0cd43da69 bug: fix the return value of countRows (#1186) 2024-04-03 16:31:49 -07:00
Lei Xu
7b954c7e3e chore: bump lance version (#1185)
Bump lance version to `0.10.7`
2024-04-03 14:46:05 -07:00
Bert
2579f29a92 fix error decoding in nodejs client (#1184)
fixes: #1183
2024-04-03 10:24:51 -04:00
QianZhu
7562b0fad1 remote count_rows need to return the number (#1181) 2024-04-02 13:12:22 -07:00
eduardjbotha
83b6b0d28a SQL Documentation includes DataFusion functions (#1179)
Show that it is possible to use the DataFusion functions in the `WHERE`
clause.

Co-authored-by: Eduard Botha <eduard.botha@inovex.de>
2024-04-02 07:49:48 -07:00
Lei Xu
46e95f2c4c chore: add social link footer (#1177) 2024-04-01 22:09:27 -07:00
Lei Xu
73810b4410 chore: pass str instead of String to build table names (#1178) 2024-04-01 21:31:07 -07:00
Lance Release
09280bc54a Updating package-lock.json 2024-04-02 03:03:07 +00:00
Lance Release
5603f1e57f Updating package-lock.json 2024-04-02 02:28:04 +00:00
QianZhu
1d67615cff feat: add filterable countRows to remote API (#1169) 2024-04-01 14:31:15 -07:00
Lance Release
05f484b716 [python] Bump version: 0.6.5 → 0.6.6 2024-04-01 19:09:01 +00:00
Lance Release
7e92aa657a Updating package-lock.json 2024-04-01 18:36:25 +00:00
Lance Release
e5f40a4b09 Bump version: 0.4.14 → 0.4.15 2024-04-01 18:36:13 +00:00
Weston Pace
6779c1c192 chore: bump lance version to 0.10.6 (#1175) 2024-04-01 11:35:47 -07:00
Bert
e0bf6d9bd0 Update LanceDB Logo in README (#1167)
<img width="1034" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/5b8aa53c-4d93-4c0e-bed4-80c238b319ba">
2024-03-29 10:10:43 -04:00
Weston Pace
67f041be91 docs: add a reference to @lancedb/lance in the docs (#1166)
We aren't yet ready to switch over the examples since almost all JS
examples rely on embeddings and we haven't yet ported those over.
However, this makes it possible for those that are interested to start
using `@lancedb/lancedb`
2024-03-29 04:55:03 -07:00
Will Jones
d388ef2f55 ci: fix name collision in npm artifacts for vectordb (#1164)
Fixes #1163
2024-03-28 14:07:27 -05:00
Weston Pace
e52dc877e3 chore: add nodejs to bumpversion (#1161)
The previous release failed to release nodejs because the nodejs version
wasn't bumped. This should fix that.
2024-03-28 08:54:32 -07:00
Weston Pace
ca4fdf5499 chore: fix clippy (#1162) 2024-03-28 08:54:17 -07:00
Bert
0e9ad764b0 added new logo to vercel example gif (#1158) 2024-03-26 16:25:36 -04:00
Bert
cae0348c51 New logo on docs site (#1157) 2024-03-26 20:50:13 +05:30
Ayush Chaurasia
e9e0a37ca8 docs: Add all available HF/sentence transformers embedding models list (#1134)
Solves -  https://github.com/lancedb/lancedb/issues/968
2024-03-26 19:04:09 +05:30
Weston Pace
c37a28abbd docs: add the async python API to the docs (#1156) 2024-03-26 07:54:16 -05:00
Lance Release
98c1e635b3 Updating package-lock.json 2024-03-25 20:38:37 +00:00
Lance Release
9992b927fd Updating package-lock.json 2024-03-25 15:43:00 +00:00
Lance Release
80d501011c Bump version: 0.4.13 → 0.4.14 2024-03-25 15:42:49 +00:00
Weston Pace
6e3a9d08e0 feat: add publish step for nodejs (#1155)
This will start publishing `@lancedb/lancedb` with the new nodejs
package on our releases.
2024-03-25 11:23:30 -04:00
Pranav Maddi
268d8e057b Adds a Ask LanceDB button to docs. (#1150)
This links out to the new [asklancedb.com](https://asklancedb.com) page.

Screenshots of the change:

![Quick start - LanceDB · 10 20am ·
03-22](https://github.com/lancedb/lancedb/assets/2371511/c45ba893-fc74-4957-bdd3-3712b351aff3)
![Quick start -
LanceDB](https://github.com/lancedb/lancedb/assets/2371511/d4762eb6-52af-4fd5-857e-3ed280716999)
2024-03-23 01:09:44 +05:30
Bert
dfc518b8fb Node SDK Client middleware for HTTP Requests (#1130)
Adds client-side middleware to LanceDB Node SDK to instrument HTTP
Requests

Example - adding `x-request-id` request header:
```js
class HttpMiddleware {
    constructor({ requestId }) {
        this.requestId = requestId
    }

    onRemoteRequest(req, next) {
        req.headers['x-request-id'] = this.requestId
        return next(req)
    }
}

const db = await lancedb.connect({
  uri: 'db://remote-123',
  apiKey: 'sk_...',
})

let tables = await db.withMiddleware(new HttpMiddleware({ requestId: '123' })).tableNames();

```

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-03-22 11:58:05 -04:00
QianZhu
98acf34ae8 remove warnings (#1147) 2024-03-21 14:49:01 -07:00
Lei Xu
25988d23cd chore: validate table name (#1146)
Closes #1129
2024-03-21 14:46:13 -07:00
116 changed files with 5660 additions and 1257 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.4.13 current_version = 0.4.16
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True
@@ -7,6 +7,16 @@ tag_name = v{new_version}
[bumpversion:file:node/package.json] [bumpversion:file:node/package.json]
[bumpversion:file:nodejs/package.json]
[bumpversion:file:nodejs/npm/darwin-x64/package.json]
[bumpversion:file:nodejs/npm/darwin-arm64/package.json]
[bumpversion:file:nodejs/npm/linux-x64-gnu/package.json]
[bumpversion:file:nodejs/npm/linux-arm64-gnu/package.json]
[bumpversion:file:rust/ffi/node/Cargo.toml] [bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/lancedb/Cargo.toml] [bumpversion:file:rust/lancedb/Cargo.toml]

View File

@@ -14,6 +14,10 @@ inputs:
# Note: this does *not* mean the host is arm64, since we might be cross-compiling. # Note: this does *not* mean the host is arm64, since we might be cross-compiling.
required: false required: false
default: "false" default: "false"
manylinux:
description: "The manylinux version to build for"
required: false
default: "2_17"
runs: runs:
using: "composite" using: "composite"
steps: steps:
@@ -28,7 +32,7 @@ runs:
command: build command: build
working-directory: python working-directory: python
target: x86_64-unknown-linux-gnu target: x86_64-unknown-linux-gnu
manylinux: "2_17" manylinux: ${{ inputs.manylinux }}
args: ${{ inputs.args }} args: ${{ inputs.args }}
before-script-linux: | before-script-linux: |
set -e set -e
@@ -43,7 +47,7 @@ runs:
command: build command: build
working-directory: python working-directory: python
target: aarch64-unknown-linux-gnu target: aarch64-unknown-linux-gnu
manylinux: "2_24" manylinux: ${{ inputs.manylinux }}
args: ${{ inputs.args }} args: ${{ inputs.args }}
before-script-linux: | before-script-linux: |
set -e set -e

View File

@@ -18,7 +18,7 @@ on:
env: env:
# Disable full debug symbol generation to speed up CI build and keep memory down # Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks. # "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma" RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:
@@ -28,6 +28,8 @@ jobs:
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Install dependecies needed for ubuntu - name: Install dependecies needed for ubuntu
run: | run: |
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
@@ -39,7 +41,7 @@ jobs:
cache: "pip" cache: "pip"
cache-dependency-path: "docs/test/requirements.txt" cache-dependency-path: "docs/test/requirements.txt"
- name: Rust cache - name: Rust cache
uses: swatinem/rust-cache@v2 uses: swatinem/rust-cache@v2
- name: Build Python - name: Build Python
working-directory: docs/test working-directory: docs/test
run: run:
@@ -64,6 +66,8 @@ jobs:
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Set up Node - name: Set up Node
uses: actions/setup-node@v4 uses: actions/setup-node@v4
with: with:

View File

@@ -20,7 +20,8 @@ env:
# "1" means line tables only, which is useful for panic tracebacks. # "1" means line tables only, which is useful for panic tracebacks.
# #
# Use native CPU to accelerate tests if possible, especially for f16 # Use native CPU to accelerate tests if possible, especially for f16
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma" # target-cpu=haswell fixes failing ci build
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:

View File

@@ -2,7 +2,7 @@ name: NPM Publish
on: on:
release: release:
types: [ published ] types: [published]
jobs: jobs:
node: node:
@@ -19,7 +19,7 @@ jobs:
- uses: actions/setup-node@v3 - uses: actions/setup-node@v3
with: with:
node-version: 20 node-version: 20
cache: 'npm' cache: "npm"
cache-dependency-path: node/package-lock.json cache-dependency-path: node/package-lock.json
- name: Install dependencies - name: Install dependencies
run: | run: |
@@ -31,7 +31,7 @@ jobs:
npm run tsc npm run tsc
npm pack npm pack
- name: Upload Linux Artifacts - name: Upload Linux Artifacts
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v4
with: with:
name: node-package name: node-package
path: | path: |
@@ -61,12 +61,41 @@ jobs:
- name: Build MacOS native node modules - name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }} run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts - name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v4
with: with:
name: native-darwin name: node-native-darwin-${{ matrix.config.arch }}
path: | path: |
node/dist/lancedb-vectordb-darwin*.tgz node/dist/lancedb-vectordb-darwin*.tgz
nodejs-macos:
strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-14
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build MacOS native nodejs modules
run: bash ci/build_macos_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-darwin-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
node-linux: node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
@@ -103,12 +132,63 @@ jobs:
run: | run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts - name: Upload Linux Artifacts
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v4
with: with:
name: native-linux name: node-native-linux-${{ matrix.config.arch }}
path: | path: |
node/dist/lancedb-vectordb-linux*.tgz node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux:
name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
# The generic files are the same in all distros so we just pick
# one to do the upload.
- name: Upload Generic Artifacts
if: ${{ matrix.config.arch == 'x86_64' }}
uses: actions/upload-artifact@v4
with:
name: nodejs-dist
path: |
nodejs/dist/*
!nodejs/dist/*.node
node-windows: node-windows:
runs-on: windows-2022 runs-on: windows-2022
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
@@ -136,25 +216,60 @@ jobs:
- name: Build Windows native node modules - name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }} run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts - name: Upload Windows Artifacts
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v4
with: with:
name: native-windows name: node-native-windows
path: | path: |
node/dist/lancedb-vectordb-win32*.tgz node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts_nodejs.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows
path: |
nodejs/dist/*.node
release: release:
needs: [node, node-macos, node-linux, node-windows] needs: [node, node-macos, node-linux, node-windows]
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
steps: steps:
- uses: actions/download-artifact@v3 - uses: actions/download-artifact@v4
with:
pattern: node-*
- name: Display structure of downloaded files - name: Display structure of downloaded files
run: ls -R run: ls -R
- uses: actions/setup-node@v3 - uses: actions/setup-node@v3
with: with:
node-version: 20 node-version: 20
registry-url: 'https://registry.npmjs.org' registry-url: "https://registry.npmjs.org"
- name: Publish to NPM - name: Publish to NPM
env: env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }} NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
@@ -164,6 +279,45 @@ jobs:
npm publish $filename npm publish $filename
done done
release-nodejs:
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- name: Checkout
uses: actions/checkout@v4
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
- uses: actions/download-artifact@v4
name: Download arch-specific binaries
with:
pattern: nodejs-*
path: nodejs/nodejs-artifacts
merge-multiple: true
- name: Display structure of downloaded files
run: find .
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: "https://registry.npmjs.org"
- name: Install napi-rs
run: npm install -g @napi-rs/cli
- name: Prepare artifacts
run: npx napi artifacts -d nodejs-artifacts
- name: Display structure of staged files
run: find npm
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: npm publish --access public
update-package-lock: update-package-lock:
needs: [release] needs: [release]
runs-on: ubuntu-latest runs-on: ubuntu-latest
@@ -178,3 +332,18 @@ jobs:
- uses: ./.github/workflows/update_package_lock - uses: ./.github/workflows/update_package_lock
with: with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
update-package-lock-nodejs:
needs: [release-nodejs]
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -6,13 +6,23 @@ on:
jobs: jobs:
linux: linux:
name: Python ${{ matrix.config.platform }} manylinux${{ matrix.config.manylinux }}
timeout-minutes: 60 timeout-minutes: 60
strategy: strategy:
matrix: matrix:
python-minor-version: ["8"] python-minor-version: ["8"]
platform: config:
- x86_64 - platform: x86_64
- aarch64 manylinux: "2_17"
extra_args: ""
- platform: x86_64
manylinux: "2_28"
extra_args: "--features fp16kernels"
- platform: aarch64
manylinux: "2_24"
extra_args: ""
# We don't build fp16 kernels for aarch64, because it uses
# cross compilation image, which doesn't have a new enough compiler.
runs-on: "ubuntu-22.04" runs-on: "ubuntu-22.04"
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
@@ -26,8 +36,9 @@ jobs:
- uses: ./.github/workflows/build_linux_wheel - uses: ./.github/workflows/build_linux_wheel
with: with:
python-minor-version: ${{ matrix.python-minor-version }} python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip" args: "--release --strip ${{ matrix.config.extra_args }}"
arm-build: ${{ matrix.platform == 'aarch64' }} arm-build: ${{ matrix.config.platform == 'aarch64' }}
manylinux: ${{ matrix.config.manylinux }}
- uses: ./.github/workflows/upload_wheel - uses: ./.github/workflows/upload_wheel
with: with:
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }} token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
@@ -58,7 +69,7 @@ jobs:
- uses: ./.github/workflows/build_mac_wheel - uses: ./.github/workflows/build_mac_wheel
with: with:
python-minor-version: ${{ matrix.python-minor-version }} python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip --target ${{ matrix.config.target }}" args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels"
- uses: ./.github/workflows/upload_wheel - uses: ./.github/workflows/upload_wheel
with: with:
python-minor-version: ${{ matrix.python-minor-version }} python-minor-version: ${{ matrix.python-minor-version }}

View File

@@ -31,6 +31,10 @@ jobs:
run: run:
shell: bash shell: bash
working-directory: rust working-directory: rust
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
@@ -54,6 +58,10 @@ jobs:
run: run:
shell: bash shell: bash
working-directory: rust working-directory: rust
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:

View File

@@ -0,0 +1,33 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -0,0 +1,19 @@
name: Update NodeJs package-lock.json
on:
workflow_dispatch:
jobs:
publish:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

1
.gitignore vendored
View File

@@ -34,6 +34,7 @@ python/dist
node/dist node/dist
node/examples/**/package-lock.json node/examples/**/package-lock.json
node/examples/**/dist node/examples/**/dist
nodejs/lancedb/native*
dist dist
## Rust ## Rust

View File

@@ -14,10 +14,10 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"] categories = ["database-implementations"]
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.10.5", "features" = ["dynamodb"] } lance = { "version" = "=0.10.9", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.10.5" } lance-index = { "version" = "=0.10.9" }
lance-linalg = { "version" = "=0.10.5" } lance-linalg = { "version" = "=0.10.9" }
lance-testing = { "version" = "=0.10.5" } lance-testing = { "version" = "=0.10.9" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "50.0", optional = false } arrow = { version = "50.0", optional = false }
arrow-array = "50.0" arrow-array = "50.0"
@@ -39,3 +39,5 @@ pin-project = "1.0.7"
snafu = "0.7.4" snafu = "0.7.4"
url = "2" url = "2"
num-traits = "0.2" num-traits = "0.2"
regex = "1.10"
lazy_static = "1"

View File

@@ -1,13 +1,13 @@
<div align="center"> <div align="center">
<p align="center"> <p align="center">
<img width="275" alt="LanceDB Logo" src="https://user-images.githubusercontent.com/917119/226205734-6063d87a-1ecc-45fe-85be-1dea6383a3d8.png"> <img width="275" alt="LanceDB Logo" src="https://github.com/lancedb/lancedb/assets/5846846/37d7c7ad-c2fd-4f56-9f16-fffb0d17c73a">
**Developer-friendly, serverless vector database for AI applications** **Developer-friendly, database for multimodal AI**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a> <a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a> <a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/) [![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd) [![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb) [![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)

View File

@@ -0,0 +1,21 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_nodejs
docker build \
-t lancedb-nodejs-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-nodejs-manylinux \
bash ci/manylinux_nodejs/build.sh $ARCH

View File

@@ -0,0 +1,34 @@
# Builds the macOS artifacts (nodejs binaries).
# Usage: ./ci/build_macos_artifacts_nodejs.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/lancedb
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd nodejs
echo "Building nodejs library for $1"
export RUST_TARGET=$1
npm run build-release
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -0,0 +1,41 @@
# Builds the Windows artifacts (nodejs binaries).
# Usage: .\ci\build_windows_artifacts_nodejs.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/lancedb"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "nodejs"
Write-Host "Building nodejs library for $target"
$env:RUST_TARGET=$target
npm run build-release
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -0,0 +1,31 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

18
ci/manylinux_nodejs/build.sh Executable file
View File

@@ -0,0 +1,18 @@
#!/bin/bash
# Builds the nodejs module for manylinux. Invoked by ci/build_linux_artifacts_nodejs.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd nodejs
npm ci
npm run build-release

View File

@@ -0,0 +1,26 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -0,0 +1,15 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -0,0 +1,21 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -38,178 +38,182 @@ theme:
custom_dir: overrides custom_dir: overrides
plugins: plugins:
- search - search
- autorefs - autorefs
- mkdocstrings: - mkdocstrings:
handlers: handlers:
python: python:
paths: [../python] paths: [../python]
options: options:
docstring_style: numpy docstring_style: numpy
heading_level: 4 heading_level: 3
show_source: true show_source: true
show_symbol_type_in_heading: true show_symbol_type_in_heading: true
show_signature_annotations: true show_signature_annotations: true
members_order: source show_root_heading: true
import: members_order: source
# for cross references import:
- https://arrow.apache.org/docs/objects.inv # for cross references
- https://pandas.pydata.org/docs/objects.inv - https://arrow.apache.org/docs/objects.inv
- mkdocs-jupyter - https://pandas.pydata.org/docs/objects.inv
- ultralytics: - mkdocs-jupyter
verbose: True - ultralytics:
enabled: True verbose: True
default_image: "assets/lancedb_and_lance.png" # Default image for all pages enabled: True
add_image: True # Automatically add meta image default_image: "assets/lancedb_and_lance.png" # Default image for all pages
add_keywords: True # Add page keywords in the header tag add_image: True # Automatically add meta image
add_share_buttons: True # Add social share buttons add_keywords: True # Add page keywords in the header tag
add_authors: False # Display page authors add_share_buttons: True # Add social share buttons
add_desc: False add_authors: False # Display page authors
add_dates: False add_desc: False
add_dates: False
markdown_extensions: markdown_extensions:
- admonition - admonition
- footnotes - footnotes
- pymdownx.details - pymdownx.details
- pymdownx.highlight: - pymdownx.highlight:
anchor_linenums: true anchor_linenums: true
line_spans: __span line_spans: __span
pygments_lang_class: true pygments_lang_class: true
- pymdownx.inlinehilite - pymdownx.inlinehilite
- pymdownx.snippets: - pymdownx.snippets:
base_path: .. base_path: ..
dedent_subsections: true dedent_subsections: true
- pymdownx.superfences - pymdownx.superfences
- pymdownx.tabbed: - pymdownx.tabbed:
alternate_style: true alternate_style: true
- md_in_html - md_in_html
- attr_list - attr_list
nav: nav:
- Home: - Home:
- LanceDB: index.md - LanceDB: index.md
- 🏃🏼‍♂️ Quick start: basic.md - 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts: - 📚 Concepts:
- Vector search: concepts/vector_search.md - Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md - Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md - Storage: concepts/storage.md
- Data management: concepts/data_management.md - Data management: concepts/data_management.md
- 🔨 Guides: - 🔨 Guides:
- Working with tables: guides/tables.md - Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md - Building an ANN index: ann_indexes.md
- Vector Search: search.md - Vector Search: search.md
- Full-text search: fts.md - Full-text search: fts.md
- Hybrid search: - Hybrid search:
- Overview: hybrid_search/hybrid_search.md - Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md - Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb - Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- 🧬 Managing embeddings: - Sync -> Async Migration Guide: migration.md
- Overview: embeddings/index.md - 🧬 Managing embeddings:
- Embedding functions: embeddings/embedding_functions.md - Overview: embeddings/index.md
- Available models: embeddings/default_embedding_functions.md - Embedding functions: embeddings/embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md - Available models: embeddings/default_embedding_functions.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb - User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- 🔌 Integrations: - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Tools and data formats: integrations/index.md - 🔌 Integrations:
- Pandas and PyArrow: python/pandas_and_pyarrow.md - Tools and data formats: integrations/index.md
- Polars: python/polars_arrow.md - Pandas and PyArrow: python/pandas_and_pyarrow.md
- DuckDB: python/duckdb.md - Polars: python/polars_arrow.md
- LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html - DuckDB: python/duckdb.md
- LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb - LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html - LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- Pydantic: python/pydantic.md - LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Voxel51: integrations/voxel51.md - Pydantic: python/pydantic.md
- PromptTools: integrations/prompttools.md - Voxel51: integrations/voxel51.md
- 🎯 Examples: - PromptTools: integrations/prompttools.md
- Overview: examples/index.md - 🎯 Examples:
- 🐍 Python: - Overview: examples/index.md
- Overview: examples/examples_python.md - 🐍 Python:
- Overview: examples/examples_python.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- 🔧 CLI & Config: cli_config.md
- 💭 FAQs: faq.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): javascript/modules.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md
- Managing Embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:
- Overview: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗↗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- Examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb - YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb - Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb - Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md - Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript: - YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md
- Overview: examples/examples_js.md - Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust: - API reference:
- Overview: examples/examples_rust.md - Overview: api_reference.md
- 🔧 CLI & Config: cli_config.md - Python: python/python.md
- 💭 FAQs: faq.md - Javascript (vectordb): javascript/modules.md
- ⚙️ API reference: - Javascript (lancedb): js/modules.md
- 🐍 Python: python/python.md - Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- 👾 JavaScript: javascript/modules.md - LanceDB Cloud:
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/ - Overview: cloud/index.md
- ☁️ LanceDB Cloud: - API reference:
- Overview: cloud/index.md - 🐍 Python: python/saas-python.md
- API reference: - 👾 JavaScript: javascript/saas-modules.md
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Managing Embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:
- Overview: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB : python/duckdb.md
- LangChain 🦜️🔗↗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- Examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API reference:
- Overview: api_reference.md
- Python: python/python.md
- Javascript: javascript/modules.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
extra_css: extra_css:
- styles/global.css - styles/global.css
@@ -222,3 +226,10 @@ extra:
analytics: analytics:
provider: google provider: google
property: G-B7NFM40W74 property: G-B7NFM40W74
social:
- icon: fontawesome/brands/github
link: https://github.com/lancedb/lancedb
- icon: fontawesome/brands/x-twitter
link: https://twitter.com/lancedb
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/company/lancedb

