Compare commits

..

4 Commits

Author SHA1 Message Date
qzhu
1023a5754b separate local and cloud connect 2024-01-31 11:33:02 -08:00
qzhu
7808f28ec7 exclude storage.js for tests 2024-01-25 17:08:27 -08:00
qzhu
157fb9ea72 fix lint 2024-01-25 16:29:06 -08:00
qzhu
7a5e65d437 website api doc rework 2024-01-25 16:16:50 -08:00
345 changed files with 9533 additions and 31948 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.4.15
current_version = 0.4.4
commit = True
message = Bump version: {current_version} → {new_version}
tag = True
@@ -7,16 +7,6 @@ tag_name = v{new_version}
[bumpversion:file:node/package.json]
[bumpversion:file:nodejs/package.json]
[bumpversion:file:nodejs/npm/darwin-x64/package.json]
[bumpversion:file:nodejs/npm/darwin-arm64/package.json]
[bumpversion:file:nodejs/npm/linux-x64-gnu/package.json]
[bumpversion:file:nodejs/npm/linux-arm64-gnu/package.json]
[bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/lancedb/Cargo.toml]
[bumpversion:file:rust/vectordb/Cargo.toml]

View File

@@ -1,40 +0,0 @@
[profile.release]
lto = "fat"
codegen-units = 1
[profile.release-with-debug]
inherits = "release"
debug = true
# Prioritize compile time over runtime performance
codegen-units = 16
lto = "thin"
[target.'cfg(all())']
rustflags = [
"-Wclippy::all",
"-Wclippy::style",
"-Wclippy::fallible_impl_from",
"-Wclippy::manual_let_else",
"-Wclippy::redundant_pub_crate",
"-Wclippy::string_add_assign",
"-Wclippy::string_add",
"-Wclippy::string_lit_as_bytes",
"-Wclippy::string_to_string",
"-Wclippy::use_self",
"-Dclippy::cargo",
"-Dclippy::dbg_macro",
# not too much we can do to avoid multiple crate versions
"-Aclippy::multiple-crate-versions",
"-Aclippy::wildcard_dependencies",
]
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
# Not all Windows systems have the C runtime installed, so this avoids library
# not found errors on systems that are missing it.
[target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

View File

@@ -1,58 +0,0 @@
# We create a composite action to be re-used both for testing and for releasing
name: build-linux-wheel
description: "Build a manylinux wheel for lance"
inputs:
python-minor-version:
description: "8, 9, 10, 11, 12"
required: true
args:
description: "--release"
required: false
default: ""
arm-build:
description: "Build for arm64 instead of x86_64"
# Note: this does *not* mean the host is arm64, since we might be cross-compiling.
required: false
default: "false"
runs:
using: "composite"
steps:
- name: CONFIRM ARM BUILD
shell: bash
run: |
echo "ARM BUILD: ${{ inputs.arm-build }}"
- name: Build x86_64 Manylinux wheel
if: ${{ inputs.arm-build == 'false' }}
uses: PyO3/maturin-action@v1
with:
command: build
working-directory: python
target: x86_64-unknown-linux-gnu
manylinux: "2_17"
args: ${{ inputs.args }}
before-script-linux: |
set -e
yum install -y openssl-devel \
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$(uname -m).zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip
- name: Build Arm Manylinux Wheel
if: ${{ inputs.arm-build == 'true' }}
uses: PyO3/maturin-action@v1
with:
command: build
working-directory: python
target: aarch64-unknown-linux-gnu
manylinux: "2_24"
args: ${{ inputs.args }}
before-script-linux: |
set -e
apt install -y unzip
if [ $(uname -m) = "x86_64" ]; then
PROTOC_ARCH="x86_64"
else
PROTOC_ARCH="aarch_64"
fi
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$PROTOC_ARCH.zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip

View File

@@ -1,25 +0,0 @@
# We create a composite action to be re-used both for testing and for releasing
name: build_wheel
description: "Build a lance wheel"
inputs:
python-minor-version:
description: "8, 9, 10, 11"
required: true
args:
description: "--release"
required: false
default: ""
runs:
using: "composite"
steps:
- name: Install macos dependency
shell: bash
run: |
brew install protobuf
- name: Build wheel
uses: PyO3/maturin-action@v1
with:
command: build
args: ${{ inputs.args }}
working-directory: python
interpreter: 3.${{ inputs.python-minor-version }}

View File

@@ -1,33 +0,0 @@
# We create a composite action to be re-used both for testing and for releasing
name: build_wheel
description: "Build a lance wheel"
inputs:
python-minor-version:
description: "8, 9, 10, 11"
required: true
args:
description: "--release"
required: false
default: ""
runs:
using: "composite"
steps:
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Build wheel
uses: PyO3/maturin-action@v1
with:
command: build
args: ${{ inputs.args }}
working-directory: python
- uses: actions/upload-artifact@v3
with:
name: windows-wheels
path: python\target\wheels

View File

@@ -16,7 +16,7 @@ jobs:
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
@@ -26,4 +26,4 @@ jobs:
sudo apt install -y protobuf-compiler libssl-dev
- name: Publish the package
run: |
cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}
cargo publish -p vectordb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}

View File

@@ -24,16 +24,12 @@ jobs:
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
runs-on: buildjet-8vcpu-ubuntu-2204
runs-on: ubuntu-22.04
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: "3.10"
cache: "pip"
@@ -46,7 +42,7 @@ jobs:
- name: Set up node
uses: actions/setup-node@v3
with:
node-version: 20
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
@@ -65,10 +61,10 @@ jobs:
working-directory: node
run: |
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
cp ../docs/src/javascript.md ../docs/src/javascript/javascript.md
- name: Build docs
working-directory: docs
run: |
PYTHONPATH=. mkdocs build
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
- name: Setup Pages
uses: actions/configure-pages@v2
- name: Upload artifact

View File

@@ -18,30 +18,26 @@ on:
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
jobs:
test-python:
name: Test doc python code
runs-on: "buildjet-8vcpu-ubuntu-2204"
runs-on: ${{ matrix.os }}
strategy:
matrix:
python-minor-version: [ "11" ]
os: ["ubuntu-22.04"]
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: 3.11
python-version: 3.${{ matrix.python-minor-version }}
cache: "pip"
cache-dependency-path: "docs/test/requirements.txt"
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Build Python
working-directory: docs/test
run:
@@ -56,45 +52,45 @@ jobs:
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node:
name: Test doc nodejs code
runs-on: "buildjet-8vcpu-ubuntu-2204"
timeout-minutes: 60
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
node-version: [ "18" ]
os: ["ubuntu-22.04"]
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Set up Node
uses: actions/setup-node@v4
uses: actions/setup-node@v3
with:
node-version: 20
node-version: ${{ matrix.node-version }}
- name: Install dependecies needed for ubuntu
if: ${{ matrix.os == 'ubuntu-22.04' }}
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Install node dependencies
run: |
sudo swapoff -a
sudo fallocate -l 8G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon --show
cd node
cd docs/test
npm install
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Install LanceDB
run: |
cd docs/test/node_modules/vectordb
npm ci
npm run build-release
cd ../docs
npm install
npm run tsc
- name: Create test files
run: |
cd docs/test
node md_testing.js
- name: Test
env:
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
run: |
cd docs
npm t
cd docs/test/node
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done

View File

@@ -26,7 +26,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
@@ -37,10 +37,10 @@ jobs:
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.11
uses: actions/setup-python@v5
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.11"
python-version: "3.10"
- name: Bump version, create tag and commit
run: |
pip install bump2version

View File

@@ -20,11 +20,31 @@ env:
# "1" means line tables only, which is useful for panic tracebacks.
#
# Use native CPU to accelerate tests if possible, especially for f16
# target-cpu=haswell fixes failing ci build
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1"
jobs:
lint:
name: Lint
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: Lint
run: |
npm ci
npm run lint
linux:
name: Linux (Node ${{ matrix.node-version }})
timeout-minutes: 30
@@ -37,7 +57,7 @@ jobs:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
@@ -69,7 +89,7 @@ jobs:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
@@ -108,7 +128,7 @@ jobs:
# this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true

View File

@@ -29,7 +29,7 @@ jobs:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
@@ -49,7 +49,6 @@ jobs:
cargo clippy --all --all-features -- -D warnings
npm ci
npm run lint
npm run chkformat
linux:
name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30
@@ -62,7 +61,7 @@ jobs:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
@@ -85,13 +84,13 @@ jobs:
run: npm run test
macos:
timeout-minutes: 30
runs-on: "macos-14"
runs-on: "macos-13"
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
@@ -112,3 +111,4 @@ jobs:
- name: Test
run: |
npm run test

View File

@@ -2,7 +2,7 @@ name: NPM Publish
on:
release:
types: [published]
types: [ published ]
jobs:
node:
@@ -15,11 +15,11 @@ jobs:
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
- uses: actions/setup-node@v3
with:
node-version: 20
cache: "npm"
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: Install dependencies
run: |
@@ -31,7 +31,7 @@ jobs:
npm run tsc
npm pack
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: node-package
path: |
@@ -45,13 +45,13 @@ jobs:
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-14
runner: macos-13-xlarge
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
@@ -61,41 +61,12 @@ jobs:
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: node-native-darwin-${{ matrix.config.arch }}
name: native-darwin
path: |
node/dist/lancedb-vectordb-darwin*.tgz
nodejs-macos:
strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-14
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build MacOS native nodejs modules
run: bash ci/build_macos_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-darwin-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
@@ -109,86 +80,20 @@ jobs:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
runner: buildjet-4vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
uses: actions/checkout@v3
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: node-native-linux-${{ matrix.config.arch }}
name: native-linux
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux:
name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
# The generic files are the same in all distros so we just pick
# one to do the upload.
- name: Upload Generic Artifacts
if: ${{ matrix.config.arch == 'x86_64' }}
uses: actions/upload-artifact@v4
with:
name: nodejs-dist
path: |
nodejs/dist/*
!nodejs/dist/*.node
node-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
@@ -199,7 +104,7 @@ jobs:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Install Protoc v21.12
working-directory: C:\
run: |
@@ -216,60 +121,25 @@ jobs:
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: node-native-windows
name: native-windows
path: |
node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts_nodejs.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows
path: |
nodejs/dist/*.node
release:
needs: [node, node-macos, node-linux, node-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v4
with:
pattern: node-*
- uses: actions/download-artifact@v3
- name: Display structure of downloaded files
run: ls -R
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: "https://registry.npmjs.org"
registry-url: 'https://registry.npmjs.org'
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
@@ -279,51 +149,12 @@ jobs:
npm publish $filename
done
release-nodejs:
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- name: Checkout
uses: actions/checkout@v4
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
- uses: actions/download-artifact@v4
name: Download arch-specific binaries
with:
pattern: nodejs-*
path: nodejs/nodejs-artifacts
merge-multiple: true
- name: Display structure of downloaded files
run: find .
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: "https://registry.npmjs.org"
- name: Install napi-rs
run: npm install -g @napi-rs/cli
- name: Prepare artifacts
run: npx napi artifacts -d nodejs-artifacts
- name: Display structure of staged files
run: find npm
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: npm publish --access public
update-package-lock:
needs: [release]
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
@@ -332,18 +163,3 @@ jobs:
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
update-package-lock-nodejs:
needs: [release-nodejs]
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -2,91 +2,30 @@ name: PyPI Publish
on:
release:
types: [published]
types: [ published ]
jobs:
linux:
timeout-minutes: 60
strategy:
matrix:
python-minor-version: ["8"]
platform:
- x86_64
- aarch64
runs-on: "ubuntu-22.04"
publish:
runs-on: ubuntu-latest
# Only runs on tags that matches the python-make-release action
if: startsWith(github.ref, 'refs/tags/python-v')
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.${{ matrix.python-minor-version }}
- uses: ./.github/workflows/build_linux_wheel
python-version: "3.8"
- name: Build distribution
run: |
ls -la
pip install wheel setuptools --upgrade
python setup.py sdist bdist_wheel
- name: Publish
uses: pypa/gh-action-pypi-publish@v1.8.5
with:
python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip"
arm-build: ${{ matrix.platform == 'aarch64' }}
- uses: ./.github/workflows/upload_wheel
with:
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi"
mac:
timeout-minutes: 60
runs-on: ${{ matrix.config.runner }}
strategy:
matrix:
python-minor-version: ["8"]
config:
- target: x86_64-apple-darwin
runner: macos-13
- target: aarch64-apple-darwin
runner: macos-14
env:
MACOSX_DEPLOYMENT_TARGET: 10.15
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.12
- uses: ./.github/workflows/build_mac_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip --target ${{ matrix.config.target }}"
- uses: ./.github/workflows/upload_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi"
windows:
timeout-minutes: 60
runs-on: windows-latest
strategy:
matrix:
python-minor-version: ["8"]
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.${{ matrix.python-minor-version }}
- uses: ./.github/workflows/build_windows_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip"
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
- uses: ./.github/workflows/upload_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi"
password: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
packages-dir: python/dist

View File

@@ -26,7 +26,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
@@ -37,10 +37,10 @@ jobs:
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python
uses: actions/setup-python@v5
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.11"
python-version: "3.10"
- name: Bump version, create tag and commit
working-directory: python
run: |

View File

@@ -14,133 +14,49 @@ concurrency:
cancel-in-progress: true
jobs:
lint:
name: "Lint"
linux:
timeout-minutes: 30
strategy:
matrix:
python-minor-version: [ "8", "9", "10", "11" ]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install ruff
python-version: 3.${{ matrix.python-minor-version }}
- name: Install lancedb
run: |
pip install ruff==0.2.2
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock ruff
- name: Format check
run: ruff format --check .
- name: Lint
run: ruff .
doctest:
name: "Doctest"
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
cache: "pip"
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- name: Install
run: |
pip install -e .[tests,dev,embeddings]
pip install tantivy
pip install mlx
- name: Doctest
run: pytest --doctest-modules python/lancedb
linux:
name: "Linux: python-3.${{ matrix.python-minor-version }}"
timeout-minutes: 30
strategy:
matrix:
python-minor-version: ["8", "11"]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: 3.${{ matrix.python-minor-version }}
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- uses: ./.github/workflows/build_linux_wheel
- uses: ./.github/workflows/run_tests
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
platform:
name: "Mac: ${{ matrix.config.name }}"
name: "Platform: ${{ matrix.config.name }}"
timeout-minutes: 30
strategy:
matrix:
config:
- name: x86
- name: x86 Mac
runner: macos-13
- name: Arm
runner: macos-14
runs-on: "${{ matrix.config.runner }}"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- uses: ./.github/workflows/build_mac_wheel
- uses: ./.github/workflows/run_tests
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
windows:
name: "Windows: ${{ matrix.config.name }}"
timeout-minutes: 30
strategy:
matrix:
config:
- name: x86
- name: Arm Mac
runner: macos-13-xlarge
- name: x86 Windows
runner: windows-latest
runs-on: "${{ matrix.config.runner }}"
defaults:
@@ -148,22 +64,21 @@ jobs:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: "3.11"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- uses: ./.github/workflows/build_windows_wheel
- uses: ./.github/workflows/run_tests
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
- name: Install lancedb
run: |
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
pydantic1x:
timeout-minutes: 30
runs-on: "ubuntu-22.04"
@@ -172,22 +87,21 @@ jobs:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install -e .[tests]
pip install tantivy
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 python/tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb

View File

@@ -1,17 +0,0 @@
name: run-tests
description: "Install lance wheel and run unit tests"
inputs:
python-minor-version:
required: true
description: "8 9 10 11 12"
runs:
using: "composite"
steps:
- name: Install lancedb
shell: bash
run: |
pip3 install $(ls target/wheels/lancedb-*.whl)[tests,dev]
- name: pytest
shell: bash
run: pytest -m "not slow" -x -v --durations=30 python/python/tests

View File

@@ -32,7 +32,7 @@ jobs:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
@@ -55,7 +55,7 @@ jobs:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
@@ -70,20 +70,18 @@ jobs:
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
macos:
timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-14" ]
mac-runner: [ "macos-13", "macos-13-xlarge" ]
runs-on: "${{ matrix.mac-runner }}"
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
@@ -101,7 +99,7 @@ jobs:
windows:
runs-on: windows-2022
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
@@ -119,4 +117,3 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test

View File

@@ -1,33 +0,0 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -8,7 +8,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false