View File

@@ -3,5 +3,6 @@
The API reference for the LanceDB client SDKs are available at the following locations: The API reference for the LanceDB client SDKs are available at the following locations:
- [Python](python/python.md) - [Python](python/python.md)
- [JavaScript](javascript/modules.md) - [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/modules.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html) - [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 104 KiB

After

Width:  |  Height:  |  Size: 147 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 83 KiB

After

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 131 KiB

After

Width:  |  Height:  |  Size: 204 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 82 KiB

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 113 KiB

After

Width:  |  Height:  |  Size: 217 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 97 KiB

After

Width:  |  Height:  |  Size: 256 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.7 KiB

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 205 KiB

After

Width:  |  Height:  |  Size: 54 KiB

View File

@@ -48,11 +48,20 @@
=== "Python" === "Python"
```python ```python
import lancedb --8<-- "python/python/tests/docs/test_basic.py:imports"
uri = "data/sample-lancedb" --8<-- "python/python/tests/docs/test_basic.py:connect"
db = lancedb.connect(uri)
``` --8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
!!! note "Asynchronous Python API"
The asynchronous Python API is new and has some slight differences compared
to the synchronous API. Feel free to start using the asynchronous version.
Once all features have migrated we will start to move the synchronous API to
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
=== "Typescript" === "Typescript"
@@ -62,6 +71,16 @@
--8<-- "docs/src/basic_legacy.ts:open_db" --8<-- "docs/src/basic_legacy.ts:open_db"
``` ```
!!! note "`@lancedb/lancedb` vs. `vectordb`"
The Javascript SDK was originally released as `vectordb`. In an effort to
reduce maintenance we are aligning our SDKs. The new, aligned, Javascript
API is being released as `lancedb`. If you are starting new work we encourage
you to try out `lancedb`. Once the new API is feature complete we will begin
slowly deprecating `vectordb` in favor of `lancedb`. There is a
[migration guide](migration.md) detailing the differences which will assist
you in this process.
=== "Rust" === "Rust"
```rust ```rust
@@ -82,15 +101,14 @@ If you need a reminder of the uri, you can call `db.uri()`.
### Create a table from initial data ### Create a table from initial data
If you have data to insert into the table at creation time, you can simultaneously create a If you have data to insert into the table at creation time, you can simultaneously create a
table and insert the data into it. The schema of the data will be used as the schema of the table and insert the data into it. The schema of the data will be used as the schema of the
table. table.
=== "Python" === "Python"
```python ```python
tbl = db.create_table("my_table", --8<-- "python/python/tests/docs/test_basic.py:create_table"
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, --8<-- "python/python/tests/docs/test_basic.py:create_table_async"
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
``` ```
If the table already exists, LanceDB will raise an error by default. If the table already exists, LanceDB will raise an error by default.
@@ -100,10 +118,8 @@ table.
You can also pass in a pandas DataFrame directly: You can also pass in a pandas DataFrame directly:
```python ```python
import pandas as pd --8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, --8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
``` ```
=== "Typescript" === "Typescript"
@@ -138,15 +154,14 @@ table.
Sometimes you may not have the data to insert into the table at creation time. Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema, so that you can add In this case, you can create an empty table and specify the schema, so that you can add
data to the table at a later time (as long as it conforms to the schema). This is data to the table at a later time (as long as it conforms to the schema). This is
similar to a `CREATE TABLE` statement in SQL. similar to a `CREATE TABLE` statement in SQL.
=== "Python" === "Python"
```python ```python
import pyarrow as pa --8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))]) --8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
tbl = db.create_table("empty_table", schema=schema)
``` ```
=== "Typescript" === "Typescript"
@@ -168,7 +183,8 @@ Once created, you can open a table as follows:
=== "Python" === "Python"
```python ```python
tbl = db.open_table("my_table") --8<-- "python/python/tests/docs/test_basic.py:open_table"
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
``` ```
=== "Typescript" === "Typescript"
@@ -188,7 +204,8 @@ If you forget the name of your table, you can always get a listing of all table
=== "Python" === "Python"
```python ```python
print(db.table_names()) --8<-- "python/python/tests/docs/test_basic.py:table_names"
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
``` ```
=== "Javascript" === "Javascript"
@@ -210,15 +227,8 @@ After a table has been created, you can always add more data to it as follows:
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:add_data"
# Option 1: Add a list of dicts to a table --8<-- "python/python/tests/docs/test_basic.py:add_data_async"
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
``` ```
=== "Typescript" === "Typescript"
@@ -240,7 +250,8 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
=== "Python" === "Python"
```python ```python
tbl.search([100, 100]).limit(2).to_pandas() --8<-- "python/python/tests/docs/test_basic.py:vector_search"
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
``` ```
This returns a pandas DataFrame with the results. This returns a pandas DataFrame with the results.
@@ -274,7 +285,8 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "Python" === "Python"
```py ```py
tbl.create_index() --8<-- "python/python/tests/docs/test_basic.py:create_index"
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
``` ```
=== "Typescript" === "Typescript"
@@ -286,15 +298,15 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:create_index" --8<-- "rust/lancedb/examples/simple.rs:create_index"
``` ```
!!! note "Why do I need to create an index manually?" !!! note "Why do I need to create an index manually?"
LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized
for really fast retrievals via a disk-based index, and the second is that data and query workloads can for really fast retrievals via a disk-based index, and the second is that data and query workloads can
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
to fine-tune index size, query latency and accuracy. See the section on to fine-tune index size, query latency and accuracy. See the section on
[ANN indexes](ann_indexes.md) for more details. [ANN indexes](ann_indexes.md) for more details.
## Delete rows from a table ## Delete rows from a table
@@ -305,7 +317,8 @@ This can delete any number of rows that match the filter.
=== "Python" === "Python"
```python ```python
tbl.delete('item = "fizz"') --8<-- "python/python/tests/docs/test_basic.py:delete_rows"
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
``` ```
=== "Typescript" === "Typescript"
@@ -322,7 +335,7 @@ This can delete any number of rows that match the filter.
The deletion predicate is a SQL expression that supports the same expressions The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause (`only_if()` in Rust) on a search. They can be as as the `where()` clause (`only_if()` in Rust) on a search. They can be as
simple or complex as needed. To see what expressions are supported, see the simple or complex as needed. To see what expressions are supported, see the
[SQL filters](sql.md) section. [SQL filters](sql.md) section.
=== "Python" === "Python"
@@ -344,7 +357,8 @@ Use the `drop_table()` method on the database to remove a table.
=== "Python" === "Python"
```python ```python
db.drop_table("my_table") --8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
``` ```
This permanently removes the table and is not recoverable, unlike deleting rows. This permanently removes the table and is not recoverable, unlike deleting rows.