View File

@@ -1,19 +0,0 @@
name: Update NodeJs package-lock.json
on:
workflow_dispatch:
jobs:
publish:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -1,29 +0,0 @@
name: upload-wheel
description: "Upload wheels to Pypi"
inputs:
os:
required: true
description: "ubuntu-22.04 or macos-13"
repo:
required: false
description: "pypi or testpypi"
default: "pypi"
token:
required: true
description: "release token for the repo"
runs:
using: "composite"
steps:
- name: Install dependencies
shell: bash
run: |
python -m pip install --upgrade pip
pip install twine
- name: Publish wheel
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ inputs.token }}
shell: bash
run: twine upload --repository ${{ inputs.repo }} target/wheels/lancedb-*.whl

8
.gitignore vendored
View File

@@ -22,11 +22,6 @@ python/dist
**/.hypothesis
# Compiled Dynamic libraries
*.so
*.dylib
*.dll
## Javascript
*.node
**/node_modules
@@ -34,12 +29,9 @@ python/dist
node/dist
node/examples/**/package-lock.json
node/examples/**/dist
nodejs/lancedb/native*
dist
## Rust
target
**/sccache.log
Cargo.lock

View File

@@ -5,14 +5,17 @@ repos:
- id: check-yaml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/psf/black
rev: 22.12.0
hooks:
- id: black
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.2.2
rev: v0.0.277
hooks:
- id: ruff
- repo: https://github.com/pre-commit/mirrors-prettier
rev: v3.1.0
- repo: https://github.com/pycqa/isort
rev: 5.12.0
hooks:
- id: prettier
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*
- id: isort
name: isort (python)

View File

@@ -1,43 +1,37 @@
[workspace]
members = ["rust/ffi/node", "rust/lancedb", "nodejs", "python"]
members = ["rust/ffi/node", "rust/vectordb", "nodejs"]
# Python package needs to be built by maturin.
exclude = ["python"]
resolver = "2"
[workspace.package]
edition = "2021"
authors = ["LanceDB Devs <dev@lancedb.com>"]
authors = ["Lance Devs <dev@lancedb.com>"]
license = "Apache-2.0"
repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.10.6", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.10.6" }
lance-linalg = { "version" = "=0.10.6" }
lance-testing = { "version" = "=0.10.6" }
lance = { "version" = "=0.9.9", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.9" }
lance-linalg = { "version" = "=0.9.9" }
lance-testing = { "version" = "=0.9.9" }
# Note that this one does not include pyarrow
arrow = { version = "50.0", optional = false }
arrow-array = "50.0"
arrow-data = "50.0"
arrow-ipc = "50.0"
arrow-ord = "50.0"
arrow-schema = "50.0"
arrow-arith = "50.0"
arrow-cast = "50.0"
arrow = { version = "49.0.0", optional = false }
arrow-array = "49.0"
arrow-data = "49.0"
arrow-ipc = "49.0"
arrow-ord = "49.0"
arrow-schema = "49.0"
arrow-arith = "49.0"
arrow-cast = "49.0"
async-trait = "0"
chrono = "0.4.35"
chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
object_store = "0.9.0"
pin-project = "1.0.7"
snafu = "0.7.4"
url = "2"
num-traits = "0.2"
regex = "1.10"
lazy_static = "1"

View File

@@ -1,13 +1,13 @@
<div align="center">
<p align="center">
<img width="275" alt="LanceDB Logo" src="https://github.com/lancedb/lancedb/assets/5846846/37d7c7ad-c2fd-4f56-9f16-fffb0d17c73a">
<img width="275" alt="LanceDB Logo" src="https://user-images.githubusercontent.com/917119/226205734-6063d87a-1ecc-45fe-85be-1dea6383a3d8.png">
**Developer-friendly, database for multimodal AI**
**Developer-friendly, serverless vector database for AI applications**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
@@ -51,19 +51,12 @@ npm install vectordb
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable({
name: 'vectors',
data: [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
]
})
const table = await db.createTable('vectors',
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute();
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
```
**Python**

View File

@@ -13,9 +13,7 @@ docker build \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_nodejs
docker build \
-t lancedb-nodejs-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-nodejs-manylinux \
bash ci/manylinux_nodejs/build.sh $ARCH

View File

@@ -1,34 +0,0 @@
# Builds the macOS artifacts (nodejs binaries).
# Usage: ./ci/build_macos_artifacts_nodejs.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/lancedb
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd nodejs
echo "Building nodejs library for $1"
export RUST_TARGET=$1
npm run build-release
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -1,41 +0,0 @@
# Builds the Windows artifacts (nodejs binaries).
# Usage: .\ci\build_windows_artifacts_nodejs.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/lancedb"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "nodejs"
Write-Host "Building nodejs library for $target"
$env:RUST_TARGET=$target
npm run build-release
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -1,31 +0,0 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -1,18 +0,0 @@
#!/bin/bash
# Builds the nodejs module for manylinux. Invoked by ci/build_linux_artifacts_nodejs.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd nodejs
npm ci
npm run build-release

View File

@@ -1,26 +0,0 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -1,27 +0,0 @@
#Simple base dockerfile that supports basic dependencies required to run lance with FTS and Hybrid Search
#Usage docker build -t lancedb:latest -f Dockerfile .
FROM python:3.10-slim-buster
# Install Rust
RUN apt-get update && apt-get install -y curl build-essential && \
curl https://sh.rustup.rs -sSf | sh -s -- -y
# Set the environment variable for Rust
ENV PATH="/root/.cargo/bin:${PATH}"
# Install protobuf compiler
RUN apt-get install -y protobuf-compiler && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN apt-get -y update &&\
apt-get -y upgrade && \
apt-get -y install git
# Verify installations
RUN python --version && \
rustc --version && \
protoc --version
RUN pip install tantivy lancedb

View File

@@ -33,12 +33,3 @@ You can run a local server to test the docs prior to deployment by navigating to
cd docs
mkdocs serve
```
### Run doctest for typescript example
```bash
cd lancedb/docs
npm i
npm run build
npm run all
```

View File

@@ -27,6 +27,7 @@ theme:
- content.tabs.link
- content.action.edit
- toc.follow
# - toc.integrate
- navigation.top
- navigation.tabs
- navigation.tabs.sticky
@@ -38,56 +39,43 @@ theme:
custom_dir: overrides
plugins:
- search
- autorefs
- mkdocstrings:
- search
- autorefs
- mkdocstrings:
handlers:
python:
paths: [../python]
options:
docstring_style: numpy
heading_level: 3
heading_level: 4
show_source: true
show_symbol_type_in_heading: true
show_signature_annotations: true
show_root_heading: true
members_order: source
import:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter
- ultralytics:
verbose: True
enabled: True
default_image: "assets/lancedb_and_lance.png" # Default image for all pages
add_image: True # Automatically add meta image
add_keywords: True # Add page keywords in the header tag
add_share_buttons: True # Add social share buttons
add_authors: False # Display page authors
add_desc: False
add_dates: False
- mkdocs-jupyter
markdown_extensions:
- admonition
- footnotes
- pymdownx.details
- pymdownx.highlight:
- admonition
- footnotes
- pymdownx.details
- pymdownx.highlight:
anchor_linenums: true
line_spans: __span
pygments_lang_class: true
- pymdownx.inlinehilite
- pymdownx.snippets:
base_path: ..
dedent_subsections: true
- pymdownx.superfences
- pymdownx.tabbed:
- pymdownx.inlinehilite
- pymdownx.snippets
- pymdownx.superfences
- pymdownx.tabbed:
alternate_style: true
- md_in_html
- attr_list
- md_in_html
- attr_list
nav:
- Home:
- Home:
- LanceDB: index.md
- 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts:
@@ -100,19 +88,15 @@ nav:
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md
- 🧬 Managing embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Explicit management: embeddings/embedding_explicit.md
- Implicit management: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Custom Embedding Functions: embeddings/api.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations:
@@ -141,87 +125,70 @@ nav:
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- 🔧 CLI & Config: cli_config.md
- 💭 FAQs: faq.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): javascript/modules.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- 👾 JavaScript: javascript/javascript.md
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
- Quick start: basic.md
- Concepts:
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
- Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md
- Managing Embeddings:
- Managing Embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Explicit management: embeddings/embedding_explicit.md
- Implicit management: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Custom Embedding Functions: embeddings/api.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:
- Integrations:
- Overview: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- DuckDB : python/duckdb.md
- LangChain 🦜️🔗↗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- Examples:
- Python examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md
- Javascript examples:
- Overview: examples/examples_js.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API reference:
- Overview: api_reference.md
- API reference:
- Python: python/python.md
- Javascript (vectordb): javascript/modules.md
- Javascript (lancedb): js/modules.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud:
- Javascript: javascript/javascript.md
- LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
extra_css:
- styles/global.css
- styles/extra.css
extra_javascript:
- "extra_js/init_ask_ai_widget.js"
extra:
analytics:
provider: google