View File

@@ -19,27 +19,163 @@ Allows you to set parameters when registering a `sentence-transformers` object.
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model | | `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
```python ??? "Check out available sentence-transformer models here!"
db = lancedb.connect("/tmp/db") ```markdown
registry = EmbeddingFunctionRegistry.get_instance() - sentence-transformers/all-MiniLM-L12-v2
func = registry.get("sentence-transformers").create(device="cpu") - sentence-transformers/paraphrase-mpnet-base-v2
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
class Words(LanceModel): !!! info
text: str = func.SourceField() You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
vector: Vector(func.ndims()) = func.VectorField() See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
table = db.create_table("words", schema=Words) !!! note "BAAI Embeddings example"
table.add( Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
[ ```python
{"text": "hello world"} db = lancedb.connect("/tmp/db")
{"text": "goodbye world"} registry = EmbeddingFunctionRegistry.get_instance()
] model = registry.get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
)
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### OpenAI embeddings ### OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances: LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:

View File

@@ -1,11 +1,79 @@
document.addEventListener("DOMContentLoaded", function () { // Creates an SVG robot icon (from Lucide)
var script = document.createElement("script"); function robotSVG() {
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js"; var svg = document.createElementNS("http://www.w3.org/2000/svg", "svg");
script.setAttribute("data-website-id", "c5881fae-cec0-490b-b45e-d83d131d4f25"); svg.setAttribute("width", "24");
script.setAttribute("data-project-name", "LanceDB"); svg.setAttribute("height", "24");
script.setAttribute("data-project-color", "#000000"); svg.setAttribute("viewBox", "0 0 24 24");
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/108903835?s=200&v=4"); svg.setAttribute("fill", "none");
script.setAttribute("data-modal-example-questions","Help me create an IVF_PQ index,How do I do an exhaustive search?,How do I create a LanceDB table?,Can I use my own embedding function?"); svg.setAttribute("stroke", "currentColor");
script.async = true; svg.setAttribute("stroke-width", "2");
document.head.appendChild(script); svg.setAttribute("stroke-linecap", "round");
}); svg.setAttribute("stroke-linejoin", "round");
svg.setAttribute("class", "lucide lucide-bot-message-square");
var path1 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path1.setAttribute("d", "M12 6V2H8");
svg.appendChild(path1);
var path2 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path2.setAttribute("d", "m8 18-4 4V8a2 2 0 0 1 2-2h12a2 2 0 0 1 2 2v8a2 2 0 0 1-2 2Z");
svg.appendChild(path2);
var path3 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path3.setAttribute("d", "M2 12h2");
svg.appendChild(path3);
var path4 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path4.setAttribute("d", "M9 11v2");
svg.appendChild(path4);
var path5 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path5.setAttribute("d", "M15 11v2");
svg.appendChild(path5);
var path6 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path6.setAttribute("d", "M20 12h2");
svg.appendChild(path6);
return svg
}
// Creates the Fluidic Chatbot buttom
function fluidicButton() {
var btn = document.createElement("a");
btn.href = "https://asklancedb.com";
btn.target = "_blank";
btn.style.position = "fixed";
btn.style.fontWeight = "bold";
btn.style.fontSize = ".8rem";
btn.style.right = "10px";
btn.style.bottom = "10px";
btn.style.width = "80px";
btn.style.height = "80px";
btn.style.background = "linear-gradient(135deg, #7C5EFF 0%, #625eff 100%)";
btn.style.color = "white";
btn.style.borderRadius = "5px";
btn.style.display = "flex";
btn.style.flexDirection = "column";
btn.style.justifyContent = "center";
btn.style.alignItems = "center";
btn.style.zIndex = "1000";
btn.style.opacity = "0";
btn.style.boxShadow = "0 0 0 rgba(0, 0, 0, 0)";
btn.style.transition = "opacity 0.2s ease-in, box-shadow 0.2s ease-in";
setTimeout(function() {
btn.style.opacity = "1";
btn.style.boxShadow = "0 0 .2rem #0000001a,0 .2rem .4rem #0003"
}, 0);
return btn
}
document.addEventListener("DOMContentLoaded", function() {
var btn = fluidicButton()
btn.appendChild(robotSVG());
var text = document.createTextNode("Ask AI");
btn.appendChild(text);
document.body.appendChild(btn);
});

1
docs/src/js/.nojekyll Normal file
View File

@@ -0,0 +1 @@
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.

83
docs/src/js/README.md Normal file
View File

@@ -0,0 +1,83 @@
@lancedb/lancedb / [Exports](modules.md)
# LanceDB JavaScript SDK
A JavaScript library for [LanceDB](https://github.com/lancedb/lancedb).
## Installation
```bash
npm install @lancedb/lancedb
```
This will download the appropriate native library for your platform. We currently
support:
- Linux (x86_64 and aarch64)
- MacOS (Intel and ARM/M1/M2)
- Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage
### Basic Example
```javascript
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("my_table", [
{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 },
]);
const results = await table.vectorSearch([0.1, 0.3]).limit(20).toArray();
console.log(results);
```
The [quickstart](../basic.md) contains a more complete example.
## Development
```sh
npm run build
npm run test
```
### Running lint / format
LanceDb uses eslint for linting. VSCode does not need any plugins to use eslint. However, it
may need some additional configuration. Make sure that eslint.experimental.useFlatConfig is
set to true. Also, if your vscode root folder is the repo root then you will need to set
the eslint.workingDirectories to ["nodejs"]. To manually lint your code you can run:
```sh
npm run lint
```
LanceDb uses prettier for formatting. If you are using VSCode you will need to install the
"Prettier - Code formatter" extension. You should then configure it to be the default formatter
for typescript and you should enable format on save. To manually check your code's format you
can run:
```sh
npm run chkformat
```
If you need to manually format your code you can run:
```sh
npx prettier --write .
```
### Generating docs
```sh
npm run docs
cd ../docs
# Asssume the virtual environment was created
# python3 -m venv venv
# pip install -r requirements.txt
. ./venv/bin/activate
mkdocs build
```

View File

@@ -0,0 +1,239 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Connection
# Class: Connection
A LanceDB Connection that allows you to open tables and create new ones.
Connection could be local against filesystem or remote against a server.
A Connection is intended to be a long lived object and may hold open
resources such as HTTP connection pools. This is generally fine and
a single connection should be shared if it is going to be used many
times. However, if you are finished with a connection, you may call
close to eagerly free these resources. Any call to a Connection
method after it has been closed will result in an error.
Closing a connection is optional. Connections will automatically
be closed when they are garbage collected.
Any created tables are independent and will continue to work even if
the underlying connection has been closed.
## Table of contents
### Constructors
- [constructor](Connection.md#constructor)
### Properties
- [inner](Connection.md#inner)
### Methods
- [close](Connection.md#close)
- [createEmptyTable](Connection.md#createemptytable)
- [createTable](Connection.md#createtable)
- [display](Connection.md#display)
- [dropTable](Connection.md#droptable)
- [isOpen](Connection.md#isopen)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Constructors
### constructor
**new Connection**(`inner`): [`Connection`](Connection.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Connection` |
#### Returns
[`Connection`](Connection.md)
#### Defined in
[connection.ts:72](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L72)
## Properties
### inner
`Readonly` **inner**: `Connection`
#### Defined in
[connection.ts:70](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L70)
## Methods
### close
**close**(): `void`
Close the connection, releasing any underlying resources.
It is safe to call this method multiple times.
Any attempt to use the connection after it is closed will result in an error.
#### Returns
`void`
#### Defined in
[connection.ts:88](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L88)
___
### createEmptyTable
**createEmptyTable**(`name`, `schema`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new empty Table
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `schema` | `Schema`\<`any`\> | The schema of the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
#### Returns
`Promise`\<[`Table`](Table.md)\>
#### Defined in
[connection.ts:151](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L151)
___
### createTable
**createTable**(`name`, `data`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
#### Returns
`Promise`\<[`Table`](Table.md)\>
#### Defined in
[connection.ts:123](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L123)
___
### display
**display**(): `string`
Return a brief description of the connection
#### Returns
`string`
#### Defined in
[connection.ts:93](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L93)
___
### dropTable
**dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table to drop. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[connection.ts:173](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L173)
___
### isOpen
**isOpen**(): `boolean`
Return true if the connection has not been closed
#### Returns
`boolean`
#### Defined in
[connection.ts:77](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L77)
___
### openTable
**openTable**(`name`): `Promise`\<[`Table`](Table.md)\>
Open a table in the database.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table |
#### Returns
`Promise`\<[`Table`](Table.md)\>
#### Defined in
[connection.ts:112](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L112)
___
### tableNames
**tableNames**(`options?`): `Promise`\<`string`[]\>
List all the table names in this database.
Tables will be returned in lexicographical order.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `options?` | `Partial`\<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)\> | options to control the paging / start point |
#### Returns
`Promise`\<`string`[]\>
#### Defined in
[connection.ts:104](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L104)

View File

@@ -0,0 +1,121 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Index
# Class: Index
## Table of contents
### Constructors
- [constructor](Index.md#constructor)
### Properties
- [inner](Index.md#inner)
### Methods
- [btree](Index.md#btree)
- [ivfPq](Index.md#ivfpq)
## Constructors
### constructor
**new Index**(`inner`): [`Index`](Index.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Index` |
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:118](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L118)
## Properties
### inner
`Private` `Readonly` **inner**: `Index`
#### Defined in
[indices.ts:117](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L117)
## Methods
### btree
**btree**(): [`Index`](Index.md)
Create a btree index
A btree index is an index on a scalar columns. The index stores a copy of the column
in sorted order. A header entry is created for each block of rows (currently the
block size is fixed at 4096). These header entries are stored in a separate
cacheable structure (a btree). To search for data the header is used to determine
which blocks need to be read from disk.
For example, a btree index in a table with 1Bi rows requires sizeof(Scalar) * 256Ki
bytes of memory and will generally need to read sizeof(Scalar) * 4096 bytes to find
the correct row ids.
This index is good for scalar columns with mostly distinct values and does best when
the query is highly selective.
The btree index does not currently have any parameters though parameters such as the
block size may be added in the future.
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:175](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L175)
___
### ivfPq
**ivfPq**(`options?`): [`Index`](Index.md)
Create an IvfPq index
This index stores a compressed (quantized) copy of every vector. These vectors
are grouped into partitions of similar vectors. Each partition keeps track of
a centroid which is the average value of all vectors in the group.
During a query the centroids are compared with the query vector to find the closest
partitions. The compressed vectors in these partitions are then searched to find
the closest vectors.
The compression scheme is called product quantization. Each vector is divided into
subvectors and then each subvector is quantized into a small number of bits. the
parameters `num_bits` and `num_subvectors` control this process, providing a tradeoff
between index size (and thus search speed) and index accuracy.
The partitioning process is called IVF and the `num_partitions` parameter controls how
many groups to create.
Note that training an IVF PQ index on a large dataset is a slow operation and
currently is also a memory intensive operation.
#### Parameters
| Name | Type |
| :------ | :------ |
| `options?` | `Partial`\<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)\> |
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:144](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L144)

View File

@@ -0,0 +1,75 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions
# Class: MakeArrowTableOptions
Options to control the makeArrowTable call.
## Table of contents
### Constructors
- [constructor](MakeArrowTableOptions.md#constructor)
### Properties
- [dictionaryEncodeStrings](MakeArrowTableOptions.md#dictionaryencodestrings)
- [schema](MakeArrowTableOptions.md#schema)
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
## Constructors
### constructor
**new MakeArrowTableOptions**(`values?`): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
#### Returns
[`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Defined in
[arrow.ts:100](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L100)
## Properties
### dictionaryEncodeStrings
**dictionaryEncodeStrings**: `boolean` = `false`
If true then string columns will be encoded with dictionary encoding
Set this to true if your string columns tend to repeat the same values
often. For more precise control use the `schema` property to specify the
data type for individual columns.
If `schema` is provided then this property is ignored.
#### Defined in
[arrow.ts:98](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L98)
___
### schema
`Optional` **schema**: `Schema`\<`any`\>
#### Defined in
[arrow.ts:67](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L67)
___
### vectorColumns
**vectorColumns**: `Record`\<`string`, [`VectorColumnOptions`](VectorColumnOptions.md)\>
#### Defined in
[arrow.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L85)

View File

@@ -0,0 +1,368 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Query
# Class: Query
A builder for LanceDB queries.
## Hierarchy
- [`QueryBase`](QueryBase.md)\<`NativeQuery`, [`Query`](Query.md)\>
**`Query`**
## Table of contents
### Constructors
- [constructor](Query.md#constructor)
### Properties
- [inner](Query.md#inner)
### Methods
- [[asyncIterator]](Query.md#[asynciterator])
- [execute](Query.md#execute)
- [limit](Query.md#limit)
- [nativeExecute](Query.md#nativeexecute)
- [nearestTo](Query.md#nearestto)
- [select](Query.md#select)
- [toArray](Query.md#toarray)
- [toArrow](Query.md#toarrow)
- [where](Query.md#where)
## Constructors
### constructor
**new Query**(`tbl`): [`Query`](Query.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `Table` |
#### Returns
[`Query`](Query.md)
#### Overrides
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
#### Defined in
[query.ts:329](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L329)
## Properties
### inner
`Protected` **inner**: `Query`
#### Inherited from
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### [asyncIterator]
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Inherited from
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
#### Defined in
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
___
### execute
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
**`See`**
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Inherited from
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
#### Defined in
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
___
### limit
**limit**(`limit`): [`Query`](Query.md)
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
[`Query`](Query.md)
#### Inherited from
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
#### Defined in
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
___
### nativeExecute
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`\<`RecordBatchIterator`\>
#### Inherited from
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
#### Defined in
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
___
### nearestTo
**nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
Find the nearest vectors to the given query vector.
This converts the query from a plain query to a vector query.
This method will attempt to convert the input to the query vector
expected by the embedding model. If the input cannot be converted
then an error will be thrown.
By default, there is no embedding model, and the input should be
an array-like object of numbers (something that can be used as input
to Float32Array.from)
If there is only one vector column (a column whose data type is a
fixed size list of floats) then the column does not need to be specified.
If there is more than one vector column you must use
#### Parameters
| Name | Type |
| :------ | :------ |
| `vector` | `unknown` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
- [VectorQuery#column](VectorQuery.md#column) to specify which column you would like
to compare with.
If no index has been created on the vector column then a vector query
will perform a distance comparison between the query vector and every
vector in the database and then sort the results. This is sometimes
called a "flat search"
For small databases, with a few hundred thousand vectors or less, this can
be reasonably fast. In larger databases you should create a vector index
on the column. If there is a vector index then an "approximate" nearest
neighbor search (frequently called an ANN search) will be performed. This
search is much faster, but the results will be approximate.
The query can be further parameterized using the returned builder. There
are various ANN search parameters that will let you fine tune your recall
accuracy vs search latency.
Vector searches always have a `limit`. If `limit` has not been called then
a default `limit` of 10 will be used.
- [Query#limit](Query.md#limit)
#### Defined in
[query.ts:370](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L370)
___
### select
**select**(`columns`): [`Query`](Query.md)
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
[`Query`](Query.md)
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Inherited from
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
#### Defined in
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Returns
`Promise`\<`unknown`[]\>
#### Inherited from
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
#### Defined in
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Returns
`Promise`\<`Table`\<`any`\>\>
**`See`**
ArrowTable.
#### Inherited from
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
#### Defined in
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
___
### where
**where**(`predicate`): [`Query`](Query.md)
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
[`Query`](Query.md)
**`Example`**
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Inherited from
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -0,0 +1,291 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / QueryBase
# Class: QueryBase\<NativeQueryType, QueryType\>
Common methods supported by all query types
## Type parameters
| Name | Type |
| :------ | :------ |
| `NativeQueryType` | extends `NativeQuery` \| `NativeVectorQuery` |
| `QueryType` | `QueryType` |
## Hierarchy
- **`QueryBase`**
↳ [`Query`](Query.md)
↳ [`VectorQuery`](VectorQuery.md)
## Implements
- `AsyncIterable`\<`RecordBatch`\>
## Table of contents
### Constructors
- [constructor](QueryBase.md#constructor)
### Properties
- [inner](QueryBase.md#inner)
### Methods
- [[asyncIterator]](QueryBase.md#[asynciterator])
- [execute](QueryBase.md#execute)
- [limit](QueryBase.md#limit)
- [nativeExecute](QueryBase.md#nativeexecute)
- [select](QueryBase.md#select)
- [toArray](QueryBase.md#toarray)
- [toArrow](QueryBase.md#toarrow)
- [where](QueryBase.md#where)
## Constructors
### constructor
**new QueryBase**\<`NativeQueryType`, `QueryType`\>(`inner`): [`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
#### Type parameters
| Name | Type |
| :------ | :------ |
| `NativeQueryType` | extends `Query` \| `VectorQuery` |
| `QueryType` | `QueryType` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `NativeQueryType` |
#### Returns
[`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Properties
### inner
`Protected` **inner**: `NativeQueryType`
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### [asyncIterator]
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Implementation of
AsyncIterable.[asyncIterator]
#### Defined in
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
___
### execute
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
**`See`**
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Defined in
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
___
### limit
**limit**(`limit`): `QueryType`
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
`QueryType`
#### Defined in
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
___
### nativeExecute
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`\<`RecordBatchIterator`\>
#### Defined in
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
___
### select
**select**(`columns`): `QueryType`
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
`QueryType`
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Defined in
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Returns
`Promise`\<`unknown`[]\>
#### Defined in
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Returns
`Promise`\<`Table`\<`any`\>\>
**`See`**
ArrowTable.
#### Defined in
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
___
### where
**where**(`predicate`): `QueryType`
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
`QueryType`
**`Example`**
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -0,0 +1,80 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / RecordBatchIterator
# Class: RecordBatchIterator
## Implements
- `AsyncIterator`\<`RecordBatch`\>
## Table of contents
### Constructors
- [constructor](RecordBatchIterator.md#constructor)
### Properties
- [inner](RecordBatchIterator.md#inner)
- [promisedInner](RecordBatchIterator.md#promisedinner)
### Methods
- [next](RecordBatchIterator.md#next)
## Constructors
### constructor
**new RecordBatchIterator**(`promise?`): [`RecordBatchIterator`](RecordBatchIterator.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `promise?` | `Promise`\<`RecordBatchIterator`\> |
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
#### Defined in
[query.ts:27](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L27)
## Properties
### inner
`Private` `Optional` **inner**: `RecordBatchIterator`
#### Defined in
[query.ts:25](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L25)
___
### promisedInner
`Private` `Optional` **promisedInner**: `Promise`\<`RecordBatchIterator`\>
#### Defined in
[query.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L24)
## Methods
### next
**next**(): `Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
#### Returns
`Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
#### Implementation of
AsyncIterator.next
#### Defined in
[query.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L33)

View File

@@ -0,0 +1,594 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Table
# Class: Table
A Table is a collection of Records in a LanceDB Database.
A Table object is expected to be long lived and reused for multiple operations.
Table objects will cache a certain amount of index data in memory. This cache
will be freed when the Table is garbage collected. To eagerly free the cache you
can call the `close` method. Once the Table is closed, it cannot be used for any
further operations.
Closing a table is optional. It not closed, it will be closed when it is garbage
collected.
## Table of contents
### Constructors
- [constructor](Table.md#constructor)
### Properties
- [inner](Table.md#inner)
### Methods
- [add](Table.md#add)
- [addColumns](Table.md#addcolumns)
- [alterColumns](Table.md#altercolumns)
- [checkout](Table.md#checkout)
- [checkoutLatest](Table.md#checkoutlatest)
- [close](Table.md#close)
- [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex)
- [delete](Table.md#delete)
- [display](Table.md#display)
- [dropColumns](Table.md#dropcolumns)
- [isOpen](Table.md#isopen)
- [listIndices](Table.md#listindices)
- [query](Table.md#query)
- [restore](Table.md#restore)
- [schema](Table.md#schema)
- [update](Table.md#update)
- [vectorSearch](Table.md#vectorsearch)
- [version](Table.md#version)
## Constructors
### constructor
**new Table**(`inner`): [`Table`](Table.md)
Construct a Table. Internal use only.
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Table` |
#### Returns
[`Table`](Table.md)
#### Defined in
[table.ts:69](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L69)
## Properties
### inner
`Private` `Readonly` **inner**: `Table`
#### Defined in
[table.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L66)
## Methods
### add
**add**(`data`, `options?`): `Promise`\<`void`\>
Insert records into this Table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | [`Data`](../modules.md#data) | Records to be inserted into the Table |
| `options?` | `Partial`\<[`AddDataOptions`](../interfaces/AddDataOptions.md)\> | - |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:105](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L105)
___
### addColumns
**addColumns**(`newColumnTransforms`): `Promise`\<`void`\>
Add new columns with defined values.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `newColumnTransforms` | [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[] | pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:261](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L261)
___
### alterColumns
**alterColumns**(`columnAlterations`): `Promise`\<`void`\>
Alter the name or nullability of columns.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnAlterations` | [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[] | One or more alterations to apply to columns. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:270](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L270)
___
### checkout
**checkout**(`version`): `Promise`\<`void`\>
Checks out a specific version of the Table
Any read operation on the table will now access the data at the checked out version.
As a consequence, calling this method will disable any read consistency interval
that was previously set.
This is a read-only operation that turns the table into a sort of "view"
or "detached head". Other table instances will not be affected. To make the change
permanent you can use the `[Self::restore]` method.
Any operation that modifies the table will fail while the table is in a checked
out state.
To return the table to a normal state use `[Self::checkout_latest]`
#### Parameters
| Name | Type |
| :------ | :------ |
| `version` | `number` |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:317](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L317)
___
### checkoutLatest
**checkoutLatest**(): `Promise`\<`void`\>
Ensures the table is pointing at the latest version
This can be used to manually update a table when the read_consistency_interval is None
It can also be used to undo a `[Self::checkout]` operation
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:327](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L327)
___
### close
**close**(): `void`
Close the table, releasing any underlying resources.
It is safe to call this method multiple times.
Any attempt to use the table after it is closed will result in an error.
#### Returns
`void`
#### Defined in
[table.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L85)
___
### countRows
**countRows**(`filter?`): `Promise`\<`number`\>
Count the total number of rows in the dataset.
#### Parameters
| Name | Type |
| :------ | :------ |
| `filter?` | `string` |
#### Returns
`Promise`\<`number`\>
#### Defined in
[table.ts:152](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L152)
___
### createIndex
**createIndex**(`column`, `options?`): `Promise`\<`void`\>
Create an index to speed up queries.
Indices can be created on vector columns or scalar columns.
Indices on vector columns will speed up vector searches.
Indices on scalar columns will speed up filtering (in both
vector and non-vector searches)
#### Parameters
| Name | Type |
| :------ | :------ |
| `column` | `string` |
| `options?` | `Partial`\<[`IndexOptions`](../interfaces/IndexOptions.md)\> |
#### Returns
`Promise`\<`void`\>
**`Example`**
```ts
// If the column has a vector (fixed size list) data type then
// an IvfPq vector index will be created.
const table = await conn.openTable("my_table");
await table.createIndex(["vector"]);
```
**`Example`**
```ts
// For advanced control over vector index creation you can specify
// the index type and options.
const table = await conn.openTable("my_table");
await table.createIndex(["vector"], I)
.ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
.build();
```
**`Example`**
```ts
// Or create a Scalar index
await table.createIndex("my_float_col").build();
```
#### Defined in
[table.ts:184](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L184)
___
### delete
**delete**(`predicate`): `Promise`\<`void`\>
Delete the rows that satisfy the predicate.
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:157](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L157)
___
### display
**display**(): `string`
Return a brief description of the table
#### Returns
`string`
#### Defined in
[table.ts:90](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L90)
___
### dropColumns
**dropColumns**(`columnNames`): `Promise`\<`void`\>
Drop one or more columns from the dataset
This is a metadata-only operation and does not remove the data from the
underlying storage. In order to remove the data, you must subsequently
call ``compact_files`` to rewrite the data without the removed columns and
then call ``cleanup_files`` to remove the old files.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnNames` | `string`[] | The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a"). |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:285](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L285)
___
### isOpen
▸ **isOpen**(): `boolean`
Return true if the table has not been closed
#### Returns
`boolean`
#### Defined in
[table.ts:74](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L74)
___
### listIndices
▸ **listIndices**(): `Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
List all indices that have been created with Self::create_index
#### Returns
`Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
#### Defined in
[table.ts:350](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L350)
___
### query
▸ **query**(): [`Query`](Query.md)
Create a [Query](Query.md) Builder.
Queries allow you to search your existing data. By default the query will
return all the data in the table in no particular order. The builder
returned by this method can be used to control the query using filtering,
vector similarity, sorting, and more.
Note: By default, all columns are returned. For best performance, you should
only fetch the columns you need. See [`Query::select_with_projection`] for
more details.
When appropriate, various indices and statistics based pruning will be used to
accelerate the query.
#### Returns
[`Query`](Query.md)
A builder that can be used to parameterize the query
**`Example`**
```ts
// SQL-style filtering
//
// This query will return up to 1000 rows whose value in the `id` column
// is greater than 5. LanceDb supports a broad set of filtering functions.
for await (const batch of table.query()
.filter("id > 1").select(["id"]).limit(20)) {
console.log(batch);
}
```
**`Example`**
```ts
// Vector Similarity Search
//
// This example will find the 10 rows whose value in the "vector" column are
// closest to the query vector [1.0, 2.0, 3.0]. If an index has been created
// on the "vector" column then this will perform an ANN search.
//
// The `refine_factor` and `nprobes` methods are used to control the recall /
// latency tradeoff of the search.
for await (const batch of table.query()
.nearestTo([1, 2, 3])
.refineFactor(5).nprobe(10)
.limit(10)) {
console.log(batch);
}
```
**`Example`**
```ts
// Scan the full dataset
//
// This query will return everything in the table in no particular order.
for await (const batch of table.query()) {
console.log(batch);
}
```
#### Defined in
[table.ts:238](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L238)
___
### restore
▸ **restore**(): `Promise`\<`void`\>
Restore the table to the currently checked out version
This operation will fail if checkout has not been called previously
This operation will overwrite the latest version of the table with a
previous version. Any changes made since the checked out version will
no longer be visible.
Once the operation concludes the table will no longer be in a checked
out state and the read_consistency_interval, if any, will apply.
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:343](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L343)
___
### schema
▸ **schema**(): `Promise`\<`Schema`\<`any`\>\>
Get the schema of the table.
#### Returns
`Promise`\<`Schema`\<`any`\>\>
#### Defined in
[table.ts:95](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L95)
___
### update
▸ **update**(`updates`, `options?`): `Promise`\<`void`\>
Update existing records in the Table
An update operation can be used to adjust existing values. Use the
returned builder to specify which columns to update. The new value
can be a literal value (e.g. replacing nulls with some default value)
or an expression applied to the old value (e.g. incrementing a value)
An optional condition can be specified (e.g. "only update if the old
value is 0")
Note: if your condition is something like "some_id_column == 7" and
you are updating many rows (with different ids) then you will get
better performance with a single [`merge_insert`] call instead of
repeatedly calilng this method.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `updates` | `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> | the columns to update Keys in the map should specify the name of the column to update. Values in the map provide the new value of the column. These can be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions based on the row being updated (e.g. "my_col + 1") |
| `options?` | `Partial`\<[`UpdateOptions`](../interfaces/UpdateOptions.md)\> | additional options to control the update behavior |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:137](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L137)
___
### vectorSearch
▸ **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
Search the table with a given query vector.
This is a convenience method for preparing a vector query and
is the same thing as calling `nearestTo` on the builder returned
by `query`.
#### Parameters
| Name | Type |
| :------ | :------ |
| `vector` | `unknown` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[Query#nearestTo](Query.md#nearestto) for more details.
#### Defined in
[table.ts:249](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L249)
___
### version
▸ **version**(): `Promise`\<`number`\>
Retrieve the version of the table
LanceDb supports versioning. Every operation that modifies the table increases
version. As long as a version hasn't been deleted you can `[Self::checkout]` that
version to view the data at that point. In addition, you can `[Self::restore]` the
version to replace the current table with a previous version.
#### Returns
`Promise`\<`number`\>
#### Defined in
[table.ts:297](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L297)

View File

@@ -0,0 +1,45 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorColumnOptions
# Class: VectorColumnOptions
## Table of contents
### Constructors
- [constructor](VectorColumnOptions.md#constructor)
### Properties
- [type](VectorColumnOptions.md#type)
## Constructors
### constructor
**new VectorColumnOptions**(`values?`): [`VectorColumnOptions`](VectorColumnOptions.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`VectorColumnOptions`](VectorColumnOptions.md)\> |
#### Returns
[`VectorColumnOptions`](VectorColumnOptions.md)
#### Defined in
[arrow.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L49)
## Properties
### type
**type**: `Float`\<`Floats`\>
Vector column type.
#### Defined in
[arrow.ts:47](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L47)

View File

@@ -0,0 +1,531 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorQuery
# Class: VectorQuery
A builder used to construct a vector search
This builder can be reused to execute the query many times.
## Hierarchy
- [`QueryBase`](QueryBase.md)\<`NativeVectorQuery`, [`VectorQuery`](VectorQuery.md)\>
**`VectorQuery`**
## Table of contents
### Constructors
- [constructor](VectorQuery.md#constructor)
### Properties
- [inner](VectorQuery.md#inner)
### Methods
- [[asyncIterator]](VectorQuery.md#[asynciterator])
- [bypassVectorIndex](VectorQuery.md#bypassvectorindex)
- [column](VectorQuery.md#column)
- [distanceType](VectorQuery.md#distancetype)
- [execute](VectorQuery.md#execute)
- [limit](VectorQuery.md#limit)
- [nativeExecute](VectorQuery.md#nativeexecute)
- [nprobes](VectorQuery.md#nprobes)
- [postfilter](VectorQuery.md#postfilter)
- [refineFactor](VectorQuery.md#refinefactor)
- [select](VectorQuery.md#select)
- [toArray](VectorQuery.md#toarray)
- [toArrow](VectorQuery.md#toarrow)
- [where](VectorQuery.md#where)
## Constructors
### constructor
**new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `VectorQuery` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Overrides
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
#### Defined in
[query.ts:189](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L189)
## Properties
### inner
`Protected` **inner**: `VectorQuery`
#### Inherited from
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### [asyncIterator]
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Inherited from
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
#### Defined in
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
___
### bypassVectorIndex
**bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
If this is called then any vector index is skipped
An exhaustive (flat) search will be performed. The query vector will
be compared to every vector in the table. At high scales this can be
expensive. However, this is often still useful. For example, skipping
the vector index can give you ground truth results which you can use to
calculate your recall to select an appropriate value for nprobes.
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Defined in
[query.ts:321](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L321)
___
### column
**column**(`column`): [`VectorQuery`](VectorQuery.md)
Set the vector column to query
This controls which column is compared to the query vector supplied in
the call to
#### Parameters
| Name | Type |
| :------ | :------ |
| `column` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[Query#nearestTo](Query.md#nearestto)
This parameter must be specified if the table has more than one column
whose data type is a fixed-size-list of floats.
#### Defined in
[query.ts:229](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L229)
___
### distanceType
**distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
Set the distance metric to use
When performing a vector search we try and find the "nearest" vectors according
to some kind of distance metric. This parameter controls which distance metric to
use. See
#### Parameters
| Name | Type |
| :------ | :------ |
| `distanceType` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[IvfPqOptions.distanceType](../interfaces/IvfPqOptions.md#distancetype) for more details on the different
distance metrics available.
Note: if there is a vector index then the distance type used MUST match the distance
type used to train the vector index. If this is not done then the results will be
invalid.
By default "l2" is used.
#### Defined in
[query.ts:248](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L248)
___
### execute
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
**`See`**
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Inherited from
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
#### Defined in
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
___
### limit
**limit**(`limit`): [`VectorQuery`](VectorQuery.md)
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Inherited from
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
#### Defined in
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
___
### nativeExecute
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`\<`RecordBatchIterator`\>
#### Inherited from
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
#### Defined in
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
___
### nprobes
**nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
Set the number of partitions to search (probe)
This argument is only used when the vector column has an IVF PQ index.
If there is no index then this value is ignored.
The IVF stage of IVF PQ divides the input into partitions (clusters) of
related values.
The partition whose centroids are closest to the query vector will be
exhaustiely searched to find matches. This parameter controls how many
partitions should be searched.
Increasing this value will increase the recall of your query but will
also increase the latency of your query. The default value is 20. This
default is good for many cases but the best value to use will depend on
your data and the recall that you need to achieve.
For best results we recommend tuning this parameter with a benchmark against
your actual data to find the smallest possible value that will still give
you the desired recall.
#### Parameters
| Name | Type |
| :------ | :------ |
| `nprobes` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Defined in
[query.ts:215](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L215)
___
### postfilter
**postfilter**(): [`VectorQuery`](VectorQuery.md)
If this is called then filtering will happen after the vector search instead of
before.
By default filtering will be performed before the vector search. This is how
filtering is typically understood to work. This prefilter step does add some
additional latency. Creating a scalar index on the filter column(s) can
often improve this latency. However, sometimes a filter is too complex or scalar
indices cannot be applied to the column. In these cases postfiltering can be
used instead of prefiltering to improve latency.
Post filtering applies the filter to the results of the vector search. This means
we only run the filter on a much smaller set of data. However, it can cause the
query to return fewer than `limit` results (or even no results) if none of the nearest
results match the filter.
Post filtering happens during the "refine stage" (described in more detail in
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[VectorQuery#refineFactor](VectorQuery.md#refinefactor)). This means that setting a higher refine
factor can often help restore some of the results lost by post filtering.
#### Defined in
[query.ts:307](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L307)
___
### refineFactor
**refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
A multiplier to control how many additional rows are taken during the refine step
This argument is only used when the vector column has an IVF PQ index.
If there is no index then this value is ignored.
An IVF PQ index stores compressed (quantized) values. They query vector is compared
against these values and, since they are compressed, the comparison is inaccurate.
This parameter can be used to refine the results. It can improve both improve recall
and correct the ordering of the nearest results.
To refine results LanceDb will first perform an ANN search to find the nearest
`limit` * `refine_factor` results. In other words, if `refine_factor` is 3 and
`limit` is the default (10) then the first 30 results will be selected. LanceDb
then fetches the full, uncompressed, values for these 30 results. The results are
then reordered by the true distance and only the nearest 10 are kept.
Note: there is a difference between calling this method with a value of 1 and never
calling this method at all. Calling this method with any value will have an impact
on your search latency. When you call this method with a `refine_factor` of 1 then
LanceDb still needs to fetch the full, uncompressed, values so that it can potentially
reorder the results.
Note: if this method is NOT called then the distances returned in the _distance column
will be approximate distances based on the comparison of the quantized query vector
and the quantized result vectors. This can be considerably different than the true
distance between the query vector and the actual uncompressed vector.
#### Parameters
| Name | Type |
| :------ | :------ |
| `refineFactor` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Defined in
[query.ts:282](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L282)
___
### select
**select**(`columns`): [`VectorQuery`](VectorQuery.md)
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Inherited from
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
#### Defined in
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Returns
`Promise`\<`unknown`[]\>
#### Inherited from
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
#### Defined in
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Returns
`Promise`\<`Table`\<`any`\>\>
**`See`**
ArrowTable.
#### Inherited from
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
#### Defined in
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
___
### where
**where**(`predicate`): [`VectorQuery`](VectorQuery.md)
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`Example`**
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Inherited from
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -0,0 +1,111 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
[embedding](../modules/embedding.md).OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Implements
- [`EmbeddingFunction`](../interfaces/embedding.EmbeddingFunction.md)\<`string`\>
## Table of contents
### Constructors
- [constructor](embedding.OpenAIEmbeddingFunction.md#constructor)
### Properties
- [\_modelName](embedding.OpenAIEmbeddingFunction.md#_modelname)
- [\_openai](embedding.OpenAIEmbeddingFunction.md#_openai)
- [sourceColumn](embedding.OpenAIEmbeddingFunction.md#sourcecolumn)
### Methods
- [embed](embedding.OpenAIEmbeddingFunction.md#embed)
## Constructors
### constructor
**new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`): [`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Parameters
| Name | Type | Default value |
| :------ | :------ | :------ |
| `sourceColumn` | `string` | `undefined` |
| `openAIKey` | `string` | `undefined` |
| `modelName` | `string` | `"text-embedding-ada-002"` |
#### Returns
[`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Defined in
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L22)
## Properties
### \_modelName
`Private` `Readonly` **\_modelName**: `string`
#### Defined in
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L20)
___
### \_openai
`Private` `Readonly` **\_openai**: `OpenAI`
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L19)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[sourceColumn](../interfaces/embedding.EmbeddingFunction.md#sourcecolumn)
#### Defined in
[embedding/openai.ts:61](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L61)
## Methods
### embed
**embed**(`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `string`[] |
#### Returns
`Promise`\<`number`[][]\>
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[embed](../interfaces/embedding.EmbeddingFunction.md#embed)
#### Defined in
[embedding/openai.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L48)

View File

@@ -0,0 +1,43 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteMode
# Enumeration: WriteMode
Write mode for writing a table.
## Table of contents
### Enumeration Members
- [Append](WriteMode.md#append)
- [Create](WriteMode.md#create)
- [Overwrite](WriteMode.md#overwrite)
## Enumeration Members
### Append
**Append** = ``"Append"``
#### Defined in
native.d.ts:69
___
### Create
• **Create** = ``"Create"``
#### Defined in
native.d.ts:68
___
### Overwrite
• **Overwrite** = ``"Overwrite"``
#### Defined in
native.d.ts:70

View File

@@ -0,0 +1,37 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddColumnsSql
# Interface: AddColumnsSql
A definition of a new column to add to a table.
## Table of contents
### Properties
- [name](AddColumnsSql.md#name)
- [valueSql](AddColumnsSql.md#valuesql)
## Properties
### name
**name**: `string`
The name of the new column.
#### Defined in
native.d.ts:43
___
### valueSql
**valueSql**: `string`
The values to populate the new column with, as a SQL expression.
The expression can reference other columns in the table.
#### Defined in
native.d.ts:48

View File

@@ -0,0 +1,25 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddDataOptions
# Interface: AddDataOptions
Options for adding data to a table.
## Table of contents
### Properties
- [mode](AddDataOptions.md#mode)
## Properties
### mode
**mode**: ``"append"`` \| ``"overwrite"``
If "append" (the default) then the new data will be added to the table
If "overwrite" then the new data will replace the existing data in the table.
#### Defined in
[table.ts:36](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L36)

View File

@@ -0,0 +1,56 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ColumnAlteration
# Interface: ColumnAlteration
A definition of a column alteration. The alteration changes the column at
`path` to have the new name `name`, to be nullable if `nullable` is true,
and to have the data type `data_type`. At least one of `rename` or `nullable`
must be provided.
## Table of contents
### Properties
- [nullable](ColumnAlteration.md#nullable)
- [path](ColumnAlteration.md#path)
- [rename](ColumnAlteration.md#rename)
## Properties
### nullable
`Optional` **nullable**: `boolean`
Set the new nullability. Note that a nullable column cannot be made non-nullable.
#### Defined in
native.d.ts:38
___
### path
**path**: `string`
The path to the column to alter. This is a dot-separated path to the column.
If it is a top-level column then it is just the name of the column. If it is
a nested column then it is the path to the column, e.g. "a.b.c" for a column
`c` nested inside a column `b` nested inside a column `a`.
#### Defined in
native.d.ts:31
___
### rename
`Optional` **rename**: `string`
The new name of the column. If not provided then the name will not be changed.
This must be distinct from the names of all other columns in the table.
#### Defined in
native.d.ts:36

View File

@@ -0,0 +1,51 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ConnectionOptions
# Interface: ConnectionOptions
## Table of contents
### Properties
- [apiKey](ConnectionOptions.md#apikey)
- [hostOverride](ConnectionOptions.md#hostoverride)
- [readConsistencyInterval](ConnectionOptions.md#readconsistencyinterval)
## Properties
### apiKey
`Optional` **apiKey**: `string`
#### Defined in
native.d.ts:51
___
### hostOverride
`Optional` **hostOverride**: `string`
#### Defined in
native.d.ts:52
___
### readConsistencyInterval
`Optional` **readConsistencyInterval**: `number`
(For LanceDB OSS only): The interval, in seconds, at which to check for
updates to the table from other processes. If None, then consistency is not
checked. For performance reasons, this is the default. For strong
consistency, set this to zero seconds. Then every read will check for
updates from other processes. As a compromise, you can set this to a
non-zero value for eventual consistency. If more than that interval
has passed since the last check, then the table will be checked for updates.
Note: this consistency only applies to read operations. Write operations are
always consistent.
#### Defined in
native.d.ts:64

View File

@@ -0,0 +1,41 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / CreateTableOptions
# Interface: CreateTableOptions
## Table of contents
### Properties
- [existOk](CreateTableOptions.md#existok)
- [mode](CreateTableOptions.md#mode)
## Properties
### existOk
**existOk**: `boolean`
If this is true and the table already exists and the mode is "create"
then no error will be raised.
#### Defined in
[connection.ts:35](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L35)
___
### mode
**mode**: ``"overwrite"`` \| ``"create"``
The mode to use when creating the table.
If this is set to "create" and the table already exists then either
an error will be thrown or, if existOk is true, then nothing will
happen. Any provided data will be ignored.
If this is set to "overwrite" then any existing table will be replaced.
#### Defined in
[connection.ts:30](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L30)

View File

@@ -0,0 +1,7 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ExecutableQuery
# Interface: ExecutableQuery
An interface for a query that can be executed
Supported by all query types

View File

@@ -0,0 +1,39 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexConfig
# Interface: IndexConfig
A description of an index currently configured on a column
## Table of contents
### Properties
- [columns](IndexConfig.md#columns)
- [indexType](IndexConfig.md#indextype)
## Properties
### columns
**columns**: `string`[]
The columns in the index
Currently this is always an array of size 1. In the future there may
be more columns to represent composite indices.
#### Defined in
native.d.ts:16
___
### indexType
**indexType**: `string`
The type of the index
#### Defined in
native.d.ts:9

View File

@@ -0,0 +1,48 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexOptions
# Interface: IndexOptions
## Table of contents
### Properties
- [config](IndexOptions.md#config)
- [replace](IndexOptions.md#replace)
## Properties
### config
`Optional` **config**: [`Index`](../classes/Index.md)
Advanced index configuration
This option allows you to specify a specfic index to create and also
allows you to pass in configuration for training the index.
See the static methods on Index for details on the various index types.
If this is not supplied then column data type(s) and column statistics
will be used to determine the most useful kind of index to create.
#### Defined in
[indices.ts:192](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L192)
___
### replace
`Optional` **replace**: `boolean`
Whether to replace the existing index
If this is false, and another index already exists on the same columns
and the same name, then an error will be returned. This is true even if
that index is out of date.
The default is true
#### Defined in
[indices.ts:202](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L202)

View File

@@ -0,0 +1,144 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IvfPqOptions
# Interface: IvfPqOptions
Options to create an `IVF_PQ` index
## Table of contents
### Properties
- [distanceType](IvfPqOptions.md#distancetype)
- [maxIterations](IvfPqOptions.md#maxiterations)
- [numPartitions](IvfPqOptions.md#numpartitions)
- [numSubVectors](IvfPqOptions.md#numsubvectors)
- [sampleRate](IvfPqOptions.md#samplerate)
## Properties
### distanceType
`Optional` **distanceType**: ``"l2"`` \| ``"cosine"`` \| ``"dot"``
Distance type to use to build the index.
Default value is "l2".
This is used when training the index to calculate the IVF partitions
(vectors are grouped in partitions with similar vectors according to this
distance type) and to calculate a subvector's code during quantization.
The distance type used to train an index MUST match the distance type used
to search the index. Failure to do so will yield inaccurate results.
The following distance types are available:
"l2" - Euclidean distance. This is a very common distance metric that
accounts for both magnitude and direction when determining the distance
between vectors. L2 distance has a range of [0, ∞).
"cosine" - Cosine distance. Cosine distance is a distance metric
calculated from the cosine similarity between two vectors. Cosine
similarity is a measure of similarity between two non-zero vectors of an
inner product space. It is defined to equal the cosine of the angle
between them. Unlike L2, the cosine distance is not affected by the
magnitude of the vectors. Cosine distance has a range of [0, 2].
Note: the cosine distance is undefined when one (or both) of the vectors
are all zeros (there is no direction). These vectors are invalid and may
never be returned from a vector search.
"dot" - Dot product. Dot distance is the dot product of two vectors. Dot
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
L2 norm is 1), then dot distance is equivalent to the cosine distance.
#### Defined in
[indices.ts:83](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L83)
___
### maxIterations
• `Optional` **maxIterations**: `number`
Max iteration to train IVF kmeans.
When training an IVF PQ index we use kmeans to calculate the partitions. This parameter
controls how many iterations of kmeans to run.
Increasing this might improve the quality of the index but in most cases these extra
iterations have diminishing returns.
The default value is 50.
#### Defined in
[indices.ts:96](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L96)
___
### numPartitions
• `Optional` **numPartitions**: `number`
The number of IVF partitions to create.
This value should generally scale with the number of rows in the dataset.
By default the number of partitions is the square root of the number of
rows.
If this value is too large then the first part of the search (picking the
right partition) will be slow. If this value is too small then the second
part of the search (searching within a partition) will be slow.
#### Defined in
[indices.ts:32](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L32)
___
### numSubVectors
• `Optional` **numSubVectors**: `number`
Number of sub-vectors of PQ.
This value controls how much the vector is compressed during the quantization step.
The more sub vectors there are the less the vector is compressed. The default is
the dimension of the vector divided by 16. If the dimension is not evenly divisible
by 16 we use the dimension divded by 8.
The above two cases are highly preferred. Having 8 or 16 values per subvector allows
us to use efficient SIMD instructions.
If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and
will likely result in poor performance.
#### Defined in
[indices.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L48)
___
### sampleRate
• `Optional` **sampleRate**: `number`
The number of vectors, per partition, to sample when training IVF kmeans.
When an IVF PQ index is trained, we need to calculate partitions. These are groups
of vectors that are similar to each other. To do this we use an algorithm called kmeans.
Running kmeans on a large dataset can be slow. To speed this up we run kmeans on a
random sample of the data. This parameter controls the size of the sample. The total
number of vectors used to train the index is `sample_rate * num_partitions`.
Increasing this value might improve the quality of the index but in most cases the
default should be sufficient.
The default value is 256.
#### Defined in
[indices.ts:113](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L113)

View File

@@ -0,0 +1,38 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / TableNamesOptions
# Interface: TableNamesOptions
## Table of contents
### Properties
- [limit](TableNamesOptions.md#limit)
- [startAfter](TableNamesOptions.md#startafter)
## Properties
### limit
`Optional` **limit**: `number`
An optional limit to the number of results to return.
#### Defined in
[connection.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L48)
___
### startAfter
`Optional` **startAfter**: `string`
If present, only return names that come lexicographically after the
supplied value.
This can be combined with limit to implement pagination by setting this to
the last table name from the previous page.
#### Defined in
[connection.ts:46](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L46)

View File

@@ -0,0 +1,28 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / UpdateOptions
# Interface: UpdateOptions
## Table of contents
### Properties
- [where](UpdateOptions.md#where)
## Properties
### where
**where**: `string`
A filter that limits the scope of the update.
This should be an SQL filter expression.
Only rows that satisfy the expression will be updated.
For example, this could be 'my_col == 0' to replace all instances
of 0 in a column with some other default value.
#### Defined in
[table.ts:50](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L50)

View File

@@ -0,0 +1,21 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteOptions
# Interface: WriteOptions
Write options when creating a Table.
## Table of contents
### Properties
- [mode](WriteOptions.md#mode)
## Properties
### mode
`Optional` **mode**: [`WriteMode`](../enums/WriteMode.md)
#### Defined in
native.d.ts:74

View File

@@ -0,0 +1,129 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / EmbeddingFunction
# Interface: EmbeddingFunction\<T\>
[embedding](../modules/embedding.md).EmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Type parameters
| Name |
| :------ |
| `T` |
## Implemented by
- [`OpenAIEmbeddingFunction`](../classes/embedding.OpenAIEmbeddingFunction.md)
## Table of contents
### Properties
- [destColumn](embedding.EmbeddingFunction.md#destcolumn)
- [embed](embedding.EmbeddingFunction.md#embed)
- [embeddingDataType](embedding.EmbeddingFunction.md#embeddingdatatype)
- [embeddingDimension](embedding.EmbeddingFunction.md#embeddingdimension)
- [excludeSource](embedding.EmbeddingFunction.md#excludesource)
- [sourceColumn](embedding.EmbeddingFunction.md#sourcecolumn)
## Properties
### destColumn
`Optional` **destColumn**: `string`
The name of the column that will contain the embedding
By default this is "vector"
#### Defined in
[embedding/embedding_function.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L49)
___
### embed
**embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Type declaration
▸ (`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
##### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `T`[] |
##### Returns
`Promise`\<`number`[][]\>
#### Defined in
[embedding/embedding_function.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L62)
___
### embeddingDataType
`Optional` **embeddingDataType**: `Float`\<`Floats`\>
The data type of the embedding
The embedding function should return `number`. This will be converted into
an Arrow float array. By default this will be Float32 but this property can
be used to control the conversion.
#### Defined in
[embedding/embedding_function.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L33)
___
### embeddingDimension
`Optional` **embeddingDimension**: `number`
The dimension of the embedding
This is optional, normally this can be determined by looking at the results of
`embed`. If this is not specified, and there is an attempt to apply the embedding
to an empty table, then that process will fail.
#### Defined in
[embedding/embedding_function.ts:42](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L42)
___
### excludeSource
`Optional` **excludeSource**: `boolean`
Should the source column be excluded from the resulting table
By default the source column is included. Set this to true and
only the embedding will be stored.
#### Defined in
[embedding/embedding_function.ts:57](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L57)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L24)

208
docs/src/js/modules.md Normal file
View File

@@ -0,0 +1,208 @@
[@lancedb/lancedb](README.md) / Exports
# @lancedb/lancedb
## Table of contents
### Namespaces
- [embedding](modules/embedding.md)
### Enumerations
- [WriteMode](enums/WriteMode.md)
### Classes
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Table](classes/Table.md)
- [VectorColumnOptions](classes/VectorColumnOptions.md)
- [VectorQuery](classes/VectorQuery.md)
### Interfaces
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)
### Type Aliases
- [Data](modules.md#data)
### Functions
- [connect](modules.md#connect)
- [makeArrowTable](modules.md#makearrowtable)
## Type Aliases
### Data
Ƭ **Data**: `Record`\<`string`, `unknown`\>[] \| `ArrowTable`
Data type accepted by NodeJS SDK
#### Defined in
[arrow.ts:40](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L40)
## Functions
### connect
**connect**(`uri`, `opts?`): `Promise`\<[`Connection`](classes/Connection.md)\>
Connect to a LanceDB instance at the given URI.
Accpeted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (LanceDB cloud)
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `uri` | `string` | The uri of the database. If the database uri starts with `db://` then it connects to a remote database. |
| `opts?` | `Partial`\<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> | - |
#### Returns
`Promise`\<[`Connection`](classes/Connection.md)\>
**`See`**
[ConnectionOptions](interfaces/ConnectionOptions.md) for more details on the URI format.
#### Defined in
[index.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/index.ts#L62)
___
### makeArrowTable
**makeArrowTable**(`data`, `options?`): `ArrowTable`
An enhanced version of the makeTable function from Apache Arrow
that supports nested fields and embeddings columns.
(typically you do not need to call this function. It will be called automatically
when creating a table or adding data to it)
This function converts an array of Record<String, any> (row-major JS objects)
to an Arrow Table (a columnar structure)
Note that it currently does not support nulls.
If a schema is provided then it will be used to determine the resulting array
types. Fields will also be reordered to fit the order defined by the schema.
If a schema is not provided then the types will be inferred and the field order
will be controlled by the order of properties in the first record. If a type
is inferred it will always be nullable.
If the input is empty then a schema must be provided to create an empty table.
When a schema is not specified then data types will be inferred. The inference
rules are as follows:
- boolean => Bool
- number => Float64
- String => Utf8
- Buffer => Binary
- Record<String, any> => Struct
- Array<any> => List
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] |
| `options?` | `Partial`\<[`MakeArrowTableOptions`](classes/MakeArrowTableOptions.md)\> |
#### Returns
`ArrowTable`
**`Example`**
import { fromTableToBuffer, makeArrowTable } from "../arrow";
import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
const schema = new Schema([
new Field("a", new Int32()),
new Field("b", new Float32()),
new Field("c", new FixedSizeList(3, new Field("item", new Float16()))),
]);
const table = makeArrowTable([
{ a: 1, b: 2, c: [1, 2, 3] },
{ a: 4, b: 5, c: [4, 5, 6] },
{ a: 7, b: 8, c: [7, 8, 9] },
], { schema });
```
By default it assumes that the column named `vector` is a vector column
and it will be converted into a fixed size list array of type float32.
The `vectorColumns` option can be used to support other vector column
names and data types.
```ts
const schema = new Schema([
new Field("a", new Float64()),
new Field("b", new Float64()),
new Field(
"vector",
new FixedSizeList(3, new Field("item", new Float32()))
),
]);
const table = makeArrowTable([
{ a: 1, b: 2, vector: [1, 2, 3] },
{ a: 4, b: 5, vector: [4, 5, 6] },
{ a: 7, b: 8, vector: [7, 8, 9] },
]);
assert.deepEqual(table.schema, schema);
```
You can specify the vector column types and names using the options as well
```typescript
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
]);
const table = makeArrowTable([
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] }
], {
vectorColumns: {
vec1: { type: new Float16() },
vec2: { type: new Float16() }
}
}
assert.deepEqual(table.schema, schema)
```
#### Defined in
[arrow.ts:197](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L197)