132
docs/package-lock.json generated
View File

@@ -1,132 +0,0 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "lancedb-docs-test",
"version": "1.0.0",
"license": "Apache 2",
"dependencies": {
"apache-arrow": "file:../node/node_modules/apache-arrow",
"vectordb": "file:../node"
},
"devDependencies": {
"@types/node": "^20.11.8",
"typescript": "^5.3.3"
}
},
"../node": {
"name": "vectordb",
"version": "0.4.6",
"cpu": [
"x64",
"arm64"
],
"license": "Apache-2.0",
"os": [
"darwin",
"linux",
"win32"
],
"dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
},
"devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
"eslint": "^8.39.0",
"eslint-config-standard-with-typescript": "^34.0.1",
"eslint-plugin-import": "^2.26.0",
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0",
"openai": "^4.24.1",
"sinon": "^15.1.0",
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.6",
"@lancedb/vectordb-darwin-x64": "0.4.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
}
},
"../node/node_modules/apache-arrow": {
"version": "14.0.2",
"license": "Apache-2.0",
"dependencies": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.3"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/@types/node": {
"version": "20.11.8",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.11.8.tgz",
"integrity": "sha512-i7omyekpPTNdv4Jb/Rgqg0RU8YqLcNsI12quKSDkRXNfx7Wxdm6HhK1awT3xTgEkgxPn3bvnSpiEAc7a7Lpyow==",
"dev": true,
"dependencies": {
"undici-types": "~5.26.4"
}
},
"node_modules/apache-arrow": {
"resolved": "../node/node_modules/apache-arrow",
"link": true
},
"node_modules/typescript": {
"version": "5.3.3",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.3.3.tgz",
"integrity": "sha512-pXWcraxM0uxAS+tN0AG/BF2TyqmHO014Z070UsJ+pFvYuRSq8KH8DmWpnbXe0pEPDHXZV3FcAbJkijJ5oNEnWw==",
"dev": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
},
"engines": {
"node": ">=14.17"
}
},
"node_modules/undici-types": {
"version": "5.26.5",
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
"integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==",
"dev": true
},
"node_modules/vectordb": {
"resolved": "../node",
"link": true
}
}
}

View File

@@ -1,20 +0,0 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"description": "auto-generated tests from doc",
"author": "dev@lancedb.com",
"license": "Apache 2",
"dependencies": {
"apache-arrow": "file:../node/node_modules/apache-arrow",
"vectordb": "file:../node"
},
"scripts": {
"build": "tsc -b && cd ../node && npm run build-release",
"example": "npm run build && node",
"test": "npm run build && ls dist/*.js | xargs -n 1 node"
},
"devDependencies": {
"@types/node": "^20.11.8",
"typescript": "^5.3.3"
}
}

View File

@@ -3,4 +3,3 @@ mkdocs-jupyter==0.24.1
mkdocs-material==9.5.3
mkdocstrings[python]==0.20.0
pydantic
mkdocs-ultralytics-plugin==0.0.44