View File

@@ -0,0 +1,45 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / embedding
# Namespace: embedding
## Table of contents
### Classes
- [OpenAIEmbeddingFunction](../classes/embedding.OpenAIEmbeddingFunction.md)
### Interfaces
- [EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md)
### Functions
- [isEmbeddingFunction](embedding.md#isembeddingfunction)
## Functions
### isEmbeddingFunction
**isEmbeddingFunction**\<`T`\>(`value`): value is EmbeddingFunction\<T\>
Test if the input seems to be an embedding function
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `unknown` |
#### Returns
value is EmbeddingFunction\<T\>
#### Defined in
[embedding/embedding_function.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L66)

76
docs/src/migration.md Normal file
View File

@@ -0,0 +1,76 @@
# Rust-backed Client Migration Guide
In an effort to ensure all clients have the same set of capabilities we have begun migrating the
python and node clients onto a common Rust base library. In python, this new client is part of
the same lancedb package, exposed as an asynchronous client. Once the asynchronous client has
reached full functionality we will begin migrating the synchronous library to be a thin wrapper
around the asynchronous client.
This guide describes the differences between the two APIs and will hopefully assist users
that would like to migrate to the new API.
## Closeable Connections
The Connection now has a `close` method. You can call this when
you are done with the connection to eagerly free resources. Currently
this is limited to freeing/closing the HTTP connection for remote
connections. In the future we may add caching or other resources to
native connections so this is probably a good practice even if you
aren't using remote connections.
In addition, the connection can be used as a context manager which may
be a more convenient way to ensure the connection is closed.
```python
import lancedb
async def my_async_fn():
with await lancedb.connect_async("my_uri") as db:
print(await db.table_names())
```
It is not mandatory to call the `close` method. If you do not call it
then the connection will be closed when the object is garbage collected.
## Closeable Table
The Table now also has a `close` method, similar to the connection. This
can be used to eagerly free the cache used by a Table object. Similar to
the connection, it can be used as a context manager and it is not mandatory
to call the `close` method.
### Changes to Table APIs
- Previously `Table.schema` was a property. Now it is an async method.
- The method `Table.__len__` was removed and `len(table)` will no longer
work. Use `Table.count_rows` instead.
### Creating Indices
The `Table.create_index` method is now used for creating both vector indices
and scalar indices. It currently requires a column name to be specified (the
column to index). Vector index defaults are now smarter and scale better with
the size of the data.
To specify index configuration details you will need to specify which kind of
index you are using.
### Querying
The `Table.search` method has been renamed to `AsyncTable.vector_search` for
clarity.
## Features not yet supported
The following features are not yet supported by the asynchronous API. However,
we plan to support them soon.
- You cannot specify an embedding function when creating or opening a table.
You must calculate embeddings yourself if using the asynchronous API
- The merge insert operation is not supported in the asynchronous API
- Cleanup / compact / optimize indices are not supported in the asynchronous API
- add / alter columns is not supported in the asynchronous API
- The asynchronous API does not yet support any full text search or reranking
search
- Remote connections to LanceDb Cloud are not yet supported.
- The method Table.head is not yet supported.