View File

@@ -7,18 +7,26 @@ for brute-force scanning of the entire vector space.
A vector index is faster but less accurate than exhaustive search (kNN or flat search).
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
## Disk-based Index
Currently, LanceDB does *not* automatically create the ANN index.
LanceDB has optimized code for kNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
Lance provides an `IVF_PQ` disk-based index. It uses **Inverted File Index (IVF)** to first divide
the dataset into `N` partitions, and then applies **Product Quantization** to compress vectors in each partition.
See the [indexing](concepts/index_ivfpq.md) concepts guide for more information on how this works.
In the future we will look to automatically create and configure the ANN index as data comes in.
## Types of Index
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition.
* `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector.
## Creating an IVF_PQ Index
Lance supports `IVF_PQ` index type by default.
=== "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
@@ -38,42 +46,25 @@ Lance supports `IVF_PQ` index type by default.
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "Typescript"
=== "Javascript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
--8<-- "docs/src/ann_indexes.ts:ingest"
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
const table = await db.createTable('my_vectors', data)
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/ivf_pq.rs:create_index"
```
IVF_PQ index parameters are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/index/vector/struct.IvfPqIndexBuilder.html).
The following IVF_PQ paramters can be specified:
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`L2`".
We also support "cosine" and "dot" distance as well.
- **num_partitions**: The number of partitions in the index. The default is the square root
of the number of rows.
!!! note
In the synchronous python SDK and node's `vectordb` the default is 256. This default has
changed in the asynchronous python SDK and node's `lancedb`.
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
a single PQ code. The default is the dimension of the vector divided by 16.
!!! note
In the synchronous python SDK and node's `vectordb` the default is currently 96. This default has
changed in the asynchronous python SDK and node's `lancedb`.
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
We also support "cosine" and "dot" distance as well.
- **num_partitions** (default: 256): The number of partitions of the index.
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
a single PQ code.
<figure markdown>
![IVF PQ](./assets/ivf_pq.png)
@@ -87,7 +78,7 @@ Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being
You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to `cuda` or `mps` (on Apple Silicon) to enable GPU training.
- **accelerator**: Specify to ``cuda`` or ``mps`` (on Apple Silicon) to enable GPU training.
=== "Linux"
@@ -101,7 +92,7 @@ You can specify the GPU device to train IVF partitions via
)
```
=== "MacOS"
=== "Macos"
<!-- skip-test -->
```python
@@ -113,11 +104,12 @@ You can specify the GPU device to train IVF partitions via
)
```
Troubleshooting:
Trouble shootings:
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
If you see ``AssertionError: Torch not compiled with CUDA enabled``, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
## Querying an ANN Index
Querying vector indexes is done via the [search](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.search) function.
@@ -135,7 +127,6 @@ There are a couple of parameters that can be used to fine-tune the search:
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
=== "Python"
```python
tbl.search(np.random.random((1536))) \
.limit(2) \
@@ -143,43 +134,41 @@ There are a couple of parameters that can be used to fine-tune the search:
.refine_factor(10) \
.to_pandas()
```
```text
```
vector item _distance
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
=== "Typescript"
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
=== "Javascript"
```javascript
const results_1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute()
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/ivf_pq.rs:search1"
```
Vector search options are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/query/struct.Query.html#method.nearest_to).
The search will return the data requested in addition to the distance of each item.
### Filtering (where clause)
You can further filter the elements returned by a search using a where clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
=== "Typescript"
=== "Javascript"
```javascript
--8<-- "docs/src/ann_indexes.ts:search2"
const results_2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.execute()
```
### Projections (select clause)
@@ -187,42 +176,34 @@ You can further filter the elements returned by a search using a where clause.
You can select the columns returned by the query using a select clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
```
```text
```
vector _distance
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
```
=== "Typescript"
```typescript
--8<-- "docs/src/ann_indexes.ts:search3"
=== "Javascript"
```javascript
const results_3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.execute()
```
## FAQ
### Why do I need to manually create an index?
Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB is well-optimized for kNN (exhaustive search) via a disk-based index. For many use-cases,
datasets of the order of ~100K vectors don't require index creation. If you can live with up to
100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
### When is it necessary to create an ANN vector index?
`LanceDB` comes out-of-the-box with highly optimized SIMD code for computing vector similarity.
In our benchmarks, computing distances for 100K pairs of 1K dimension vectors takes **less than 20ms**.
We observe that for small datasets (~100K rows) or for applications that can accept 100ms latency,
vector indices are usually not necessary.
`LanceDB` has manually-tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors takes **less than 20ms**.
For small datasets (< 100K rows) or applications that can accept 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it can beneficial to create vector index for performance.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how many memory will it take?

View File

@@ -1,53 +0,0 @@
// --8<-- [start:import]
import * as vectordb from "vectordb";
// --8<-- [end:import]
(async () => {
// --8<-- [start:ingest]
const db = await vectordb.connect("data/sample-lancedb");
let data = [];
for (let i = 0; i < 10_000; i++) {
data.push({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
});
}
const table = await db.createTable("my_vectors", data);
await table.createIndex({
type: "ivf_pq",
column: "vector",
num_partitions: 16,
num_sub_vectors: 48,
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const results_1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute();
// --8<-- [end:search1]
// --8<-- [start:search2]
const results_2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.execute();
// --8<-- [end:search2]
// --8<-- [start:search3]
const results_3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.execute();
// --8<-- [end:search3]
console.log("Ann indexes: done");
})();

View File

@@ -1,8 +0,0 @@
# API Reference
The API reference for the LanceDB client SDKs are available at the following locations:
- [Python](python/python.md)
- [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/modules.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 147 KiB

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 98 KiB

After

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

After

Width:  |  Height:  |  Size: 266 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 204 KiB

After

Width:  |  Height:  |  Size: 131 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 217 KiB

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 256 KiB

After

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

After

Width:  |  Height:  |  Size: 205 KiB

View File

@@ -3,7 +3,7 @@
!!! info "LanceDB can be run in a number of ways:"
* Embedded within an existing backend (like your Django, Flask, Node.js or FastAPI application)
* Directly from a client application like a Jupyter notebook for analytical workloads
* Connected to directly from a client application like a Jupyter notebook for analytical workloads
* Deployed as a remote serverless database
![](assets/lancedb_embedded_explanation.png)
@@ -11,104 +11,47 @@
## Installation
=== "Python"
```shell
pip install lancedb
```
=== "Typescript"
=== "Javascript"
```shell
npm install vectordb
```
=== "Rust"
```shell
cargo add lancedb
```
!!! info "To use the lancedb create, you first need to install protobuf."
=== "macOS"
```shell
brew install protobuf
```
=== "Ubuntu/Debian"
```shell
sudo apt install -y protobuf-compiler libssl-dev
```
!!! info "Please also make sure you're using the same version of Arrow as in the [lancedb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
## Connect to a database
## How to connect to a database
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:connect"
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```
!!! note "Asynchronous Python API"
LanceDB will create the directory if it doesn't exist (including parent directories).
The asynchronous Python API is new and has some slight differences compared
to the synchronous API. Feel free to start using the asynchronous version.
Once all features have migrated we will start to move the synchronous API to
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
If you need a reminder of the uri, use the `db.uri` property.
=== "Typescript"
=== "Javascript"
```javascript
const lancedb = require("vectordb");
```typescript
--8<-- "docs/src/basic_legacy.ts:import"
--8<-- "docs/src/basic_legacy.ts:open_db"
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
!!! note "`@lancedb/lancedb` vs. `vectordb`"
LanceDB will create the directory if it doesn't exist (including parent directories).
The Javascript SDK was originally released as `vectordb`. In an effort to
reduce maintenance we are aligning our SDKs. The new, aligned, Javascript
API is being released as `lancedb`. If you are starting new work we encourage
you to try out `lancedb`. Once the new API is feature complete we will begin
slowly deprecating `vectordb` in favor of `lancedb`. There is a
[migration guide](migration.md) detailing the differences which will assist
you in this process.
If you need a reminder of the uri, you can call `db.uri()`.
=== "Rust"
```rust
#[tokio::main]
async fn main() -> Result<()> {
--8<-- "rust/lancedb/examples/simple.rs:connect"
}
```
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/lancedb/examples/simple.rs) for a full working example."
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`.
## Create a table
### Create a table from initial data
If you have data to insert into the table at creation time, you can simultaneously create a
table and insert the data into it. The schema of the data will be used as the schema of the
table.
## How to create a table
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
If the table already exists, LanceDB will raise an error by default.
@@ -116,227 +59,126 @@ table.
to the `create_table` method.
You can also pass in a pandas DataFrame directly:
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
```
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_table"
=== "Javascript"
```javascript
const tb = await db.createTable(
"myTable",
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]
)
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:create_table"
```
!!! info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
If the table already exists, LanceDB will raise an error by default. See
[the mode option](https://docs.rs/lancedb/latest/lancedb/connection/struct.CreateTableBuilder.html#method.mode)
for details on how to overwrite (or open) existing tables instead.
!!! Providing table records in Rust
The Rust SDK currently expects data to be provided as an Arrow
[RecordBatchReader](https://docs.rs/arrow-array/latest/arrow_array/trait.RecordBatchReader.html)
Support for additional formats (such as serde or polars) is on the roadmap.
!!! info "Under the hood, LanceDB reads in the Apache Arrow data and persists it to disk using the [Lance format](https://www.github.com/lancedb/lance)."
### Create an empty table
### Creating an empty table
Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema, so that you can add
data to the table at a later time (as long as it conforms to the schema). This is
similar to a `CREATE TABLE` statement in SQL.