View File

@@ -8,17 +8,20 @@ This section contains the API reference for the OSS Python API.
pip install lancedb pip install lancedb
``` ```
## Connection The following methods describe the synchronous API client. There
is also an [asynchronous API client](#connections-asynchronous).
## Connections (Synchronous)
::: lancedb.connect ::: lancedb.connect
::: lancedb.db.DBConnection ::: lancedb.db.DBConnection
## Table ## Tables (Synchronous)
::: lancedb.table.Table ::: lancedb.table.Table
## Querying ## Querying (Synchronous)
::: lancedb.query.Query ::: lancedb.query.Query
@@ -86,4 +89,42 @@ pip install lancedb
::: lancedb.rerankers.cross_encoder.CrossEncoderReranker ::: lancedb.rerankers.cross_encoder.CrossEncoderReranker
::: lancedb.rerankers.openai.OpenaiReranker ::: lancedb.rerankers.openai.OpenaiReranker
## Connections (Asynchronous)
Connections represent a connection to a LanceDb database and
can be used to create, list, or open tables.
::: lancedb.connect_async
::: lancedb.db.AsyncConnection
## Tables (Asynchronous)
Table hold your actual data as a collection of records / rows.
::: lancedb.table.AsyncTable
## Indices (Asynchronous)
Indices can be created on a table to speed up queries. This section
lists the indices that LanceDb supports.
::: lancedb.index.BTree
::: lancedb.index.IvfPq
## Querying (Asynchronous)
Queries allow you to return data from your database. Basic queries can be
created with the [AsyncTable.query][lancedb.table.AsyncTable.query] method
to return the entire (typically filtered) table. Vector searches return the
rows nearest to a query vector and can be created with the
[AsyncTable.vector_search][lancedb.table.AsyncTable.vector_search] method.
::: lancedb.query.AsyncQueryBase
::: lancedb.query.AsyncQuery
::: lancedb.query.AsyncVectorQuery

View File

@@ -66,6 +66,7 @@ Currently, Lance supports a growing list of SQL expressions.
- `LIKE`, `NOT LIKE` - `LIKE`, `NOT LIKE`
- `CAST` - `CAST`
- `regexp_match(column, pattern)` - `regexp_match(column, pattern)`
- [DataFusion Functions](https://arrow.apache.org/datafusion/user-guide/sql/scalar_functions.html)
For example, the following filter string is acceptable: For example, the following filter string is acceptable:

74
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.4.13", "version": "0.4.16",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.4.13", "version": "0.4.16",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -52,11 +52,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.13", "@lancedb/vectordb-darwin-arm64": "0.4.16",
"@lancedb/vectordb-darwin-x64": "0.4.13", "@lancedb/vectordb-darwin-x64": "0.4.16",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.13", "@lancedb/vectordb-linux-arm64-gnu": "0.4.16",
"@lancedb/vectordb-linux-x64-gnu": "0.4.13", "@lancedb/vectordb-linux-x64-gnu": "0.4.16",
"@lancedb/vectordb-win32-x64-msvc": "0.4.13" "@lancedb/vectordb-win32-x64-msvc": "0.4.16"
}, },
"peerDependencies": { "peerDependencies": {
"@apache-arrow/ts": "^14.0.2", "@apache-arrow/ts": "^14.0.2",
@@ -333,66 +333,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.4.13",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.13.tgz",
"integrity": "sha512-JfroNCG8yKIU931Y+x8d0Fp8C9DHUSC5j+CjI+e5err7rTWtie4j3JbsXlWAnPFaFEOg0Xk3BWkSikCvhPGJGg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.4.13",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.13.tgz",
"integrity": "sha512-dG6IMvfpHpnHdbJ0UffzJ7cZfMiC02MjIi6YJzgx+hKz2UNXWNBIfTvvhqli85mZsGRXL1OYDdYv0K1YzNjXlA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.4.13",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.13.tgz",
"integrity": "sha512-BRR1VzaMviXby7qmLm0axNZM8eUZF3ZqfvnDKdVRpC3LaRueD6pMXHuC2IUKaFkn7xktf+8BlDZb6foFNEj8bQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.4.13",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.13.tgz",
"integrity": "sha512-WnekZ7ZMlria+NODZ6aBCljCFQSe2bBNUS9ZpyFl/Y1vHduSQPuBxM6V7vp2QubC0daq/rifgjDob89DF+x3xw==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.4.13",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.13.tgz",
"integrity": "sha512-3NDpMWBL2ksDHXAraXhowiLqQcNWM5bdbeHwze4+InYMD54hyQ2ODNc+4usxp63Nya9biVnFS27yXULqkzIEqQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": { "node_modules/@neon-rs/cli": {
"version": "0.0.160", "version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz", "resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.4.13", "version": "0.4.16",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
@@ -88,10 +88,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.13", "@lancedb/vectordb-darwin-arm64": "0.4.16",
"@lancedb/vectordb-darwin-x64": "0.4.13", "@lancedb/vectordb-darwin-x64": "0.4.16",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.13", "@lancedb/vectordb-linux-arm64-gnu": "0.4.16",
"@lancedb/vectordb-linux-x64-gnu": "0.4.13", "@lancedb/vectordb-linux-x64-gnu": "0.4.16",
"@lancedb/vectordb-win32-x64-msvc": "0.4.13" "@lancedb/vectordb-win32-x64-msvc": "0.4.16"
} }
} }

View File

@@ -24,6 +24,7 @@ import { RemoteConnection } from './remote'
import { Query } from './query' import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function' import { isEmbeddingFunction } from './embedding/embedding_function'
import { type Literal, toSQL } from './util' import { type Literal, toSQL } from './util'
import { type HttpMiddleware } from './middleware'
const { const {
databaseNew, databaseNew,
@@ -302,6 +303,18 @@ export interface Connection {
* @param name The name of the table to drop. * @param name The name of the table to drop.
*/ */
dropTable(name: string): Promise<void> dropTable(name: string): Promise<void>
/**
* Instrument the behavior of this Connection with middleware.
*
* The middleware will be called in the order they are added.
*
* Currently this functionality is only supported for remote Connections.
*
* @param {HttpMiddleware} - Middleware which will instrument the Connection.
* @returns - this Connection instrumented by the passed middleware
*/
withMiddleware(middleware: HttpMiddleware): Connection
} }
/** /**
@@ -541,6 +554,18 @@ export interface Table<T = number[]> {
* names (e.g. "a"). * names (e.g. "a").
*/ */
dropColumns(columnNames: string[]): Promise<void> dropColumns(columnNames: string[]): Promise<void>
/**
* Instrument the behavior of this Table with middleware.
*
* The middleware will be called in the order they are added.
*
* Currently this functionality is only supported for remote tables.
*
* @param {HttpMiddleware} - Middleware which will instrument the Table.
* @returns - this Table instrumented by the passed middleware
*/
withMiddleware(middleware: HttpMiddleware): Table<T>
} }
/** /**
@@ -795,6 +820,10 @@ export class LocalConnection implements Connection {
async dropTable (name: string): Promise<void> { async dropTable (name: string): Promise<void> {
await databaseDropTable.call(this._db, name) await databaseDropTable.call(this._db, name)
} }
withMiddleware (middleware: HttpMiddleware): Connection {
return this
}
} }
export class LocalTable<T = number[]> implements Table<T> { export class LocalTable<T = number[]> implements Table<T> {
@@ -1105,6 +1134,10 @@ export class LocalTable<T = number[]> implements Table<T> {
async dropColumns (columnNames: string[]): Promise<void> { async dropColumns (columnNames: string[]): Promise<void> {
return tableDropColumns.call(this._tbl, columnNames) return tableDropColumns.call(this._tbl, columnNames)
} }
withMiddleware (middleware: HttpMiddleware): Table<T> {
return this
}
} }
export interface CleanupStats { export interface CleanupStats {

58
node/src/middleware.ts Normal file
View File

@@ -0,0 +1,58 @@
// Copyright 2024 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* Middleware for Remote LanceDB Connection or Table
*/
export interface HttpMiddleware {
/**
* A callback that can be used to instrument the behavior of http requests to remote
* tables. It can be used to add headers, modify the request, or even short-circuit
* the request and return a response without making the request to the remote endpoint.
* It can also be used to modify the response from the remote endpoint.
*
* @param {RemoteResponse} res - Request to the remote endpoint
* @param {onRemoteRequestNext} next - Callback to advance the middleware chain
*/
onRemoteRequest(
req: RemoteRequest,
next: (req: RemoteRequest) => Promise<RemoteResponse>,
): Promise<RemoteResponse>
};
export enum Method {
GET,
POST
}
/**
* A LanceDB Remote HTTP Request
*/
export interface RemoteRequest {
uri: string
method: Method
headers: Map<string, string>
params?: Map<string, string>
body?: any
}
/**
* A LanceDB Remote HTTP Response
*/
export interface RemoteResponse {
status: number
statusText: string
headers: Map<string, string>
body: () => Promise<any>
}

View File

@@ -38,7 +38,7 @@ export class Query<T = number[]> {
constructor (query?: T, tbl?: any, embeddings?: EmbeddingFunction<T>) { constructor (query?: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl this._tbl = tbl
this._query = query this._query = query
this._limit = undefined this._limit = 10
this._nprobes = 20 this._nprobes = 20
this._refineFactor = undefined this._refineFactor = undefined
this._select = undefined this._select = undefined
@@ -50,6 +50,7 @@ export class Query<T = number[]> {
/*** /***
* Sets the number of results that will be returned * Sets the number of results that will be returned
* default value is 10
* @param value number of results * @param value number of results
*/ */
limit (value: number): Query<T> { limit (value: number): Query<T> {

View File

@@ -12,13 +12,113 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
import axios, { type AxiosResponse } from 'axios' import axios, { type AxiosResponse, type ResponseType } from 'axios'
import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow' import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow'
import { type RemoteResponse, type RemoteRequest, Method } from '../middleware'
interface HttpLancedbClientMiddleware {
onRemoteRequest(
req: RemoteRequest,
next: (req: RemoteRequest) => Promise<RemoteResponse>,
): Promise<RemoteResponse>
}
/**
* Invoke the middleware chain and at the end call the remote endpoint
*/
async function callWithMiddlewares (
req: RemoteRequest,
middlewares: HttpLancedbClientMiddleware[],
opts?: MiddlewareInvocationOptions
): Promise<RemoteResponse> {
async function call (
i: number,
req: RemoteRequest
): Promise<RemoteResponse> {
// if we have reached the end of the middleware chain, make the request
if (i > middlewares.length) {
const headers = Object.fromEntries(req.headers.entries())
const params = Object.fromEntries(req.params?.entries() ?? [])
const timeout = 10000
let res
if (req.method === Method.POST) {
res = await axios.post(
req.uri,
req.body,
{
headers,
params,
timeout,
responseType: opts?.responseType
}
)
} else {
res = await axios.get(
req.uri,
{
headers,
params,
timeout
}
)
}
return toLanceRes(res)
}
// call next middleware in chain
return await middlewares[i - 1].onRemoteRequest(
req,
async (req) => {
return await call(i + 1, req)
}
)
}
return await call(1, req)
}
interface MiddlewareInvocationOptions {
responseType?: ResponseType
}
/**
* Marshall the library response into a LanceDB response
*/
function toLanceRes (res: AxiosResponse): RemoteResponse {
const headers = new Map()
for (const h in res.headers) {
headers.set(h, res.headers[h])
}
return {
status: res.status,
statusText: res.statusText,
headers,
body: async () => {
return res.data
}
}
}
async function decodeErrorData(
res: RemoteResponse,
responseType?: ResponseType
): Promise<string> {
const errorData = await res.body()
if (responseType === 'arraybuffer') {
return new TextDecoder().decode(errorData)
} else {
return errorData
}
}
export class HttpLancedbClient { export class HttpLancedbClient {
private readonly _url: string private readonly _url: string
private readonly _apiKey: () => string private readonly _apiKey: () => string
private readonly _middlewares: HttpLancedbClientMiddleware[]
public constructor ( public constructor (
url: string, url: string,
@@ -27,6 +127,7 @@ export class HttpLancedbClient {
) { ) {
this._url = url this._url = url
this._apiKey = () => apiKey this._apiKey = () => apiKey
this._middlewares = []
} }
get uri (): string { get uri (): string {
@@ -43,74 +144,61 @@ export class HttpLancedbClient {
columns?: string[], columns?: string[],
filter?: string filter?: string
): Promise<ArrowTable<any>> { ): Promise<ArrowTable<any>> {
const response = await axios.post( const result = await this.post(
`${this._url}/v1/table/${tableName}/query/`, `/v1/table/${tableName}/query/`,
{ {
vector, vector,
k, k,
nprobes, nprobes,
refineFactor, refineFactor,
columns, columns,
filter, filter,
prefilter prefilter
}, },
{ undefined,
headers: { undefined,
'Content-Type': 'application/json', 'arraybuffer'
'x-api-key': this._apiKey(), )
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {}) const table = tableFromIPC(await result.body())
},
responseType: 'arraybuffer',
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
const table = tableFromIPC(response.data)
return table return table
} }
/** /**
* Sent GET request. * Sent GET request.
*/ */
public async get (path: string, params?: Record<string, string | number>): Promise<AxiosResponse> { public async get (path: string, params?: Record<string, string>): Promise<RemoteResponse> {
const response = await axios.get( const req = {
`${this._url}${path}`, uri: `${this._url}${path}`,
{ method: Method.GET,
headers: { headers: new Map(Object.entries({
'Content-Type': 'application/json', 'Content-Type': 'application/json',
'x-api-key': this._apiKey(), 'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {}) ...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
}, })),
params, params: new Map(Object.entries(params ?? {}))
timeout: 10000 }
}
).catch((err) => { let response
try {
response = await callWithMiddlewares(req, this._middlewares)
return response
} catch (err: any) {
console.error('error: ', err) console.error('error: ', err)
if (err.response === undefined) { if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`) throw new Error(`Network Error: ${err.message as string}`)
} }
return err.response
}) response = toLanceRes(err.response)
}
if (response.status !== 200) { if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data) const errorData = await decodeErrorData(response)
throw new Error( throw new Error(
`Server Error, status: ${response.status as number}, ` + `Server Error, status: ${response.status}, ` +
`message: ${response.statusText as string}: ${errorData}` `message: ${response.statusText}: ${errorData}`
) )
} }
return response return response
} }
@@ -120,35 +208,65 @@ export class HttpLancedbClient {
public async post ( public async post (
path: string, path: string,
data?: any, data?: any,
params?: Record<string, string | number>, params?: Record<string, string>,
content?: string | undefined content?: string | undefined,
): Promise<AxiosResponse> { responseType?: ResponseType | undefined
const response = await axios.post( ): Promise<RemoteResponse> {
`${this._url}${path}`, const req = {
data, uri: `${this._url}${path}`,
{ method: Method.POST,
headers: { headers: new Map(Object.entries({
'Content-Type': content ?? 'application/json', 'Content-Type': content ?? 'application/json',
'x-api-key': this._apiKey(), 'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {}) ...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
}, })),
params, params: new Map(Object.entries(params ?? {})),
timeout: 30000 body: data
} }
).catch((err) => {
let response
try {
response = await callWithMiddlewares(req, this._middlewares, { responseType })
// return response
} catch (err: any) {
console.error('error: ', err) console.error('error: ', err)
if (err.response === undefined) { if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`) throw new Error(`Network Error: ${err.message as string}`)
} }
return err.response response = toLanceRes(err.response)
}) }
if (response.status !== 200) { if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data) const errorData = await decodeErrorData(response, responseType)
throw new Error( throw new Error(
`Server Error, status: ${response.status as number}, ` + `Server Error, status: ${response.status}, ` +
`message: ${response.statusText as string}: ${errorData}` `message: ${response.statusText}: ${errorData}`
) )
} }
return response return response
} }
/**
* Instrument this client with middleware
* @param mw - The middleware that instruments the client
* @returns - an instance of this client instrumented with the middleware
*/
public withMiddleware (mw: HttpLancedbClientMiddleware): HttpLancedbClient {
const wrapped = this.clone()
wrapped._middlewares.push(mw)
return wrapped
}
/**
* Make a clone of this client
*/
private clone (): HttpLancedbClient {
const clone = new HttpLancedbClient(this._url, this._apiKey(), this._dbName)
for (const mw of this._middlewares) {
clone._middlewares.push(mw)
}
return clone
}
} }

View File

@@ -39,12 +39,13 @@ import {
fromTableToStreamBuffer fromTableToStreamBuffer
} from '../arrow' } from '../arrow'
import { toSQL } from '../util' import { toSQL } from '../util'
import { type HttpMiddleware } from '../middleware'
/** /**
* Remote connection. * Remote connection.
*/ */
export class RemoteConnection implements Connection { export class RemoteConnection implements Connection {
private readonly _client: HttpLancedbClient private _client: HttpLancedbClient
private readonly _dbName: string private readonly _dbName: string
constructor (opts: ConnectionOptions) { constructor (opts: ConnectionOptions) {
@@ -84,10 +85,11 @@ export class RemoteConnection implements Connection {
limit: number = 10 limit: number = 10
): Promise<string[]> { ): Promise<string[]> {
const response = await this._client.get('/v1/table/', { const response = await this._client.get('/v1/table/', {
limit, limit: `${limit}`,
page_token: pageToken page_token: pageToken
}) })
return response.data.tables const body = await response.body()
return body.tables
} }
async openTable (name: string): Promise<Table> async openTable (name: string): Promise<Table>
@@ -154,7 +156,7 @@ export class RemoteConnection implements Connection {
} }
const res = await this._client.post( const res = await this._client.post(
`/v1/table/${tableName}/create/`, `/v1/table/${encodeURIComponent(tableName)}/create/`,
buffer, buffer,
undefined, undefined,
'application/vnd.apache.arrow.stream' 'application/vnd.apache.arrow.stream'
@@ -163,7 +165,7 @@ export class RemoteConnection implements Connection {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}` `message: ${res.statusText}: ${await res.body()}`
) )
} }
@@ -175,7 +177,18 @@ export class RemoteConnection implements Connection {
} }
async dropTable (name: string): Promise<void> { async dropTable (name: string): Promise<void> {
await this._client.post(`/v1/table/${name}/drop/`) await this._client.post(`/v1/table/${encodeURIComponent(name)}/drop/`)
}
withMiddleware (middleware: HttpMiddleware): Connection {
const wrapped = this.clone()
wrapped._client = wrapped._client.withMiddleware(middleware)
return wrapped
}
private clone (): RemoteConnection {
const clone: RemoteConnection = Object.create(RemoteConnection.prototype)
return Object.assign(clone, this)
} }
} }
@@ -229,7 +242,7 @@ export class RemoteQuery<T = number[]> extends Query<T> {
// we are using extend until we have next next version release // we are using extend until we have next next version release
// Table and Connection has both been refactored to interfaces // Table and Connection has both been refactored to interfaces
export class RemoteTable<T = number[]> implements Table<T> { export class RemoteTable<T = number[]> implements Table<T> {
private readonly _client: HttpLancedbClient private _client: HttpLancedbClient
private readonly _embeddings?: EmbeddingFunction<T> private readonly _embeddings?: EmbeddingFunction<T>
private readonly _name: string private readonly _name: string
@@ -255,21 +268,21 @@ export class RemoteTable<T = number[]> implements Table<T> {
get schema (): Promise<any> { get schema (): Promise<any> {
return this._client return this._client
.post(`/v1/table/${this._name}/describe/`) .post(`/v1/table/${encodeURIComponent(this._name)}/describe/`)
.then((res) => { .then(async (res) => {
if (res.status !== 200) { if (res.status !== 200) {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}` `message: ${res.statusText}: ${await res.body()}`
) )
} }
return res.data?.schema return (await res.body())?.schema
}) })
} }
search (query: T): Query<T> { search (query: T): Query<T> {
return new RemoteQuery(query, this._client, this._name) //, this._embeddings_new) return new RemoteQuery(query, this._client, encodeURIComponent(this._name)) //, this._embeddings_new)
} }
filter (where: string): Query<T> { filter (where: string): Query<T> {
@@ -311,7 +324,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings) const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post( const res = await this._client.post(
`/v1/table/${this._name}/merge_insert/`, `/v1/table/${encodeURIComponent(this._name)}/merge_insert/`,
buffer, buffer,
queryParams, queryParams,
'application/vnd.apache.arrow.stream' 'application/vnd.apache.arrow.stream'
@@ -320,7 +333,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}` `message: ${res.statusText}: ${await res.body()}`
) )
} }
} }
@@ -335,7 +348,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings) const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post( const res = await this._client.post(
`/v1/table/${this._name}/insert/`, `/v1/table/${encodeURIComponent(this._name)}/insert/`,
buffer, buffer,
{ {
mode: 'append' mode: 'append'
@@ -346,7 +359,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}` `message: ${res.statusText}: ${await res.body()}`
) )
} }
return tbl.numRows return tbl.numRows
@@ -361,7 +374,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
} }
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings) const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post( const res = await this._client.post(
`/v1/table/${this._name}/insert/`, `/v1/table/${encodeURIComponent(this._name)}/insert/`,
buffer, buffer,
{ {
mode: 'overwrite' mode: 'overwrite'
@@ -372,7 +385,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}` `message: ${res.statusText}: ${await res.body()}`
) )
} }
return tbl.numRows return tbl.numRows
@@ -408,14 +421,14 @@ export class RemoteTable<T = number[]> implements Table<T> {
index_cache_size: indexCacheSize index_cache_size: indexCacheSize
} }
const res = await this._client.post( const res = await this._client.post(
`/v1/table/${this._name}/create_index/`, `/v1/table/${encodeURIComponent(this._name)}/create_index/`,
data data
) )
if (res.status !== 200) { if (res.status !== 200) {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}` `message: ${res.statusText}: ${await res.body()}`
) )
} }
} }
@@ -429,25 +442,27 @@ export class RemoteTable<T = number[]> implements Table<T> {
replace: true replace: true
} }
const res = await this._client.post( const res = await this._client.post(
`/v1/table/${this._name}/create_scalar_index/`, `/v1/table/${encodeURIComponent(this._name)}/create_scalar_index/`,
data data
) )
if (res.status !== 200) { if (res.status !== 200) {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}` `message: ${res.statusText}: ${await res.body()}`
) )
} }
} }
async countRows (): Promise<number> { async countRows (filter?: string): Promise<number> {
const result = await this._client.post(`/v1/table/${this._name}/describe/`) const result = await this._client.post(`/v1/table/${encodeURIComponent(this._name)}/count_rows/`, {
return result.data?.stats?.num_rows predicate: filter
})
return (await result.body())
} }
async delete (filter: string): Promise<void> { async delete (filter: string): Promise<void> {
await this._client.post(`/v1/table/${this._name}/delete/`, { await this._client.post(`/v1/table/${encodeURIComponent(this._name)}/delete/`, {
predicate: filter predicate: filter
}) })
} }
@@ -466,7 +481,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
updates[key] = toSQL(value) updates[key] = toSQL(value)
} }
} }
await this._client.post(`/v1/table/${this._name}/update/`, { await this._client.post(`/v1/table/${encodeURIComponent(this._name)}/update/`, {
predicate: filter, predicate: filter,
updates: Object.entries(updates).map(([key, value]) => [key, value]) updates: Object.entries(updates).map(([key, value]) => [key, value])
}) })
@@ -474,9 +489,9 @@ export class RemoteTable<T = number[]> implements Table<T> {
async listIndices (): Promise<VectorIndex[]> { async listIndices (): Promise<VectorIndex[]> {
const results = await this._client.post( const results = await this._client.post(
`/v1/table/${this._name}/index/list/` `/v1/table/${encodeURIComponent(this._name)}/index/list/`
) )
return results.data.indexes?.map((index: any) => ({ return (await results.body()).indexes?.map((index: any) => ({
columns: index.columns, columns: index.columns,
name: index.index_name, name: index.index_name,
uuid: index.index_uuid uuid: index.index_uuid
@@ -485,11 +500,12 @@ export class RemoteTable<T = number[]> implements Table<T> {
async indexStats (indexUuid: string): Promise<IndexStats> { async indexStats (indexUuid: string): Promise<IndexStats> {
const results = await this._client.post( const results = await this._client.post(
`/v1/table/${this._name}/index/${indexUuid}/stats/` `/v1/table/${encodeURIComponent(this._name)}/index/${indexUuid}/stats/`
) )
const body = await results.body()
return { return {
numIndexedRows: results.data.num_indexed_rows, numIndexedRows: body?.num_indexed_rows,
numUnindexedRows: results.data.num_unindexed_rows numUnindexedRows: body?.num_unindexed_rows
} }
} }
@@ -504,4 +520,15 @@ export class RemoteTable<T = number[]> implements Table<T> {
async dropColumns (columnNames: string[]): Promise<void> { async dropColumns (columnNames: string[]): Promise<void> {
throw new Error('Drop columns is not yet supported in LanceDB Cloud.') throw new Error('Drop columns is not yet supported in LanceDB Cloud.')
} }
withMiddleware(middleware: HttpMiddleware): Table<T> {
const wrapped = this.clone()
wrapped._client = wrapped._client.withMiddleware(middleware)
return wrapped
}
private clone (): RemoteTable<T> {
const clone: RemoteTable<T> = Object.create(RemoteTable.prototype)
return Object.assign(clone, this)
}
} }

View File

@@ -124,9 +124,9 @@ describe('LanceDB client', function () {
const uri = await createTestDB(2, 100) const uri = await createTestDB(2, 100)
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
const table = (await con.openTable('vectors')) as LocalTable const table = (await con.openTable('vectors')) as LocalTable
let results = await table.filter('id % 2 = 0').execute() let results = await table.filter('id % 2 = 0').limit(100).execute()
assertResults(results) assertResults(results)
results = await table.where('id % 2 = 0').execute() results = await table.where('id % 2 = 0').limit(100).execute()
assertResults(results) assertResults(results)
// Should reject a bad filter // Should reject a bad filter

View File

@@ -1,12 +1,44 @@
# (New) LanceDB NodeJS SDK # LanceDB JavaScript SDK
It will replace the NodeJS SDK when it is ready. A JavaScript library for [LanceDB](https://github.com/lancedb/lancedb).
## Installation
```bash
npm install @lancedb/lancedb
```
This will download the appropriate native library for your platform. We currently
support:
- Linux (x86_64 and aarch64)
- MacOS (Intel and ARM/M1/M2)
- Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage
### Basic Example
```javascript
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("my_table", [
{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 },
]);
const results = await table.vectorSearch([0.1, 0.3]).limit(20).toArray();
console.log(results);
```
The [quickstart](../basic.md) contains a more complete example.
## Development ## Development
```sh ```sh
npm run build npm run build
npm t npm run test
``` ```
### Running lint / format ### Running lint / format

View File

@@ -106,6 +106,9 @@ export class MakeArrowTableOptions {
* An enhanced version of the {@link makeTable} function from Apache Arrow * An enhanced version of the {@link makeTable} function from Apache Arrow
* that supports nested fields and embeddings columns. * that supports nested fields and embeddings columns.
* *
* (typically you do not need to call this function. It will be called automatically
* when creating a table or adding data to it)
*
* This function converts an array of Record<String, any> (row-major JS objects) * This function converts an array of Record<String, any> (row-major JS objects)
* to an Arrow Table (a columnar structure) * to an Arrow Table (a columnar structure)
* *

View File

@@ -0,0 +1,2 @@
export { EmbeddingFunction, isEmbeddingFunction } from "./embedding_function";
export { OpenAIEmbeddingFunction } from "./openai";

View File

@@ -18,9 +18,34 @@ import {
ConnectionOptions, ConnectionOptions,
} from "./native.js"; } from "./native.js";
export { ConnectionOptions, WriteOptions, Query } from "./native.js"; export {
export { Connection, CreateTableOptions } from "./connection"; WriteOptions,
export { Table, AddDataOptions } from "./table"; WriteMode,
AddColumnsSql,
ColumnAlteration,
ConnectionOptions,
} from "./native.js";
export {
makeArrowTable,
MakeArrowTableOptions,
Data,
VectorColumnOptions,
} from "./arrow";
export {
Connection,
CreateTableOptions,
TableNamesOptions,
} from "./connection";
export {
ExecutableQuery,
Query,
QueryBase,