In this case, you can create an empty table and specify the schema.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
import pyarrow as pa
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema)
```
=== "Typescript"
## How to open an existing table
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:create_empty_table"
```
## Open an existing table
Once created, you can open a table as follows:
Once created, you can open a table using the following code:
=== "Python"
```python
tbl = db.open_table("my_table")
```
If you forget the name of your table, you can always get a listing of all table names:
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table"
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Typescript"
```typescript
const tbl = await db.openTable("myTable");
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:open_existing_tbl"
```
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names"
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
print(db.table_names())
```
=== "Javascript"
```javascript
const tbl = await db.openTable("myTable");
```
If you forget the name of your table, you can always get a listing of all table names:
```javascript
console.log(await db.tableNames());
```
=== "Rust"
## How to add data to a table
```rust
--8<-- "rust/lancedb/examples/simple.rs:list_names"
```
## Add data to a table
After a table has been created, you can always add more data to it as follows:
After a table has been created, you can always add more data to it using
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_data"
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
# Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
```
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:add"
=== "Javascript"
```javascript
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
```
=== "Rust"
## How to search for (approximate) nearest neighbors
```rust
--8<-- "rust/lancedb/examples/simple.rs:add"
```
## Search for nearest neighbors
Once you've embedded the query, you can find its nearest neighbors as follows:
Once you've embedded the query, you can find its nearest neighbors using the following code:
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
tbl.search([100, 100]).limit(2).to_pandas()
```
This returns a pandas DataFrame with the results.
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:search"
=== "Javascript"
```javascript
const query = await tbl.search([100, 100]).limit(2).execute();
```
=== "Rust"
```rust
use futures::TryStreamExt;
--8<-- "rust/lancedb/examples/simple.rs:search"
```
!!! Query vectors in Rust
Rust does not yet support automatic execution of embedding functions. You will need to
calculate embeddings yourself. Support for this is on the roadmap and can be tracked at
https://github.com/lancedb/lancedb/issues/994
Query vectors can be provided as Arrow arrays or a Vec/slice of Rust floats.
Support for additional formats (e.g. `polars::series::Series`) is on the roadmap.
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
LanceDB allows you to create an ANN index on a table as follows:
=== "Python"
```py
--8<-- "python/python/tests/docs/test_basic.py:create_index"
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Typescript"
```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:create_index"
```
!!! note "Why do I need to create an index manually?"
LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
to fine-tune index size, query latency and accuracy. See the section on
[ANN indexes](ann_indexes.md) for more details.
## Delete rows from a table
## How to delete rows from a table
Use the `delete()` method on tables to delete rows from a table. To choose
which rows to delete, provide a filter that matches on the metadata columns.
This can delete any number of rows that match the filter.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
tbl.delete('item = "fizz"')
```
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:delete"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:delete"
=== "Javascript"
```javascript
await tbl.delete('item = "fizz"')
```
The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause (`only_if()` in Rust) on a search. They can be as
simple or complex as needed. To see what expressions are supported, see the
[SQL filters](sql.md) section.
as the `where()` clause on a search. They can be as simple or complex as needed.
To see what expressions are supported, see the [SQL filters](sql.md) section.
=== "Python"
@@ -346,40 +188,27 @@ simple or complex as needed. To see what expressions are supported, see the
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
=== "Rust"
Read more: [lancedb::Table::delete](https://docs.rs/lancedb/latest/lancedb/table/struct.Table.html#method.delete)
## Drop a table
## How to remove a table
Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
db.drop_table("my_table")
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
=== "JavaScript"
```javascript
await db.dropTable('myTable')
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:drop_table"
```
!!! note "Bundling `vectordb` apps with Webpack"
If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.

View File

@@ -1,92 +0,0 @@
// --8<-- [start:import]
import * as lancedb from "vectordb";
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
// --8<-- [end:import]
import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow";
const example = async () => {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
// --8<-- [start:open_db]
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
// --8<-- [end:open_db]
// --8<-- [start:create_table]
const tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ writeMode: lancedb.WriteMode.Overwrite }
);
// --8<-- [end:create_table]
// --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({
vector: [i, i + 1],
item: "fizz",
price: i * 0.1,
}));
await tbl.add(newData);
// --8<-- [end:add]
// --8<-- [start:create_index]
await tbl.createIndex({
type: "ivf_pq",
num_partitions: 2,
num_sub_vectors: 2,
});
// --8<-- [end:create_index]
// --8<-- [start:create_empty_table]
const schema = new Schema([
new Field("id", new Int32()),
new Field("name", new Utf8()),
]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
// --8<-- [start:create_f16_table]
const dim = 16
const total = 10
const f16_schema = new Schema([
new Field('id', new Int32()),
new Field(
'vector',
new FixedSizeList(dim, new Field('item', new Float16(), true)),
false
)
])
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random)
})),
{ f16_schema }
)
const table = await db.createTable('f16_tbl', data)
// --8<-- [end:create_f16_table]
// --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute();
// --8<-- [end:search]
console.log(query);
// --8<-- [start:delete]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
};
async function main() {
await example();
console.log("Basic example: done");
}
main();

View File

@@ -31,7 +31,7 @@ As an example, consider starting with 128-dimensional vector consisting of 32-bi
While PQ helps with reducing the size of the index, IVF primarily addresses search performance. The primary purpose of an inverted file index is to facilitate rapid and effective nearest neighbor search by narrowing down the search space.
In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are initialized by running K-means over the stored vectors. The centroids of K-means turn into the seed points which then each define a region. These regions are then are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index.
In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index.
![](../assets/ivfpq_ivf_desc.webp)
@@ -81,4 +81,24 @@ The above query will perform a search on the table `tbl` using the given query v
* `to_pandas()`: Convert the results to a pandas DataFrame
And there you have it! You now understand what an IVF-PQ index is, and how to create and query it in LanceDB.
To see how to create an IVF-PQ index in LanceDB, take a look at the [ANN indexes](../ann_indexes.md) section.
## FAQ
### When is it necessary to create a vector index?
LanceDB has manually-tuned SIMD code for computing vector distances. In our benchmarks, computing 100K pairs of 1K dimension vectors takes **<20ms**. For small datasets (<100K rows) or applications that can accept up to 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how much memory will it take?
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with 1024-dimension vectors, if we choose `num_sub_vectors = 64`, each sub-vector has `1024 / 64 = 16` float32 numbers. Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for IVF_PQ index?
`num_partitions` is used to decide how many partitions the first level IVF index uses. Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train. On SIFT-1M dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency/recall.
`num_sub_vectors` specifies how many PQ short codes to generate on each vector. Because PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.

View File

@@ -17,7 +17,6 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
@@ -82,7 +81,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
@@ -110,14 +109,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = attempt_import_or_raise("PIL", "pillow")
PIL = self.safe_import("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = attempt_import_or_raise("torch")
torch = self.safe_import("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
@@ -176,7 +175,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = attempt_import_or_raise("torch")
torch = self.safe_import("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
@@ -184,7 +183,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = attempt_import_or_raise("PIL", "pillow")
PIL = self.safe_import("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):

View File

@@ -9,9 +9,6 @@ Contains the text embedding functions registered by default.
### Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
@@ -19,163 +16,27 @@ Allows you to set parameters when registering a `sentence-transformers` object.
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
??? "Check out available sentence-transformer models here!"
```markdown
- sentence-transformers/all-MiniLM-L12-v2
- sentence-transformers/paraphrase-mpnet-base-v2
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
```python
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("sentence-transformers").create(device="cpu")
!!! info
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
!!! note "BAAI Embeddings example"
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
```python
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
model = registry.get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
@@ -183,7 +44,6 @@ LanceDB registers the OpenAI embeddings function in the registry by default, as
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
```python
@@ -259,7 +119,7 @@ texts = [{"text": "Capitalism has been dominant in the Western world since the e
tbl.add(texts)
```
### Gemini Embeddings
## Gemini Embedding Function
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types:
@@ -295,52 +155,6 @@ tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
Usage Example:
```python
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
## Multi-modal embedding functions
Multi-modal embedding functions allow you to query your table using both images and text.
@@ -360,6 +174,7 @@ This embedding function supports ingesting images as both bytes and urls. You ca
!!! info
LanceDB supports ingesting images directly from accessible links.
```python
db = lancedb.connect(tmp_path)
@@ -425,67 +240,4 @@ print(actual.label)
```
### Imagebind embeddings
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
Below is an example demonstrating how the API works:
```python
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("imagebind").create()
class ImageBindModel(LanceModel):
text: str
image_uri: str = func.SourceField()
audio_path: str
vector: Vector(func.ndims()) = func.VectorField()
# add locally accessible image paths
text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
# Load data
inputs = [
{"text": a, "audio_path": b, "image_uri": c}
for a, b, c in zip(text_list, audio_paths, image_paths)
]
#create table and add data
table = db.create_table("img_bind", schema=ImageBindModel)
table.add(inputs)
```
Now, we can search using any modality:
#### image search
```python
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "dog")
```
#### audio search
```python
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "car")
```
#### Text search
You can add any input query and fetch the result as follows:
```python
query = "an animal which flies and tweets"
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).

View File

@@ -0,0 +1,141 @@
In this workflow, you define your own embedding function and pass it as a callable to LanceDB, invoking it in your code to generate the embeddings. Let's look at some examples.
### Hugging Face
!!! note
Currently, the Hugging Face method is only supported in the Python SDK.
=== "Python"
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
=== "Python"
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
=== "JavaScript"
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## Applying an embedding function to data
=== "Python"
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
=== "JavaScript"
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Simply pass the embedding function created above and LanceDB will use it to generate
embeddings for your data.
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding)
```
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.

View File

@@ -3,126 +3,61 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! warning
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via
table metadata and have LanceDB automatically take care of regenerating the embeddings.
Using the implicit embeddings management approach means that you can forget about the manually passing around embedding
functions in your code, as long as you don't intend to change it at a later time. If your embedding function changes,
you'll have to re-configure your table with the new embedding function and regenerate the embeddings.
## 1. Define the embedding function
We have some pre-defined embedding functions in the global registry, with more coming soon. Here's let's an implementation of CLIP as example.
```
registry = EmbeddingFunctionRegistry.get_instance()
clip = registry.get("open-clip").create()
=== "Python"
In the LanceDB python SDK, we define a global embedding function registry with
many different embedding models and even more coming soon.
Here's let's an implementation of CLIP as example.
```python
from lancedb.embeddings import get_registry
registry = get_registry()
clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "JavaScript""
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available.
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
```
You can also define your own embedding function by implementing the `EmbeddingFunction` abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
## 2. Define the data model or schema
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
=== "Python"
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
```python
class Pets(LanceModel):
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
=== "JavaScript"
## 3. Create LanceDB table
Now that we have chosen/defined our embedding function and the schema, we can create the table:
For the TypeScript SDK, a schema can be inferred from input data, or an explicit
Arrow schema can be provided.
```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
## 3. Create table and add data
```
Now that we have chosen/defined our embedding function and the schema,
we can create the table and ingest data without needing to explicitly generate
the embeddings at all:
That's it! We've provided all the information needed to embed the source and query inputs. We can now forget about the model and dimension details and start to build our VectorDB pipeline.
=== "Python"
```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
## 4. Ingest lots of data and query your table
Any new or incoming data can just be added and it'll be vectorized automatically.
table.add([{"image_uri": u} for u in uris])
```
```python
table.add([{"image_uri": u} for u in uris])
```
=== "JavaScript"
Our OpenCLIP query embedding function supports querying via both text and images:
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
```python
result = table.search("dog")
```
const table = await db.createTable("vectors", data, embedding)
```
Let's query an image:
## 4. Querying your table
Not only can you forget about the embeddings during ingestion, you also don't
need to worry about it when you query the table:
=== "Python"
Our OpenCLIP query embedding function supports querying via both text and images:
```python
results = (
table.search("dog")
.limit(10)
.to_pandas()
)
```
Or we can search using an image:
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
results = (
table.search(query_image)
.limit(10)
.to_pandas()
)
```
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
table.search(query_image)
```
---
@@ -165,5 +100,4 @@ rs[2].image
![](../assets/dog_clip_output.png)
Now that you have the basic idea about LanceDB embedding functions and the embedding function registry,
let's dive deeper into defining your own [custom functions](./custom_embedding_function.md).
Now that you have the basic idea about implicit management via embedding functions, let's dive deeper into a [custom API](./api.md) that you can use to implement your own embedding functions.