VectorQuery,
RecordBatchIterator,
} from "./query";
export { Index, IndexOptions, IvfPqOptions } from "./indices";
export { Table, AddDataOptions, IndexConfig, UpdateOptions } from "./table";
export * as embedding from "./embedding";
/** /**
* Connect to a LanceDB instance at the given URI. * Connect to a LanceDB instance at the given URI.

View File

@@ -1,147 +0,0 @@
/* tslint:disable */
/* eslint-disable */
/* auto-generated by NAPI-RS */
/** A description of an index currently configured on a column */
export interface IndexConfig {
/** The type of the index */
indexType: string
/**
* The columns in the index
*
* Currently this is always an array of size 1. In the future there may
* be more columns to represent composite indices.
*/
columns: Array<string>
}
/**
* A definition of a column alteration. The alteration changes the column at
* `path` to have the new name `name`, to be nullable if `nullable` is true,
* and to have the data type `data_type`. At least one of `rename` or `nullable`
* must be provided.
*/
export interface ColumnAlteration {
/**
* The path to the column to alter. This is a dot-separated path to the column.
* If it is a top-level column then it is just the name of the column. If it is
* a nested column then it is the path to the column, e.g. "a.b.c" for a column
* `c` nested inside a column `b` nested inside a column `a`.
*/
path: string
/**
* The new name of the column. If not provided then the name will not be changed.
* This must be distinct from the names of all other columns in the table.
*/
rename?: string
/** Set the new nullability. Note that a nullable column cannot be made non-nullable. */
nullable?: boolean
}
/** A definition of a new column to add to a table. */
export interface AddColumnsSql {
/** The name of the new column. */
name: string
/**
* The values to populate the new column with, as a SQL expression.
* The expression can reference other columns in the table.
*/
valueSql: string
}
export interface ConnectionOptions {
apiKey?: string
hostOverride?: string
/**
* (For LanceDB OSS only): The interval, in seconds, at which to check for
* updates to the table from other processes. If None, then consistency is not
* checked. For performance reasons, this is the default. For strong
* consistency, set this to zero seconds. Then every read will check for
* updates from other processes. As a compromise, you can set this to a
* non-zero value for eventual consistency. If more than that interval
* has passed since the last check, then the table will be checked for updates.
* Note: this consistency only applies to read operations. Write operations are
* always consistent.
*/
readConsistencyInterval?: number
}
/** Write mode for writing a table. */
export const enum WriteMode {
Create = 'Create',
Append = 'Append',
Overwrite = 'Overwrite'
}
/** Write options when creating a Table. */
export interface WriteOptions {
mode?: WriteMode
}
export function connect(uri: string, options: ConnectionOptions): Promise<Connection>
export class Connection {
/** Create a new Connection instance from the given URI. */
static new(uri: string, options: ConnectionOptions): Promise<Connection>
display(): string
isOpen(): boolean
close(): void
/** List all tables in the dataset. */
tableNames(startAfter?: string | undefined | null, limit?: number | undefined | null): Promise<Array<string>>
/**
* Create table from a Apache Arrow IPC (file) buffer.
*
* Parameters:
* - name: The name of the table.
* - buf: The buffer containing the IPC file.
*
*/
createTable(name: string, buf: Buffer, mode: string): Promise<Table>
createEmptyTable(name: string, schemaBuf: Buffer, mode: string): Promise<Table>
openTable(name: string): Promise<Table>
/** Drop table with the name. Or raise an error if the table does not exist. */
dropTable(name: string): Promise<void>
}
export class Index {
static ivfPq(distanceType?: string | undefined | null, numPartitions?: number | undefined | null, numSubVectors?: number | undefined | null, maxIterations?: number | undefined | null, sampleRate?: number | undefined | null): Index
static btree(): Index
}
/** Typescript-style Async Iterator over RecordBatches */
export class RecordBatchIterator {
next(): Promise<Buffer | null>
}
export class Query {
onlyIf(predicate: string): void
select(columns: Array<[string, string]>): void
limit(limit: number): void
nearestTo(vector: Float32Array): VectorQuery
execute(): Promise<RecordBatchIterator>
}
export class VectorQuery {
column(column: string): void
distanceType(distanceType: string): void
postfilter(): void
refineFactor(refineFactor: number): void
nprobes(nprobe: number): void
bypassVectorIndex(): void
onlyIf(predicate: string): void
select(columns: Array<[string, string]>): void
limit(limit: number): void
execute(): Promise<RecordBatchIterator>
}
export class Table {
display(): string
isOpen(): boolean
close(): void
/** Return Schema as empty Arrow IPC file. */
schema(): Promise<Buffer>
add(buf: Buffer, mode: string): Promise<void>
countRows(filter?: string | undefined | null): Promise<number>
delete(predicate: string): Promise<void>
createIndex(index: Index | undefined | null, column: string, replace?: boolean | undefined | null): Promise<void>
update(onlyIf: string | undefined | null, columns: Array<[string, string]>): Promise<void>
query(): Query
vectorSearch(vector: Float32Array): VectorQuery
addColumns(transforms: Array<AddColumnsSql>): Promise<void>
alterColumns(alterations: Array<ColumnAlteration>): Promise<void>
dropColumns(columns: Array<string>): Promise<void>
version(): Promise<number>
checkout(version: number): Promise<void>
checkoutLatest(): Promise<void>
restore(): Promise<void>
listIndices(): Promise<Array<IndexConfig>>
}

View File

@@ -1,329 +0,0 @@
/* tslint:disable */
/* eslint-disable */
/* prettier-ignore */
/* auto-generated by NAPI-RS */
const { existsSync, readFileSync } = require('fs')
const { join } = require("path");
const { platform, arch } = process;
let nativeBinding = null;
let localFileExisted = false;
let loadError = null;
function isMusl() {
// For Node 10
if (!process.report || typeof process.report.getReport !== "function") {
try {
const lddPath = require("child_process")
.execSync("which ldd")
.toString()
.trim();
return readFileSync(lddPath, "utf8").includes("musl");
} catch (e) {
return true;
}
} else {
const { glibcVersionRuntime } = process.report.getReport().header;
return !glibcVersionRuntime;
}
}
switch (platform) {
case "android":
switch (arch) {
case "arm64":
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.android-arm64.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.android-arm64.node");
} else {
nativeBinding = require("lancedb-android-arm64");
}
} catch (e) {
loadError = e;
}
break;
case "arm":
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.android-arm-eabi.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.android-arm-eabi.node");
} else {
nativeBinding = require("lancedb-android-arm-eabi");
}
} catch (e) {
loadError = e;
}
break;
default:
throw new Error(`Unsupported architecture on Android ${arch}`);
}
break;
case "win32":
switch (arch) {
case "x64":
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.win32-x64-msvc.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.win32-x64-msvc.node");
} else {
nativeBinding = require("lancedb-win32-x64-msvc");
}
} catch (e) {
loadError = e;
}
break;
case "ia32":
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.win32-ia32-msvc.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.win32-ia32-msvc.node");
} else {
nativeBinding = require("lancedb-win32-ia32-msvc");
}
} catch (e) {
loadError = e;
}
break;
case "arm64":
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.win32-arm64-msvc.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.win32-arm64-msvc.node");
} else {
nativeBinding = require("lancedb-win32-arm64-msvc");
}
} catch (e) {
loadError = e;
}
break;
default:
throw new Error(`Unsupported architecture on Windows: ${arch}`);
}
break;
case "darwin":
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.darwin-universal.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.darwin-universal.node");
} else {
nativeBinding = require("lancedb-darwin-universal");
}
break;
} catch {}
switch (arch) {
case "x64":
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.darwin-x64.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.darwin-x64.node");
} else {
nativeBinding = require("lancedb-darwin-x64");
}
} catch (e) {
loadError = e;
}
break;
case "arm64":
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.darwin-arm64.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.darwin-arm64.node");
} else {
nativeBinding = require("lancedb-darwin-arm64");
}
} catch (e) {
loadError = e;
}
break;
default:
throw new Error(`Unsupported architecture on macOS: ${arch}`);
}
break;
case "freebsd":
if (arch !== "x64") {
throw new Error(`Unsupported architecture on FreeBSD: ${arch}`);
}
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.freebsd-x64.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.freebsd-x64.node");
} else {
nativeBinding = require("lancedb-freebsd-x64");
}
} catch (e) {
loadError = e;
}
break;
case "linux":
switch (arch) {
case "x64":
if (isMusl()) {
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.linux-x64-musl.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.linux-x64-musl.node");
} else {
nativeBinding = require("lancedb-linux-x64-musl");
}
} catch (e) {
loadError = e;
}
} else {
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.linux-x64-gnu.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.linux-x64-gnu.node");
} else {
nativeBinding = require("lancedb-linux-x64-gnu");
}
} catch (e) {
loadError = e;
}
}
break;
case "arm64":
if (isMusl()) {
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.linux-arm64-musl.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.linux-arm64-musl.node");
} else {
nativeBinding = require("lancedb-linux-arm64-musl");
}
} catch (e) {
loadError = e;
}
} else {
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.linux-arm64-gnu.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.linux-arm64-gnu.node");
} else {
nativeBinding = require("lancedb-linux-arm64-gnu");
}
} catch (e) {
loadError = e;
}
}
break;
case "arm":
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.linux-arm-gnueabihf.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.linux-arm-gnueabihf.node");
} else {
nativeBinding = require("lancedb-linux-arm-gnueabihf");
}
} catch (e) {
loadError = e;
}
break;
case "riscv64":
if (isMusl()) {
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.linux-riscv64-musl.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.linux-riscv64-musl.node");
} else {
nativeBinding = require("lancedb-linux-riscv64-musl");
}
} catch (e) {
loadError = e;
}
} else {
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.linux-riscv64-gnu.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.linux-riscv64-gnu.node");
} else {
nativeBinding = require("lancedb-linux-riscv64-gnu");
}
} catch (e) {
loadError = e;
}
}
break;
case "s390x":
localFileExisted = existsSync(
join(__dirname, "lancedb-nodejs.linux-s390x-gnu.node"),
);
try {
if (localFileExisted) {
nativeBinding = require("./lancedb-nodejs.linux-s390x-gnu.node");
} else {
nativeBinding = require("lancedb-linux-s390x-gnu");
}
} catch (e) {
loadError = e;
}
break;
default:
throw new Error(`Unsupported architecture on Linux: ${arch}`);
}
break;
default:
throw new Error(`Unsupported OS: ${platform}, architecture: ${arch}`);
}
if (!nativeBinding) {
if (loadError) {
throw loadError;
}
throw new Error(`Failed to load native binding`);
}
const {
Connection,
Index,
RecordBatchIterator,
Query,
VectorQuery,
Table,
WriteMode,
connect,
} = nativeBinding;
module.exports.Connection = Connection;
module.exports.Index = Index;
module.exports.RecordBatchIterator = RecordBatchIterator;
module.exports.Query = Query;
module.exports.VectorQuery = VectorQuery;
module.exports.Table = Table;
module.exports.WriteMode = WriteMode;
module.exports.connect = connect;

View File

@@ -20,7 +20,7 @@ import {
VectorQuery as NativeVectorQuery, VectorQuery as NativeVectorQuery,
} from "./native"; } from "./native";
import { type IvfPqOptions } from "./indices"; import { type IvfPqOptions } from "./indices";
class RecordBatchIterator implements AsyncIterator<RecordBatch> { export class RecordBatchIterator implements AsyncIterator<RecordBatch> {
private promisedInner?: Promise<NativeBatchIterator>; private promisedInner?: Promise<NativeBatchIterator>;
private inner?: NativeBatchIterator; private inner?: NativeBatchIterator;

View File

@@ -1,3 +1,3 @@
# `lancedb-darwin-arm64` # `@lancedb/lancedb-darwin-arm64`
This is the **aarch64-apple-darwin** binary for `lancedb` This is the **aarch64-apple-darwin** binary for `@lancedb/lancedb`

View File

@@ -1,6 +1,6 @@
{ {
"name": "lancedb-darwin-arm64", "name": "@lancedb/lancedb-darwin-arm64",
"version": "0.4.3", "version": "0.4.16",
"os": [ "os": [
"darwin" "darwin"
], ],
@@ -11,7 +11,7 @@
"files": [ "files": [
"lancedb.darwin-arm64.node" "lancedb.darwin-arm64.node"
], ],
"license": "MIT", "license": "Apache 2.0",
"engines": { "engines": {
"node": ">= 18" "node": ">= 18"
} }

View File

@@ -1,3 +1,3 @@
# `lancedb-darwin-x64` # `@lancedb/lancedb-darwin-x64`
This is the **x86_64-apple-darwin** binary for `lancedb` This is the **x86_64-apple-darwin** binary for `@lancedb/lancedb`

View File

@@ -1,6 +1,6 @@
{ {
"name": "lancedb-darwin-x64", "name": "@lancedb/lancedb-darwin-x64",
"version": "0.4.3", "version": "0.4.16",
"os": [ "os": [
"darwin" "darwin"
], ],
@@ -11,7 +11,7 @@
"files": [ "files": [
"lancedb.darwin-x64.node" "lancedb.darwin-x64.node"
], ],
"license": "MIT", "license": "Apache 2.0",
"engines": { "engines": {
"node": ">= 18" "node": ">= 18"
} }

View File

@@ -1,3 +1,3 @@
# `lancedb-linux-arm64-gnu` # `@lancedb/lancedb-linux-arm64-gnu`
This is the **aarch64-unknown-linux-gnu** binary for `lancedb` This is the **aarch64-unknown-linux-gnu** binary for `@lancedb/lancedb`

View File

@@ -1,6 +1,6 @@
{ {
"name": "lancedb-linux-arm64-gnu", "name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.4.3", "version": "0.4.16",
"os": [ "os": [
"linux" "linux"
], ],
@@ -11,9 +11,9 @@
"files": [ "files": [
"lancedb.linux-arm64-gnu.node" "lancedb.linux-arm64-gnu.node"
], ],
"license": "MIT", "license": "Apache 2.0",
"engines": { "engines": {
"node": ">= 10" "node": ">= 18"
}, },
"libc": [ "libc": [
"glibc" "glibc"

View File

@@ -1,3 +1,3 @@
# `lancedb-linux-x64-gnu` # `@lancedb/lancedb-linux-x64-gnu`
This is the **x86_64-unknown-linux-gnu** binary for `lancedb` This is the **x86_64-unknown-linux-gnu** binary for `@lancedb/lancedb`

View File

@@ -1,6 +1,6 @@
{ {
"name": "lancedb-linux-x64-gnu", "name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.4.3", "version": "0.4.16",
"os": [ "os": [
"linux" "linux"
], ],
@@ -11,9 +11,9 @@
"files": [ "files": [
"lancedb.linux-x64-gnu.node" "lancedb.linux-x64-gnu.node"
], ],
"license": "MIT", "license": "Apache 2.0",
"engines": { "engines": {
"node": ">= 10" "node": ">= 18"
}, },
"libc": [ "libc": [
"glibc" "glibc"

View File

@@ -0,0 +1,3 @@
# `@lancedb/lancedb-win32-x64-msvc`
This is the **x86_64-pc-windows-msvc** binary for `@lancedb/lancedb`

View File

@@ -0,0 +1,18 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.4.14",
"os": [
"win32"
],
"cpu": [
"x64"
],
"main": "lancedb.win32-x64-msvc.node",
"files": [
"lancedb.win32-x64-msvc.node"
],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
}
}

217
nodejs/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "lancedb", "name": "@lancedb/lancedb",
"version": "0.4.3", "version": "0.4.15",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "lancedb", "name": "@lancedb/lancedb",
"version": "0.4.3", "version": "0.4.15",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -15,8 +15,12 @@
"os": [ "os": [
"darwin", "darwin",
"linux", "linux",
"windows" "win32"
], ],
"dependencies": {
"apache-arrow": "^15.0.0",
"openai": "^4.29.2"
},
"devDependencies": { "devDependencies": {
"@napi-rs/cli": "^2.18.0", "@napi-rs/cli": "^2.18.0",
"@types/jest": "^29.1.2", "@types/jest": "^29.1.2",
@@ -29,6 +33,7 @@
"eslint-plugin-jsdoc": "^48.2.1", "eslint-plugin-jsdoc": "^48.2.1",
"jest": "^29.7.0", "jest": "^29.7.0",
"prettier": "^3.1.0", "prettier": "^3.1.0",
"shx": "^0.3.4",
"tmp": "^0.2.3", "tmp": "^0.2.3",
"ts-jest": "^29.1.2", "ts-jest": "^29.1.2",
"typedoc": "^0.25.7", "typedoc": "^0.25.7",
@@ -40,14 +45,11 @@
"node": ">= 18" "node": ">= 18"
}, },
"optionalDependencies": { "optionalDependencies": {
"lancedb-darwin-arm64": "0.4.3", "@lancedb/lancedb-darwin-arm64": "0.4.15",
"lancedb-darwin-x64": "0.4.3", "@lancedb/lancedb-darwin-x64": "0.4.15",
"lancedb-linux-arm64-gnu": "0.4.3", "@lancedb/lancedb-linux-arm64-gnu": "0.4.15",
"lancedb-linux-x64-gnu": "0.4.3", "@lancedb/lancedb-linux-x64-gnu": "0.4.15",
"openai": "^4.28.4" "@lancedb/lancedb-win32-x64-msvc": "0.4.15"
},
"peerDependencies": {
"apache-arrow": "^15.0.0"
} }
}, },
"node_modules/@75lb/deep-merge": { "node_modules/@75lb/deep-merge": {
@@ -1317,6 +1319,81 @@
"@jridgewell/sourcemap-codec": "^1.4.14" "@jridgewell/sourcemap-codec": "^1.4.14"
} }
}, },
"node_modules/@lancedb/lancedb-darwin-arm64": {
"version": "0.4.15",
"resolved": "https://registry.npmjs.org/@lancedb/lancedb-darwin-arm64/-/lancedb-darwin-arm64-0.4.15.tgz",
"integrity": "sha512-bBImUd2mMUrYzQtyvGSPA3AKxXF5Q4hAbWtv1PD4R8LvOmR6KGlWPiVp8ywkkHeue7DN+C/lFACUVw6iW06dTQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
],
"engines": {
"node": ">= 18"
}
},
"node_modules/@lancedb/lancedb-darwin-x64": {
"version": "0.4.15",
"resolved": "https://registry.npmjs.org/@lancedb/lancedb-darwin-x64/-/lancedb-darwin-x64-0.4.15.tgz",
"integrity": "sha512-V1af4K+U21oL9zgbUCDfwPU9n0eOfdeb3bBCuxNRPz1GCVu8BOhKD07v9AiFolC4zoSkR8mXYvV2w3cxVN/Tlw==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
],
"engines": {
"node": ">= 18"
}
},
"node_modules/@lancedb/lancedb-linux-arm64-gnu": {
"version": "0.4.15",
"resolved": "https://registry.npmjs.org/@lancedb/lancedb-linux-arm64-gnu/-/lancedb-linux-arm64-gnu-0.4.15.tgz",
"integrity": "sha512-rwo3xC0h8udlRtrlqk44n7h4Jc7wu5YuVB/pvcRU0UZGp0xKKwOdfO4mLflGmVlboKzqcjZFObOB2gcv7dRwLg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
],
"engines": {
"node": ">= 18"
}
},
"node_modules/@lancedb/lancedb-linux-x64-gnu": {
"version": "0.4.15",
"resolved": "https://registry.npmjs.org/@lancedb/lancedb-linux-x64-gnu/-/lancedb-linux-x64-gnu-0.4.15.tgz",
"integrity": "sha512-uOhhX0gfx8SSzekH43Od4RsR3/1T8BRq3+aijUKaDd9tllecwxv3B1ucPH9nNMaYzMwD/Y1+tJETOddgrjsD5g==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
],
"engines": {
"node": ">= 18"
}
},
"node_modules/@lancedb/lancedb-win32-x64-msvc": {
"version": "0.4.15",
"resolved": "https://registry.npmjs.org/@lancedb/lancedb-win32-x64-msvc/-/lancedb-win32-x64-msvc-0.4.15.tgz",
"integrity": "sha512-u+vaAWZMLrA9i99Xrf0P5bTRIc/1PhUcxP4Q7E8rlKhzodRQLYeUlFflCDBXZOiUcNMMkvnR3YN+YTpHWhXlgA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
],
"engines": {
"node": ">= 18"
}
},
"node_modules/@napi-rs/cli": { "node_modules/@napi-rs/cli": {
"version": "2.18.0", "version": "2.18.0",
"resolved": "https://registry.npmjs.org/@napi-rs/cli/-/cli-2.18.0.tgz", "resolved": "https://registry.npmjs.org/@napi-rs/cli/-/cli-2.18.0.tgz",
@@ -1396,7 +1473,6 @@
"version": "0.5.6", "version": "0.5.6",
"resolved": "https://registry.npmjs.org/@swc/helpers/-/helpers-0.5.6.tgz", "resolved": "https://registry.npmjs.org/@swc/helpers/-/helpers-0.5.6.tgz",
"integrity": "sha512-aYX01Ke9hunpoCexYAgQucEpARGQ5w/cqHFrIR+e9gdKb1QWTsVJuTJ2ozQzIAxLyRQe/m+2RqzkyOOGiMKRQA==", "integrity": "sha512-aYX01Ke9hunpoCexYAgQucEpARGQ5w/cqHFrIR+e9gdKb1QWTsVJuTJ2ozQzIAxLyRQe/m+2RqzkyOOGiMKRQA==",
"peer": true,
"dependencies": { "dependencies": {
"tslib": "^2.4.0" "tslib": "^2.4.0"
} }
@@ -1445,8 +1521,7 @@
"node_modules/@types/command-line-args": { "node_modules/@types/command-line-args": {
"version": "5.2.3", "version": "5.2.3",
"resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.3.tgz", "resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.3.tgz",
"integrity": "sha512-uv0aG6R0Y8WHZLTamZwtfsDLVRnOa+n+n5rEvFWL5Na5gZ8V2Teab/duDPFzIIIhs9qizDpcavCusCLJZu62Kw==", "integrity": "sha512-uv0aG6R0Y8WHZLTamZwtfsDLVRnOa+n+n5rEvFWL5Na5gZ8V2Teab/duDPFzIIIhs9qizDpcavCusCLJZu62Kw=="
"peer": true
}, },
"node_modules/@types/command-line-usage": { "node_modules/@types/command-line-usage": {
"version": "5.0.2", "version": "5.0.2",
@@ -1514,7 +1589,6 @@
"version": "2.6.11", "version": "2.6.11",
"resolved": "https://registry.npmjs.org/@types/node-fetch/-/node-fetch-2.6.11.tgz", "resolved": "https://registry.npmjs.org/@types/node-fetch/-/node-fetch-2.6.11.tgz",
"integrity": "sha512-24xFj9R5+rfQJLRyM56qh+wnVSYhyXC2tkoBndtY0U+vubqNsYXGjufB2nn8Q6gt0LrARwL6UBtMCSVCwl4B1g==", "integrity": "sha512-24xFj9R5+rfQJLRyM56qh+wnVSYhyXC2tkoBndtY0U+vubqNsYXGjufB2nn8Q6gt0LrARwL6UBtMCSVCwl4B1g==",
"optional": true,
"dependencies": { "dependencies": {
"@types/node": "*", "@types/node": "*",
"form-data": "^4.0.0" "form-data": "^4.0.0"
@@ -1783,7 +1857,6 @@
"version": "3.0.0", "version": "3.0.0",
"resolved": "https://registry.npmjs.org/abort-controller/-/abort-controller-3.0.0.tgz", "resolved": "https://registry.npmjs.org/abort-controller/-/abort-controller-3.0.0.tgz",
"integrity": "sha512-h8lQ8tacZYnR3vNQTgibj+tODHI5/+l06Au2Pcriv/Gmet0eaj4TwWH41sO9wnHDiQsEj19q0drzdWdeAHtweg==", "integrity": "sha512-h8lQ8tacZYnR3vNQTgibj+tODHI5/+l06Au2Pcriv/Gmet0eaj4TwWH41sO9wnHDiQsEj19q0drzdWdeAHtweg==",
"optional": true,
"dependencies": { "dependencies": {
"event-target-shim": "^5.0.0" "event-target-shim": "^5.0.0"
}, },
@@ -1816,7 +1889,6 @@
"version": "4.5.0", "version": "4.5.0",
"resolved": "https://registry.npmjs.org/agentkeepalive/-/agentkeepalive-4.5.0.tgz", "resolved": "https://registry.npmjs.org/agentkeepalive/-/agentkeepalive-4.5.0.tgz",
"integrity": "sha512-5GG/5IbQQpC9FpkRGsSvZI5QYeSCzlJHdpBQntCsuTOxhKD8lqKhrleg2Yi7yvMIf82Ycmmqln9U8V9qwEiJew==", "integrity": "sha512-5GG/5IbQQpC9FpkRGsSvZI5QYeSCzlJHdpBQntCsuTOxhKD8lqKhrleg2Yi7yvMIf82Ycmmqln9U8V9qwEiJew==",
"optional": true,
"dependencies": { "dependencies": {
"humanize-ms": "^1.2.1" "humanize-ms": "^1.2.1"
}, },
@@ -1913,7 +1985,6 @@
"version": "15.0.0", "version": "15.0.0",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-15.0.0.tgz", "resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-15.0.0.tgz",
"integrity": "sha512-e6aunxNKM+woQf137ny3tp/xbLjFJS2oGQxQhYGqW6dGeIwNV1jOeEAeR6sS2jwAI2qLO83gYIP2MBz02Gw5Xw==", "integrity": "sha512-e6aunxNKM+woQf137ny3tp/xbLjFJS2oGQxQhYGqW6dGeIwNV1jOeEAeR6sS2jwAI2qLO83gYIP2MBz02Gw5Xw==",
"peer": true,
"dependencies": { "dependencies": {
"@swc/helpers": "^0.5.2", "@swc/helpers": "^0.5.2",
"@types/command-line-args": "^5.2.1", "@types/command-line-args": "^5.2.1",
@@ -2001,8 +2072,7 @@
"node_modules/asynckit": { "node_modules/asynckit": {
"version": "0.4.0", "version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz", "resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==", "integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
"optional": true
}, },
"node_modules/babel-jest": { "node_modules/babel-jest": {
"version": "29.7.0", "version": "29.7.0",
@@ -2129,8 +2199,7 @@
"node_modules/base-64": { "node_modules/base-64": {
"version": "0.1.0", "version": "0.1.0",
"resolved": "https://registry.npmjs.org/base-64/-/base-64-0.1.0.tgz", "resolved": "https://registry.npmjs.org/base-64/-/base-64-0.1.0.tgz",
"integrity": "sha512-Y5gU45svrR5tI2Vt/X9GPd3L0HNIKzGu202EjxrXMpuc2V2CiKgemAbUUsqYmZJvPtCXoUKjNZwBJzsNScUbXA==", "integrity": "sha512-Y5gU45svrR5tI2Vt/X9GPd3L0HNIKzGu202EjxrXMpuc2V2CiKgemAbUUsqYmZJvPtCXoUKjNZwBJzsNScUbXA=="
"optional": true
}, },
"node_modules/brace-expansion": { "node_modules/brace-expansion": {
"version": "1.1.11", "version": "1.1.11",
@@ -2296,7 +2365,6 @@
"version": "0.0.2", "version": "0.0.2",
"resolved": "https://registry.npmjs.org/charenc/-/charenc-0.0.2.tgz", "resolved": "https://registry.npmjs.org/charenc/-/charenc-0.0.2.tgz",
"integrity": "sha512-yrLQ/yVUFXkzg7EDQsPieE/53+0RlaWTs+wBrvW36cyilJ2SaDWfl4Yj7MtLTXleV9uEKefbAGUPv2/iWSooRA==", "integrity": "sha512-yrLQ/yVUFXkzg7EDQsPieE/53+0RlaWTs+wBrvW36cyilJ2SaDWfl4Yj7MtLTXleV9uEKefbAGUPv2/iWSooRA==",
"optional": true,
"engines": { "engines": {
"node": "*" "node": "*"
} }
@@ -2357,7 +2425,6 @@
"version": "1.0.8", "version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz", "resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==", "integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"optional": true,
"dependencies": { "dependencies": {
"delayed-stream": "~1.0.0" "delayed-stream": "~1.0.0"
}, },
@@ -2469,7 +2536,6 @@
"version": "0.0.2", "version": "0.0.2",
"resolved": "https://registry.npmjs.org/crypt/-/crypt-0.0.2.tgz", "resolved": "https://registry.npmjs.org/crypt/-/crypt-0.0.2.tgz",
"integrity": "sha512-mCxBlsHFYh9C+HVpiEacem8FEBnMXgU9gy4zmNC+SXAZNB/1idgp/aulFJ4FgCi7GPEVbfyng092GqL2k2rmow==", "integrity": "sha512-mCxBlsHFYh9C+HVpiEacem8FEBnMXgU9gy4zmNC+SXAZNB/1idgp/aulFJ4FgCi7GPEVbfyng092GqL2k2rmow==",
"optional": true,
"engines": { "engines": {
"node": "*" "node": "*"
} }
@@ -2530,7 +2596,6 @@
"version": "1.0.0", "version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz", "resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==", "integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"optional": true,
"engines": { "engines": {
"node": ">=0.4.0" "node": ">=0.4.0"
} }
@@ -2557,7 +2622,6 @@
"version": "1.3.0", "version": "1.3.0",
"resolved": "https://registry.npmjs.org/digest-fetch/-/digest-fetch-1.3.0.tgz", "resolved": "https://registry.npmjs.org/digest-fetch/-/digest-fetch-1.3.0.tgz",
"integrity": "sha512-CGJuv6iKNM7QyZlM2T3sPAdZWd/p9zQiRNS9G+9COUCwzWFTs0Xp8NF5iePx7wtvhDykReiRRrSeNb4oMmB8lA==", "integrity": "sha512-CGJuv6iKNM7QyZlM2T3sPAdZWd/p9zQiRNS9G+9COUCwzWFTs0Xp8NF5iePx7wtvhDykReiRRrSeNb4oMmB8lA==",
"optional": true,
"dependencies": { "dependencies": {
"base-64": "^0.1.0", "base-64": "^0.1.0",
"md5": "^2.3.0" "md5": "^2.3.0"
@@ -2862,7 +2926,6 @@
"version": "5.0.1", "version": "5.0.1",
"resolved": "https://registry.npmjs.org/event-target-shim/-/event-target-shim-5.0.1.tgz", "resolved": "https://registry.npmjs.org/event-target-shim/-/event-target-shim-5.0.1.tgz",
"integrity": "sha512-i/2XbnSz/uxRCU6+NdVJgKWDTM427+MqYbkQzD321DuCQJUqOuJKIA0IM2+W2xtYHdKOmZ4dR6fExsd4SXL+WQ==", "integrity": "sha512-i/2XbnSz/uxRCU6+NdVJgKWDTM427+MqYbkQzD321DuCQJUqOuJKIA0IM2+W2xtYHdKOmZ4dR6fExsd4SXL+WQ==",
"optional": true,
"engines": { "engines": {
"node": ">=6" "node": ">=6"
} }
@@ -3024,7 +3087,6 @@
"version": "4.0.0", "version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz", "resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==", "integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"optional": true,
"dependencies": { "dependencies": {
"asynckit": "^0.4.0", "asynckit": "^0.4.0",
"combined-stream": "^1.0.8", "combined-stream": "^1.0.8",
@@ -3037,14 +3099,12 @@
"node_modules/form-data-encoder": { "node_modules/form-data-encoder": {
"version": "1.7.2", "version": "1.7.2",
"resolved": "https://registry.npmjs.org/form-data-encoder/-/form-data-encoder-1.7.2.tgz", "resolved": "https://registry.npmjs.org/form-data-encoder/-/form-data-encoder-1.7.2.tgz",
"integrity": "sha512-qfqtYan3rxrnCk1VYaA4H+Ms9xdpPqvLZa6xmMgFvhO32x7/3J/ExcTd6qpxM0vH2GdMI+poehyBZvqfMTto8A==", "integrity": "sha512-qfqtYan3rxrnCk1VYaA4H+Ms9xdpPqvLZa6xmMgFvhO32x7/3J/ExcTd6qpxM0vH2GdMI+poehyBZvqfMTto8A=="
"optional": true
}, },
"node_modules/formdata-node": { "node_modules/formdata-node": {
"version": "4.4.1", "version": "4.4.1",
"resolved": "https://registry.npmjs.org/formdata-node/-/formdata-node-4.4.1.tgz", "resolved": "https://registry.npmjs.org/formdata-node/-/formdata-node-4.4.1.tgz",
"integrity": "sha512-0iirZp3uVDjVGt9p49aTaqjk84TrglENEDuqfdlZQ1roC9CWlPk6Avf8EEnZNcAqPonwkG35x4n3ww/1THYAeQ==", "integrity": "sha512-0iirZp3uVDjVGt9p49aTaqjk84TrglENEDuqfdlZQ1roC9CWlPk6Avf8EEnZNcAqPonwkG35x4n3ww/1THYAeQ==",
"optional": true,
"dependencies": { "dependencies": {
"node-domexception": "1.0.0", "node-domexception": "1.0.0",
"web-streams-polyfill": "4.0.0-beta.3" "web-streams-polyfill": "4.0.0-beta.3"
@@ -3057,7 +3117,6 @@
"version": "4.0.0-beta.3", "version": "4.0.0-beta.3",
"resolved": "https://registry.npmjs.org/web-streams-polyfill/-/web-streams-polyfill-4.0.0-beta.3.tgz", "resolved": "https://registry.npmjs.org/web-streams-polyfill/-/web-streams-polyfill-4.0.0-beta.3.tgz",
"integrity": "sha512-QW95TCTaHmsYfHDybGMwO5IJIM93I/6vTRk+daHTWFPhwh+C8Cg7j7XyKrwrj8Ib6vYXe0ocYNrmzY4xAAN6ug==", "integrity": "sha512-QW95TCTaHmsYfHDybGMwO5IJIM93I/6vTRk+daHTWFPhwh+C8Cg7j7XyKrwrj8Ib6vYXe0ocYNrmzY4xAAN6ug==",
"optional": true,
"engines": { "engines": {
"node": ">= 14" "node": ">= 14"
} }
@@ -3272,7 +3331,6 @@
"version": "1.2.1", "version": "1.2.1",
"resolved": "https://registry.npmjs.org/humanize-ms/-/humanize-ms-1.2.1.tgz", "resolved": "https://registry.npmjs.org/humanize-ms/-/humanize-ms-1.2.1.tgz",
"integrity": "sha512-Fl70vYtsAFb/C06PTS9dZBo7ihau+Tu/DNCk/OyHhea07S+aeMWpFFkUaXRa8fI+ScZbEI8dfSxwY7gxZ9SAVQ==", "integrity": "sha512-Fl70vYtsAFb/C06PTS9dZBo7ihau+Tu/DNCk/OyHhea07S+aeMWpFFkUaXRa8fI+ScZbEI8dfSxwY7gxZ9SAVQ==",
"optional": true,
"dependencies": { "dependencies": {
"ms": "^2.0.0" "ms": "^2.0.0"
} }
@@ -3355,6 +3413,15 @@
"integrity": "sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ==", "integrity": "sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ==",
"dev": true "dev": true
}, },
"node_modules/interpret": {
"version": "1.4.0",
"resolved": "https://registry.npmjs.org/interpret/-/interpret-1.4.0.tgz",
"integrity": "sha512-agE4QfB2Lkp9uICn7BAqoscw4SZP9kTE2hxiFI3jBPmXJfdqiahTbUuKGsMoN2GtqL9AxhYioAcVvgsb1HvRbA==",
"dev": true,
"engines": {
"node": ">= 0.10"
}
},
"node_modules/is-arrayish": { "node_modules/is-arrayish": {
"version": "0.2.1", "version": "0.2.1",
"resolved": "https://registry.npmjs.org/is-arrayish/-/is-arrayish-0.2.1.tgz", "resolved": "https://registry.npmjs.org/is-arrayish/-/is-arrayish-0.2.1.tgz",
@@ -3364,8 +3431,7 @@
"node_modules/is-buffer": { "node_modules/is-buffer": {
"version": "1.1.6", "version": "1.1.6",
"resolved": "https://registry.npmjs.org/is-buffer/-/is-buffer-1.1.6.tgz", "resolved": "https://registry.npmjs.org/is-buffer/-/is-buffer-1.1.6.tgz",
"integrity": "sha512-NcdALwpXkTm5Zvvbk7owOUSvVvBKDgKP5/ewfXEznmQFfs4ZRmanOeKBTjRVjka3QFoN6XJ+9F3USqfHqTaU5w==", "integrity": "sha512-NcdALwpXkTm5Zvvbk7owOUSvVvBKDgKP5/ewfXEznmQFfs4ZRmanOeKBTjRVjka3QFoN6XJ+9F3USqfHqTaU5w=="
"optional": true
}, },
"node_modules/is-builtin-module": { "node_modules/is-builtin-module": {
"version": "3.2.1", "version": "3.2.1",
@@ -4458,7 +4524,6 @@
"version": "2.3.0", "version": "2.3.0",
"resolved": "https://registry.npmjs.org/md5/-/md5-2.3.0.tgz", "resolved": "https://registry.npmjs.org/md5/-/md5-2.3.0.tgz",
"integrity": "sha512-T1GITYmFaKuO91vxyoQMFETst+O71VUPEU3ze5GNzDm0OWdP8v1ziTaAEPUr/3kLsY3Sftgz242A1SetQiDL7g==", "integrity": "sha512-T1GITYmFaKuO91vxyoQMFETst+O71VUPEU3ze5GNzDm0OWdP8v1ziTaAEPUr/3kLsY3Sftgz242A1SetQiDL7g==",
"optional": true,
"dependencies": { "dependencies": {
"charenc": "0.0.2", "charenc": "0.0.2",
"crypt": "0.0.2", "crypt": "0.0.2",
@@ -4497,7 +4562,6 @@
"version": "1.52.0", "version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz", "resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==", "integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"optional": true,
"engines": { "engines": {
"node": ">= 0.6" "node": ">= 0.6"
} }
@@ -4506,7 +4570,6 @@
"version": "2.1.35", "version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz", "resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==", "integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"optional": true,
"dependencies": { "dependencies": {
"mime-db": "1.52.0" "mime-db": "1.52.0"
}, },
@@ -4538,8 +4601,7 @@
"node_modules/ms": { "node_modules/ms": {
"version": "2.1.3", "version": "2.1.3",
"resolved": "https://registry.npmjs.org/ms/-/ms-2.1.3.tgz", "resolved": "https://registry.npmjs.org/ms/-/ms-2.1.3.tgz",
"integrity": "sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA==", "integrity": "sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA=="
"optional": true
}, },
"node_modules/natural-compare": { "node_modules/natural-compare": {
"version": "1.4.0", "version": "1.4.0",
@@ -4567,7 +4629,6 @@
"url": "https://paypal.me/jimmywarting" "url": "https://paypal.me/jimmywarting"
} }
], ],
"optional": true,
"engines": { "engines": {
"node": ">=10.5.0" "node": ">=10.5.0"
} }
@@ -4576,7 +4637,6 @@
"version": "2.7.0", "version": "2.7.0",
"resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.7.0.tgz", "resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.7.0.tgz",
"integrity": "sha512-c4FRfUm/dbcWZ7U+1Wq0AwCyFL+3nt2bEw05wfxSz+DWpWsitgmSgYmy2dQdWyKC1694ELPqMs/YzUSNozLt8A==", "integrity": "sha512-c4FRfUm/dbcWZ7U+1Wq0AwCyFL+3nt2bEw05wfxSz+DWpWsitgmSgYmy2dQdWyKC1694ELPqMs/YzUSNozLt8A==",
"optional": true,
"dependencies": { "dependencies": {
"whatwg-url": "^5.0.0" "whatwg-url": "^5.0.0"
}, },
@@ -4623,10 +4683,9 @@
} }
}, },
"node_modules/openai": { "node_modules/openai": {
"version": "4.28.4", "version": "4.29.2",
"resolved": "https://registry.npmjs.org/openai/-/openai-4.28.4.tgz", "resolved": "https://registry.npmjs.org/openai/-/openai-4.29.2.tgz",
"integrity": "sha512-RNIwx4MT/F0zyizGcwS+bXKLzJ8QE9IOyigDG/ttnwB220d58bYjYFp0qjvGwEFBO6+pvFVIDABZPGDl46RFsg==", "integrity": "sha512-cPkT6zjEcE4qU5OW/SoDDuXEsdOLrXlAORhzmaguj5xZSPlgKvLhi27sFWhLKj07Y6WKNWxcwIbzm512FzTBNQ==",
"optional": true,
"dependencies": { "dependencies": {
"@types/node": "^18.11.18", "@types/node": "^18.11.18",
"@types/node-fetch": "^2.6.4", "@types/node-fetch": "^2.6.4",
@@ -4643,10 +4702,9 @@
} }
}, },
"node_modules/openai/node_modules/@types/node": { "node_modules/openai/node_modules/@types/node": {
"version": "18.19.20", "version": "18.19.26",
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.19.20.tgz", "resolved": "https://registry.npmjs.org/@types/node/-/node-18.19.26.tgz",
"integrity": "sha512-SKXZvI375jkpvAj8o+5U2518XQv76mAsixqfXiVyWyXZbVWQK25RurFovYpVIxVzul0rZoH58V/3SkEnm7s3qA==", "integrity": "sha512-+wiMJsIwLOYCvUqSdKTrfkS8mpTp+MPINe6+Np4TAGFWWRWiBQ5kSq9nZGCSPkzx9mvT+uEukzpX4MOSCydcvw==",
"optional": true,
"dependencies": { "dependencies": {
"undici-types": "~5.26.4" "undici-types": "~5.26.4"
} }
@@ -4996,6 +5054,18 @@
"integrity": "sha512-xWGDIW6x921xtzPkhiULtthJHoJvBbF3q26fzloPCK0hsvxtPVelvftw3zjbHWSkR2km9Z+4uxbDDK/6Zw9B8w==", "integrity": "sha512-xWGDIW6x921xtzPkhiULtthJHoJvBbF3q26fzloPCK0hsvxtPVelvftw3zjbHWSkR2km9Z+4uxbDDK/6Zw9B8w==",
"dev": true "dev": true
}, },
"node_modules/rechoir": {
"version": "0.6.2",
"resolved": "https://registry.npmjs.org/rechoir/-/rechoir-0.6.2.tgz",
"integrity": "sha512-HFM8rkZ+i3zrV+4LQjwQ0W+ez98pApMGM3HUrN04j3CqzPOzl9nmP15Y8YXNm8QHGv/eacOVEjqhmWpkRV0NAw==",
"dev": true,
"dependencies": {
"resolve": "^1.1.6"
},
"engines": {
"node": ">= 0.10"
}
},
"node_modules/repeat-string": { "node_modules/repeat-string": {
"version": "1.6.1", "version": "1.6.1",
"resolved": "https://registry.npmjs.org/repeat-string/-/repeat-string-1.6.1.tgz", "resolved": "https://registry.npmjs.org/repeat-string/-/repeat-string-1.6.1.tgz",
@@ -5145,6 +5215,23 @@
"node": ">=8" "node": ">=8"
} }
}, },
"node_modules/shelljs": {
"version": "0.8.5",
"resolved": "https://registry.npmjs.org/shelljs/-/shelljs-0.8.5.tgz",
"integrity": "sha512-TiwcRcrkhHvbrZbnRcFYMLl30Dfov3HKqzp5tO5b4pt6G/SezKcYhmDg15zXVBswHmctSAQKznqNW2LO5tTDow==",
"dev": true,
"dependencies": {
"glob": "^7.0.0",
"interpret": "^1.0.0",
"rechoir": "^0.6.2"
},
"bin": {
"shjs": "bin/shjs"
},
"engines": {
"node": ">=4"
}
},
"node_modules/shiki": { "node_modules/shiki": {
"version": "0.14.7", "version": "0.14.7",
"resolved": "https://registry.npmjs.org/shiki/-/shiki-0.14.7.tgz", "resolved": "https://registry.npmjs.org/shiki/-/shiki-0.14.7.tgz",
@@ -5157,6 +5244,22 @@
"vscode-textmate": "^8.0.0" "vscode-textmate": "^8.0.0"
} }
}, },
"node_modules/shx": {
"version": "0.3.4",
"resolved": "https://registry.npmjs.org/shx/-/shx-0.3.4.tgz",
"integrity": "sha512-N6A9MLVqjxZYcVn8hLmtneQWIJtp8IKzMP4eMnx+nqkvXoqinUPCbUFLp2UcWTEIUONhlk0ewxr/jaVGlc+J+g==",
"dev": true,
"dependencies": {
"minimist": "^1.2.3",
"shelljs": "^0.8.5"
},
"bin": {
"shx": "lib/cli.js"
},
"engines": {
"node": ">=6"
}
},
"node_modules/signal-exit": { "node_modules/signal-exit": {
"version": "3.0.7", "version": "3.0.7",
"resolved": "https://registry.npmjs.org/signal-exit/-/signal-exit-3.0.7.tgz", "resolved": "https://registry.npmjs.org/signal-exit/-/signal-exit-3.0.7.tgz",
@@ -5432,8 +5535,7 @@
"node_modules/tr46": { "node_modules/tr46": {
"version": "0.0.3", "version": "0.0.3",
"resolved": "https://registry.npmjs.org/tr46/-/tr46-0.0.3.tgz", "resolved": "https://registry.npmjs.org/tr46/-/tr46-0.0.3.tgz",
"integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw==", "integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw=="
"optional": true
}, },
"node_modules/ts-api-utils": { "node_modules/ts-api-utils": {
"version": "1.0.3", "version": "1.0.3",
@@ -5929,7 +6031,6 @@
"version": "3.3.3", "version": "3.3.3",
"resolved": "https://registry.npmjs.org/web-streams-polyfill/-/web-streams-polyfill-3.3.3.tgz", "resolved": "https://registry.npmjs.org/web-streams-polyfill/-/web-streams-polyfill-3.3.3.tgz",
"integrity": "sha512-d2JWLCivmZYTSIoge9MsgFCZrt571BikcWGYkjC1khllbTeDlGqZ2D8vD8E/lJa8WGWbb7Plm8/XJYV7IJHZZw==", "integrity": "sha512-d2JWLCivmZYTSIoge9MsgFCZrt571BikcWGYkjC1khllbTeDlGqZ2D8vD8E/lJa8WGWbb7Plm8/XJYV7IJHZZw==",
"optional": true,
"engines": { "engines": {
"node": ">= 8" "node": ">= 8"
} }
@@ -5937,14 +6038,12 @@
"node_modules/webidl-conversions": { "node_modules/webidl-conversions": {
"version": "3.0.1", "version": "3.0.1",
"resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-3.0.1.tgz", "resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-3.0.1.tgz",
"integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ==", "integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ=="
"optional": true
}, },
"node_modules/whatwg-url": { "node_modules/whatwg-url": {
"version": "5.0.0", "version": "5.0.0",
"resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-5.0.0.tgz", "resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-5.0.0.tgz",
"integrity": "sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw==", "integrity": "sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw==",
"optional": true,
"dependencies": { "dependencies": {
"tr46": "~0.0.3", "tr46": "~0.0.3",
"webidl-conversions": "^3.0.0" "webidl-conversions": "^3.0.0"

View File

@@ -1,17 +1,18 @@
{ {
"name": "lancedb", "name": "@lancedb/lancedb",
"version": "0.4.3", "version": "0.4.16",
"main": "./dist/index.js", "main": "./dist/index.js",
"types": "./dist/index.d.ts", "types": "./dist/index.d.ts",
"napi": { "napi": {
"name": "lancedb-nodejs", "name": "lancedb",
"triples": { "triples": {
"defaults": false, "defaults": false,
"additional": [ "additional": [
"aarch64-apple-darwin", "aarch64-apple-darwin",
"aarch64-unknown-linux-gnu", "aarch64-unknown-linux-gnu",
"x86_64-apple-darwin", "x86_64-apple-darwin",
"x86_64-unknown-linux-gnu" "x86_64-unknown-linux-gnu",
"x86_64-pc-windows-msvc"
] ]
} }
}, },
@@ -28,6 +29,7 @@
"eslint-plugin-jsdoc": "^48.2.1", "eslint-plugin-jsdoc": "^48.2.1",
"jest": "^29.7.0", "jest": "^29.7.0",
"prettier": "^3.1.0", "prettier": "^3.1.0",
"shx": "^0.3.4",
"tmp": "^0.2.3", "tmp": "^0.2.3",
"ts-jest": "^29.1.2", "ts-jest": "^29.1.2",
"typedoc": "^0.25.7", "typedoc": "^0.25.7",
@@ -48,15 +50,16 @@
"os": [ "os": [
"darwin", "darwin",
"linux", "linux",
"windows" "win32"
], ],
"scripts": { "scripts": {
"artifacts": "napi artifacts", "artifacts": "napi artifacts",
"build:native": "napi build --platform --release --js lancedb/native.js --dts lancedb/native.d.ts dist/",
"build:debug": "napi build --platform --dts ../lancedb/native.d.ts --js ../lancedb/native.js dist/", "build:debug": "napi build --platform --dts ../lancedb/native.d.ts --js ../lancedb/native.js dist/",
"build": "npm run build:debug && tsc -b", "build:release": "napi build --platform --release --dts ../lancedb/native.d.ts --js ../lancedb/native.js dist/",
"build": "npm run build:debug && tsc -b && shx cp lancedb/native.d.ts dist/native.d.ts",
"build-release": "npm run build:release && tsc -b && shx cp lancedb/native.d.ts dist/native.d.ts",
"chkformat": "prettier . --check", "chkformat": "prettier . --check",
"docs": "typedoc --plugin typedoc-plugin-markdown lancedb/index.ts", "docs": "typedoc --plugin typedoc-plugin-markdown --out ../docs/src/js lancedb/index.ts",
"lint": "eslint lancedb && eslint __test__", "lint": "eslint lancedb && eslint __test__",
"prepublishOnly": "napi prepublish -t npm", "prepublishOnly": "napi prepublish -t npm",
"test": "npm run build && jest --verbose", "test": "npm run build && jest --verbose",
@@ -64,13 +67,14 @@
"version": "napi version" "version": "napi version"
}, },
"optionalDependencies": { "optionalDependencies": {
"lancedb-darwin-arm64": "0.4.3", "@lancedb/lancedb-darwin-arm64": "0.4.16",
"lancedb-darwin-x64": "0.4.3", "@lancedb/lancedb-darwin-x64": "0.4.16",
"lancedb-linux-arm64-gnu": "0.4.3", "@lancedb/lancedb-linux-arm64-gnu": "0.4.16",
"lancedb-linux-x64-gnu": "0.4.3", "@lancedb/lancedb-linux-x64-gnu": "0.4.16",
"openai": "^4.28.4" "@lancedb/lancedb-win32-x64-msvc": "0.4.16"
}, },
"peerDependencies": { "dependencies": {
"openai": "^4.29.2",
"apache-arrow": "^15.0.0" "apache-arrow": "^15.0.0"
} }
} }

10
nodejs/typedoc.json Normal file
View File

@@ -0,0 +1,10 @@
{
"intentionallyNotExported": [
"lancedb/native.d.ts:Connection",
"lancedb/native.d.ts:Index",
"lancedb/native.d.ts:Query",
"lancedb/native.d.ts:VectorQuery",
"lancedb/native.d.ts:RecordBatchIterator",
"lancedb/native.d.ts:Table"
]
}

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.6.5 current_version = 0.6.7
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -31,3 +31,6 @@ pyo3-build-config = { version = "0.20.3", features = [
"extension-module", "extension-module",
"abi3-py38", "abi3-py38",
] } ] }
[features]
fp16kernels = ["lancedb/fp16kernels"]

View File

@@ -1,9 +1,9 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.6.5" version = "0.6.7"
dependencies = [ dependencies = [
"deprecation", "deprecation",
"pylance==0.10.5", "pylance==0.10.9",
"ratelimiter~=1.0", "ratelimiter~=1.0",
"retry>=0.9.2", "retry>=0.9.2",
"tqdm>=4.27.0", "tqdm>=4.27.0",
@@ -41,6 +41,7 @@ classifiers = [
"Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering",
] ]

View File

@@ -145,34 +145,20 @@ async def connect_async(
the last check, then the table will be checked for updates. Note: this the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are consistency only applies to read operations. Write operations are
always consistent. always consistent.
request_thread_pool: int or ThreadPoolExecutor, optional
The thread pool to use for making batch requests to the LanceDB Cloud API.
If an integer, then a ThreadPoolExecutor will be created with that
number of threads. If None, then a ThreadPoolExecutor will be created
with the default number of threads. If a ThreadPoolExecutor, then that
executor will be used for making requests. This is for LanceDB Cloud
only and is only used when making batch requests (i.e., passing in
multiple queries to the search method at once).
Examples Examples
-------- --------
For a local directory, provide a path for the database:
>>> import lancedb >>> import lancedb
>>> db = lancedb.connect("~/.lancedb") >>> async def doctest_example():
... # For a local directory, provide a path to the database
For object storage, use a URI prefix: ... db = await lancedb.connect_async("~/.lancedb")
... # For object storage, use a URI prefix
>>> db = lancedb.connect("s3://my-bucket/lancedb") ... db = await lancedb.connect_async("s3://my-bucket/lancedb")
Connect to LancdDB cloud:
>>> db = lancedb.connect("db://my_database", api_key="ldb_...")
Returns Returns
------- -------
conn : DBConnection conn : AsyncConnection
A connection to a LanceDB database. A connection to a LanceDB database.
""" """
if read_consistency_interval is not None: if read_consistency_interval is not None:

View File

@@ -25,13 +25,18 @@ from overrides import EnforceOverrides, override
from pyarrow import fs from pyarrow import fs
from lancedb.common import data_to_reader, validate_schema from lancedb.common import data_to_reader, validate_schema
from lancedb.embeddings.registry import EmbeddingFunctionRegistry
from lancedb.utils.events import register_event from lancedb.utils.events import register_event
from ._lancedb import connect as lancedb_connect from ._lancedb import connect as lancedb_connect
from .pydantic import LanceModel from .pydantic import LanceModel
from .table import AsyncTable, LanceTable, Table, _sanitize_data from .table import AsyncTable, LanceTable, Table, _sanitize_data
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri from .util import (
fs_from_uri,
get_uri_location,
get_uri_scheme,
join_uri,
validate_table_name,
)
if TYPE_CHECKING: if TYPE_CHECKING:
from datetime import timedelta from datetime import timedelta
@@ -387,6 +392,7 @@ class LanceDBConnection(DBConnection):
""" """
if mode.lower() not in ["create", "overwrite"]: if mode.lower() not in ["create", "overwrite"]:
raise ValueError("mode must be either 'create' or 'overwrite'") raise ValueError("mode must be either 'create' or 'overwrite'")
validate_table_name(name)
tbl = LanceTable.create( tbl = LanceTable.create(
self, self,
@@ -444,16 +450,17 @@ class LanceDBConnection(DBConnection):
class AsyncConnection(object): class AsyncConnection(object):
"""An active LanceDB connection """An active LanceDB connection
To obtain a connection you can use the [connect] function. To obtain a connection you can use the [connect_async][lancedb.connect_async]
function.
This could be a native connection (using lance) or a remote connection (e.g. for This could be a native connection (using lance) or a remote connection (e.g. for
connecting to LanceDb Cloud) connecting to LanceDb Cloud)
Local connections do not currently hold any open resources but they may do so in the Local connections do not currently hold any open resources but they may do so in the
future (for example, for shared cache or connections to catalog services) Remote future (for example, for shared cache or connections to catalog services) Remote
connections represent an open connection to the remote server. The [close] method connections represent an open connection to the remote server. The
can be used to release any underlying resources eagerly. The connection can also [close][lancedb.db.AsyncConnection.close] method can be used to release any
be used as a context manager: underlying resources eagerly. The connection can also be used as a context manager.
Connections can be shared on multiple threads and are expected to be long lived. Connections can be shared on multiple threads and are expected to be long lived.
Connections can also be used as a context manager, however, in many cases a single Connections can also be used as a context manager, however, in many cases a single
@@ -464,10 +471,9 @@ class AsyncConnection(object):
Examples Examples
-------- --------
>>> import asyncio
>>> import lancedb >>> import lancedb
>>> async def my_connect(): >>> async def doctest_example():
... with await lancedb.connect("/tmp/my_dataset") as conn: ... with await lancedb.connect_async("/tmp/my_dataset") as conn:
... # do something with the connection ... # do something with the connection
... pass ... pass
... # conn is closed here ... # conn is closed here
@@ -528,9 +534,8 @@ class AsyncConnection(object):
exist_ok: Optional[bool] = None, exist_ok: Optional[bool] = None,
on_bad_vectors: Optional[str] = None, on_bad_vectors: Optional[str] = None,
fill_value: Optional[float] = None, fill_value: Optional[float] = None,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> AsyncTable: ) -> AsyncTable:
"""Create a [Table][lancedb.table.Table] in the database. """Create an [AsyncTable][lancedb.table.AsyncTable] in the database.
Parameters Parameters
---------- ----------
@@ -569,7 +574,7 @@ class AsyncConnection(object):
Returns Returns
------- -------
LanceTable AsyncTable
A reference to the newly created table. A reference to the newly created table.
!!! note !!! note
@@ -583,12 +588,14 @@ class AsyncConnection(object):
Can create with list of tuples or dictionaries: Can create with list of tuples or dictionaries:
>>> import lancedb >>> import lancedb
>>> db = lancedb.connect("./.lancedb") >>> async def doctest_example():
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7}, ... db = await lancedb.connect_async("./.lancedb")
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}] ... data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
>>> db.create_table("my_table", data) ... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
LanceTable(connection=..., name="my_table") ... my_table = await db.create_table("my_table", data)
>>> db["my_table"].head() ... print(await my_table.query().limit(5).to_arrow())
>>> import asyncio
>>> asyncio.run(doctest_example())
pyarrow.Table pyarrow.Table
vector: fixed_size_list<item: float>[2] vector: fixed_size_list<item: float>[2]
child 0, item: float child 0, item: float
@@ -607,9 +614,11 @@ class AsyncConnection(object):
... "lat": [45.5, 40.1], ... "lat": [45.5, 40.1],
... "long": [-122.7, -74.1] ... "long": [-122.7, -74.1]
... }) ... })
>>> db.create_table("table2", data) >>> async def pandas_example():
LanceTable(connection=..., name="table2") ... db = await lancedb.connect_async("./.lancedb")
>>> db["table2"].head() ... my_table = await db.create_table("table2", data)
... print(await my_table.query().limit(5).to_arrow())
>>> asyncio.run(pandas_example())
pyarrow.Table pyarrow.Table
vector: fixed_size_list<item: float>[2] vector: fixed_size_list<item: float>[2]
child 0, item: float child 0, item: float
@@ -629,9 +638,11 @@ class AsyncConnection(object):
... pa.field("lat", pa.float32()), ... pa.field("lat", pa.float32()),
... pa.field("long", pa.float32()) ... pa.field("long", pa.float32())
... ]) ... ])
>>> db.create_table("table3", data, schema = custom_schema) >>> async def with_schema():
LanceTable(connection=..., name="table3") ... db = await lancedb.connect_async("./.lancedb")
>>> db["table3"].head() ... my_table = await db.create_table("table3", data, schema = custom_schema)
... print(await my_table.query().limit(5).to_arrow())
>>> asyncio.run(with_schema())
pyarrow.Table pyarrow.Table
vector: fixed_size_list<item: float>[2] vector: fixed_size_list<item: float>[2]
child 0, item: float child 0, item: float
@@ -663,9 +674,10 @@ class AsyncConnection(object):
... pa.field("item", pa.utf8()), ... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()), ... pa.field("price", pa.float32()),
... ]) ... ])
>>> db.create_table("table4", make_batches(), schema=schema) >>> async def iterable_example():
LanceTable(connection=..., name="table4") ... db = await lancedb.connect_async("./.lancedb")
... await db.create_table("table4", make_batches(), schema=schema)
>>> asyncio.run(iterable_example())
""" """
if inspect.isclass(schema) and issubclass(schema, LanceModel): if inspect.isclass(schema) and issubclass(schema, LanceModel):
# convert LanceModel to pyarrow schema # convert LanceModel to pyarrow schema
@@ -674,12 +686,6 @@ class AsyncConnection(object):
schema = schema.to_arrow_schema() schema = schema.to_arrow_schema()
metadata = None metadata = None
if embedding_functions is not None:
# If we passed in embedding functions explicitly
# then we'll override any schema metadata that
# may was implicitly specified by the LanceModel schema
registry = EmbeddingFunctionRegistry.get_instance()
metadata = registry.get_table_metadata(embedding_functions)
# Defining defaults here and not in function prototype. In the future # Defining defaults here and not in function prototype. In the future
# these defaults will move into rust so better to keep them as None. # these defaults will move into rust so better to keep them as None.
@@ -760,11 +766,11 @@ class AsyncConnection(object):
name: str name: str
The name of the table. The name of the table.
""" """
raise NotImplementedError await self._inner.drop_table(name)
async def drop_database(self): async def drop_database(self):
""" """
Drop database Drop database
This is the same thing as dropping all the tables This is the same thing as dropping all the tables
""" """
raise NotImplementedError await self._inner.drop_db()

View File

@@ -1033,7 +1033,7 @@ class AsyncQueryBase(object):
Construct an AsyncQueryBase Construct an AsyncQueryBase
This method is not intended to be called directly. Instead, use the This method is not intended to be called directly. Instead, use the
[Table.query][] method to create a query. [AsyncTable.query][lancedb.table.AsyncTable.query] method to create a query.
""" """
self._inner = inner self._inner = inner
@@ -1041,7 +1041,10 @@ class AsyncQueryBase(object):
""" """
Only return rows matching the given predicate Only return rows matching the given predicate
The predicate should be supplied as an SQL query string. For example: The predicate should be supplied as an SQL query string.
Examples
--------
>>> predicate = "x > 10" >>> predicate = "x > 10"
>>> predicate = "y > 0 AND y < 100" >>> predicate = "y > 0 AND y < 100"
@@ -1112,7 +1115,8 @@ class AsyncQueryBase(object):
Execute the query and collect the results into an Apache Arrow Table. Execute the query and collect the results into an Apache Arrow Table.
This method will collect all results into memory before returning. If This method will collect all results into memory before returning. If
you expect a large number of results, you may want to use [to_batches][] you expect a large number of results, you may want to use
[to_batches][lancedb.query.AsyncQueryBase.to_batches]
""" """
batch_iter = await self.to_batches() batch_iter = await self.to_batches()
return pa.Table.from_batches( return pa.Table.from_batches(
@@ -1123,12 +1127,13 @@ class AsyncQueryBase(object):
""" """
Execute the query and collect the results into a pandas DataFrame. Execute the query and collect the results into a pandas DataFrame.
This method will collect all results into memory before returning. If This method will collect all results into memory before returning. If you
you expect a large number of results, you may want to use [to_batches][] expect a large number of results, you may want to use
and convert each batch to pandas separately. [to_batches][lancedb.query.AsyncQueryBase.to_batches] and convert each batch to
pandas separately.
Example Examples
------- --------
>>> import asyncio >>> import asyncio
>>> from lancedb import connect_async >>> from lancedb import connect_async
@@ -1148,7 +1153,7 @@ class AsyncQuery(AsyncQueryBase):
Construct an AsyncQuery Construct an AsyncQuery
This method is not intended to be called directly. Instead, use the This method is not intended to be called directly. Instead, use the
[Table.query][] method to create a query. [AsyncTable.query][lancedb.table.AsyncTable.query] method to create a query.
""" """
super().__init__(inner) super().__init__(inner)
self._inner = inner self._inner = inner
@@ -1189,8 +1194,8 @@ class AsyncQuery(AsyncQueryBase):
If there is only one vector column (a column whose data type is a If there is only one vector column (a column whose data type is a
fixed size list of floats) then the column does not need to be specified. fixed size list of floats) then the column does not need to be specified.
If there is more than one vector column you must use If there is more than one vector column you must use
[AsyncVectorQuery::column][] to specify which column you would like to [AsyncVectorQuery.column][lancedb.query.AsyncVectorQuery.column] to specify
compare with. which column you would like to compare with.
If no index has been created on the vector column then a vector query If no index has been created on the vector column then a vector query
will perform a distance comparison between the query vector and every will perform a distance comparison between the query vector and every
@@ -1221,8 +1226,10 @@ class AsyncVectorQuery(AsyncQueryBase):
Construct an AsyncVectorQuery Construct an AsyncVectorQuery
This method is not intended to be called directly. Instead, create This method is not intended to be called directly. Instead, create
a query first with [Table.query][] and then use [AsyncQuery.nearest_to][] a query first with [AsyncTable.query][lancedb.table.AsyncTable.query] and then
to convert to a vector query. use [AsyncQuery.nearest_to][lancedb.query.AsyncQuery.nearest_to]] to convert to
a vector query. Or you can use
[AsyncTable.vector_search][lancedb.table.AsyncTable.vector_search]
""" """
super().__init__(inner) super().__init__(inner)
self._inner = inner self._inner = inner
@@ -1232,7 +1239,7 @@ class AsyncVectorQuery(AsyncQueryBase):
Set the vector column to query Set the vector column to query
This controls which column is compared to the query vector supplied in This controls which column is compared to the query vector supplied in
the call to [Query.nearest_to][]. the call to [AsyncQuery.nearest_to][lancedb.query.AsyncQuery.nearest_to].
This parameter must be specified if the table has more than one column This parameter must be specified if the table has more than one column
whose data type is a fixed-size-list of floats. whose data type is a fixed-size-list of floats.

View File

@@ -26,6 +26,7 @@ from ..db import DBConnection
from ..embeddings import EmbeddingFunctionConfig from ..embeddings import EmbeddingFunctionConfig
from ..pydantic import LanceModel from ..pydantic import LanceModel
from ..table import Table, _sanitize_data from ..table import Table, _sanitize_data
from ..util import validate_table_name
from .arrow import to_ipc_binary from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
from .errors import LanceDBClientError from .errors import LanceDBClientError
@@ -223,6 +224,7 @@ class RemoteDBConnection(DBConnection):
LanceTable(table4) LanceTable(table4)
""" """
validate_table_name(name)
if data is None and schema is None: if data is None and schema is None:
raise ValueError("Either data or schema must be provided.") raise ValueError("Either data or schema must be provided.")
if embedding_functions is not None: if embedding_functions is not None:

View File

@@ -499,11 +499,11 @@ class RemoteTable(Table):
) )
def count_rows(self, filter: Optional[str] = None) -> int: def count_rows(self, filter: Optional[str] = None) -> int:
# payload = {"filter": filter} payload = {"predicate": filter}
# self._conn._client.post(f"/v1/table/{self._name}/count_rows/", data=payload) resp = self._conn._client.post(
return NotImplementedError( f"/v1/table/{self._name}/count_rows/", data=payload
"count_rows() is not yet supported on the LanceDB cloud"
) )
return resp
def add_columns(self, transforms: Dict[str, str]): def add_columns(self, transforms: Dict[str, str]):
raise NotImplementedError( raise NotImplementedError(

Some files were not shown because too many files have changed in this diff Show More