View File

@@ -1,14 +1,8 @@
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
This makes them a very powerful tool for machine learning practitioners.
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
(both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio. This makes them a very powerful tool for machine learning practitioners. However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs (both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
LanceDB supports 3 methods of working with embeddings.
LanceDB supports 2 methods of vectorizing your raw data into embeddings.
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions.
1. **Explicit**: By manually calling LanceDB's `with_embedding` function to vectorize your data via an `embed_func` of your choice
2. **Implicit**: Allow LanceDB to embed the data and queries in the background as they come in, by using the table's `EmbeddingRegistry` information
For python users, there is also a legacy [with_embeddings API](./legacy.md).
It is retained for compatibility and will be removed in a future version.
See the [explicit](embedding_explicit.md) and [implicit](embedding_functions.md) embedding sections for more details.

View File

@@ -1,99 +0,0 @@
The legacy `with_embeddings` API is for Python only and is deprecated.
### Hugging Face
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
client = openai.OpenAI()
def embed_func(c):
rs = client.embeddings.create(input=c, model="text-embedding-ada-002")
return [record.embedding for record in rs["data"]]
```
## Applying an embedding function to data
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
tbl = db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.

View File

@@ -1,3 +0,0 @@
# Examples: Rust
Our Rust SDK is now stable. Examples are coming soon.

View File

@@ -43,7 +43,7 @@ pip install lancedb
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
```
pip install tantivy
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
```
Create a new Python file and add the following code:

View File

@@ -2,11 +2,10 @@
## Recipes and example code
LanceDB provides language APIs, allowing you to embed a database in your language of choice.
LanceDB provides language APIs, allowing you to embed a database in your language of choice. We currently provide Python and Javascript APIs, with the Rust API and examples actively being worked on and will be available soon.
* 🐍 [Python](examples_python.md) examples
* 👾 [JavaScript](examples_js.md) examples
* 🦀 Rust examples (coming soon)
* 👾 [JavaScript](exampled_js.md) examples
## Applications powered by LanceDB

View File

@@ -1,5 +1,6 @@
import pickle
import re
import sys
import zipfile
from pathlib import Path
@@ -78,10 +79,7 @@ def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()

View File

@@ -1,79 +0,0 @@
// Creates an SVG robot icon (from Lucide)
function robotSVG() {
var svg = document.createElementNS("http://www.w3.org/2000/svg", "svg");
svg.setAttribute("width", "24");
svg.setAttribute("height", "24");
svg.setAttribute("viewBox", "0 0 24 24");
svg.setAttribute("fill", "none");
svg.setAttribute("stroke", "currentColor");
svg.setAttribute("stroke-width", "2");
svg.setAttribute("stroke-linecap", "round");
svg.setAttribute("stroke-linejoin", "round");
svg.setAttribute("class", "lucide lucide-bot-message-square");
var path1 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path1.setAttribute("d", "M12 6V2H8");
svg.appendChild(path1);
var path2 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path2.setAttribute("d", "m8 18-4 4V8a2 2 0 0 1 2-2h12a2 2 0 0 1 2 2v8a2 2 0 0 1-2 2Z");
svg.appendChild(path2);
var path3 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path3.setAttribute("d", "M2 12h2");
svg.appendChild(path3);
var path4 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path4.setAttribute("d", "M9 11v2");
svg.appendChild(path4);
var path5 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path5.setAttribute("d", "M15 11v2");
svg.appendChild(path5);
var path6 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path6.setAttribute("d", "M20 12h2");
svg.appendChild(path6);
return svg
}
// Creates the Fluidic Chatbot buttom
function fluidicButton() {
var btn = document.createElement("a");
btn.href = "https://asklancedb.com";
btn.target = "_blank";
btn.style.position = "fixed";
btn.style.fontWeight = "bold";
btn.style.fontSize = ".8rem";
btn.style.right = "10px";
btn.style.bottom = "10px";
btn.style.width = "80px";
btn.style.height = "80px";
btn.style.background = "linear-gradient(135deg, #7C5EFF 0%, #625eff 100%)";
btn.style.color = "white";
btn.style.borderRadius = "5px";
btn.style.display = "flex";
btn.style.flexDirection = "column";
btn.style.justifyContent = "center";
btn.style.alignItems = "center";
btn.style.zIndex = "1000";
btn.style.opacity = "0";
btn.style.boxShadow = "0 0 0 rgba(0, 0, 0, 0)";
btn.style.transition = "opacity 0.2s ease-in, box-shadow 0.2s ease-in";
setTimeout(function() {
btn.style.opacity = "1";
btn.style.boxShadow = "0 0 .2rem #0000001a,0 .2rem .4rem #0003"
}, 0);
return btn
}
document.addEventListener("DOMContentLoaded", function() {
var btn = fluidicButton()
btn.appendChild(robotSVG());
var text = document.createTextNode("Ask AI");
btn.appendChild(text);
document.body.appendChild(btn);
});

View File

@@ -16,7 +16,7 @@ As we mention in our talk titled “[Lance, a modern columnar data format](https
### Why build in Rust? 🦀
We believe that the Rust ecosystem has attained mainstream maturity and that Rust will form the underpinnings of large parts of the data and ML landscape in a few years. Performance, latency and reliability are paramount to a vector DB, and building in Rust allows us to iterate and release updates more rapidly due to Rusts safety guarantees. Both Lance (the data format) and LanceDB (the database) are written entirely in Rust. We also provide Python, JavaScript, and Rust client libraries to interact with the database.
We believe that the Rust ecosystem has attained mainstream maturity and that Rust will form the underpinnings of large parts of the data and ML landscape in a few years. Performance, latency and reliability are paramount to a vector DB, and building in Rust allows us to iterate and release updates more rapidly due to Rusts safety guarantees. Both Lance (the data format) and LanceDB (the database) are written entirely in Rust. We also provide Python and JavaScript client libraries to interact with the database. Our Rust API is a little rough around the edges right now, but is fast becoming on par with the Python and JS APIs.
### What is the difference between LanceDB OSS and LanceDB Cloud?
@@ -40,11 +40,11 @@ LanceDB and its underlying data format, Lance, are built to scale to really larg
No. LanceDB is blazing fast (due to its disk-based index) for even brute force kNN search, within reason. In our benchmarks, computing 100K pairs of 1000-dimension vectors takes less than 20ms. For small datasets of ~100K records or applications that can accept ~100ms latency, an ANN index is usually not necessary.
For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index. See the [ANN indexes](ann_indexes.md) section for more details.
For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
### Does LanceDB support full-text search?
Yes, LanceDB supports full-text search (FTS) via [Tantivy](https://github.com/quickwit-oss/tantivy). Our current FTS integration is Python-only, and our goal is to push it down to the Rust level in future versions to enable much more powerful search capabilities available to our Python, JavaScript and Rust clients. Follow along in the [Github issue](https://github.com/lancedb/lance/issues/1195)
Yes, LanceDB supports full-text search (FTS) via [Tantivy](https://github.com/quickwit-oss/tantivy). Our current FTS integration is Python-only, and our goal is to push it down to the Rust level in future versions to enable much more powerful search capabilities available to our Python, JavaScript and Rust clients.
### How can I speed up data inserts?
@@ -69,19 +69,3 @@ MinIO supports an S3 compatible API. In order to connect to a MinIO instance, yo
- Set the envvar `AWS_ENDPOINT` to the URL of your MinIO API
- Set the envvars `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` with your MinIO credential
- Call `lancedb.connect("s3://minio_bucket_name")`
### Where can I find benchmarks for LanceDB?
Refer to this [post](https://blog.lancedb.com/benchmarking-lancedb-92b01032874a) for recent benchmarks.
### How much data can LanceDB practically manage without effecting performance?
We target good performance on ~10-50 billion rows and ~10-30 TB of data.
### Does LanceDB support concurrent operations?
LanceDB can handle concurrent reads very well, and can scale horizontally. The main constraint is how well the [storage layer](https://lancedb.github.io/lancedb/concepts/storage/) you've chosen scales. For writes, we support concurrent writing, though too many concurrent writers can lead to failing writes as there is a limited number of times a writer retries a commit
!!! info "Multiprocessing with LanceDB"
For multiprocessing you should probably not use ```fork``` as lance is multi-threaded internally and ```fork``` and multi-thread do not work well.[Refer to this discussion](https://discuss.python.org/t/concerns-regarding-deprecation-of-fork-with-alive-threads/33555)

View File

@@ -1,6 +1,6 @@
# Full-text search
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for Rust and JavaScript users as well. Follow along at [this Github issue](https://github.com/lancedb/lance/issues/1195)
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for JavaScript users as well.
A hybrid search solution combining vector and full-text search is also on the way.
@@ -75,70 +75,21 @@ applied on top of the full text search results. This can be invoked via the fami
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
## Sorting
## Syntax
You can pre-sort the documents by specifying `ordering_field_names` when
creating the full-text search index. Once pre-sorted, you can then specify
`ordering_field_name` while searching to return results sorted by the given
field. For example,
For full-text search you can perform either a phrase query like "the old man and the sea",
or a structured search query like "(Old AND Man) AND Sea".
Double quotes are used to disambiguate.
```
table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
For example:
(table.search("terms", ordering_field_name="sort_by_field")
.limit(20)
.to_list())
```
If you intended "they could have been dogs OR cats" as a phrase query, this actually
raises a syntax error since `OR` is a recognized operator. If you make `or` lower case,
this avoids the syntax error. However, it is cumbersome to have to remember what will
conflict with the query syntax. Instead, if you search using
`table.search('"they could have been dogs OR cats"')`, then the syntax checker avoids
checking inside the quotes.
!!! note
If you wish to specify an ordering field at query time, you must also
have specified it during indexing time. Otherwise at query time, an
error will be raised that looks like `ValueError: The field does not exist: xxx`
!!! note
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
!!! note
You can specify multiple fields for ordering at indexing time.
But at query time only one ordering field is supported.
## Phrase queries vs. terms queries
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
!!! tip "Note"
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
```py
# This raises a syntax error
table.search("they could have been dogs OR cats")
```
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
the query is treated as a phrase query.
```py
# This works!
table.search("they could have been dogs or cats")
```
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
enforce it in one of two ways:
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
a phrase query.
2. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
is treated as a phrase query.
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
double quotes replaced by single quotes.
## Configurations
@@ -161,3 +112,4 @@ table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it.

View File

@@ -68,82 +68,6 @@ Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_
You can see a full list of environment variables [here](https://docs.rs/object_store/latest/object_store/aws/struct.AmazonS3Builder.html#method.from_env).
!!! tip "Automatic cleanup for failed writes"
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
**[Configuring a bucket lifecycle configuration to delete incomplete multipart uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpu-abort-incomplete-mpu-lifecycle-config.html)**
#### AWS IAM Permissions
If a bucket is private, then an IAM policy must be specified to allow access to it. For many development scenarios, using broad permissions such as a PowerUser account is more than sufficient for working with LanceDB. However, in many production scenarios, you may wish to have as narrow as possible permissions.
For **read and write access**, LanceDB will need a policy such as:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:PutObject",
"s3:GetObject",
"s3:DeleteObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:::<bucket>",
"Condition": {
"StringLike": {
"s3:prefix": [
"<prefix>/*"
]
}
}
}
]
}
```
For **read-only access**, LanceDB will need a policy such as:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:::<bucket>",
"Condition": {
"StringLike": {
"s3:prefix": [
"<prefix>/*"
]
}
}
}
]
}
```
#### S3-compatible stores
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify two environment variables: `AWS_ENDPOINT` and `AWS_DEFAULT_REGION`. `AWS_ENDPOINT` should be the URL of the S3-compatible store, and `AWS_DEFAULT_REGION` should be the region to use.

View File

@@ -16,22 +16,9 @@ This guide will show how to create tables, insert data into them, and update the
db = lancedb.connect("./.lancedb")
```
=== "Javascript"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
### From list of tuples or dictionaries
=== "Python"
### From list of tuples or dictionaries
```python
import lancedb
@@ -45,6 +32,7 @@ This guide will show how to create tables, insert data into them, and update the
db["my_table"].head()
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default.
@@ -63,27 +51,6 @@ This guide will show how to create tables, insert data into them, and update the
db.create_table("name", data, mode="overwrite")
```
=== "Javascript"
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
### From a Pandas DataFrame
```python
@@ -102,8 +69,6 @@ This guide will show how to create tables, insert data into them, and update the
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
@@ -114,7 +79,7 @@ This guide will show how to create tables, insert data into them, and update the
table = db.create_table("my_table", data, schema=custom_schema)
```
### From a Polars DataFrame
### From a Polars DataFrame
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
@@ -132,60 +97,42 @@ This guide will show how to create tables, insert data into them, and update the
table = db.create_table("pl_table", data=data)
```
### From an Arrow Table
=== "Python"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
### From PyArrow Tables
You can also create LanceDB tables directly from PyArrow tables
```python
import pyarrows as pa
import numpy as np
dim = 16
total = 2
schema = pa.schema(
table = pa.Table.from_arrays(
[
pa.field("vector", pa.list_(pa.float16(), dim)),
pa.field("text", pa.string())
]
)
data = pa.Table.from_arrays(
[
pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],
pa.list_(pa.float16(), dim)),
pa.array(["foo", "bar"])
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "text"],
["vector", "item", "price"],
)
tbl = db.create_table("f16_tbl", data, schema=schema)
db = lancedb.connect("db")
tbl = db.create_table("my_table", table)
```
=== "Javascript"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports Float16 data type!
### From Pydantic Models
When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a PyArrow schema or a specialized
Pydantic model called `LanceModel`.
```javascript
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
```
For example, the following Content model specifies a table with 5 columns:
`movie_id`, `vector`, `genres`, `title`, and `imdb_id`. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized Pydantic type that
can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
### From Pydantic Models
```python
from lancedb.pydantic import Vector, LanceModel
When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a PyArrow schema or a specialized
Pydantic model called `LanceModel`.
For example, the following Content model specifies a table with 5 columns:
`movie_id`, `vector`, `genres`, `title`, and `imdb_id`. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized Pydantic type that
can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
```python
from lancedb.pydantic import Vector, LanceModel
class Content(LanceModel):
class Content(LanceModel):
movie_id: int
vector: Vector(128)
genres: str
@@ -196,65 +143,65 @@ class Content(LanceModel):
def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}"
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content)
```
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content)
```
#### Nested schemas
#### Nested schemas
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
```python
class Document(BaseModel):
```python
class Document(BaseModel):
content: str
source: str
```
```
This can be used as the type of a LanceDB table column:
This can be used as the type of a LanceDB table column:
```python
class NestedSchema(LanceModel):
```python
class NestedSchema(LanceModel):
id: str
vector: Vector(1536)
document: Document
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
This creates a struct column called "document" that has two subfields
called "content" and "source":
This creates a struct column called "document" that has two subfields
called "content" and "source":
```
In [28]: tbl.schema
Out[28]:
id: string not null
vector: fixed_size_list<item: float>[1536] not null
```
In [28]: tbl.schema
Out[28]:
id: string not null
vector: fixed_size_list<item: float>[1536] not null
child 0, item: float
document: struct<content: string not null, source: string not null> not null
document: struct<content: string not null, source: string not null> not null
child 0, content: string not null
child 1, source: string not null
```
```
#### Validators
#### Validators
Note that neither Pydantic nor PyArrow automatically validates that input data
is of the correct timezone, but this is easy to add as a custom field validator:
Note that neither Pydantic nor PyArrow automatically validates that input data
is of the correct timezone, but this is easy to add as a custom field validator:
```python
from datetime import datetime
from zoneinfo import ZoneInfo
```python
from datetime import datetime
from zoneinfo import ZoneInfo
from lancedb.pydantic import LanceModel
from pydantic import Field, field_validator, ValidationError, ValidationInfo
from lancedb.pydantic import LanceModel
from pydantic import Field, field_validator, ValidationError, ValidationInfo
tzname = "America/New_York"
tz = ZoneInfo(tzname)
tzname = "America/New_York"
tz = ZoneInfo(tzname)
class TestModel(LanceModel):
class TestModel(LanceModel):
dt_with_tz: datetime = Field(json_schema_extra={"tz": tzname})
@field_validator('dt_with_tz')
@@ -263,35 +210,35 @@ class TestModel(LanceModel):
assert dt.tzinfo == tz
return dt
ok = TestModel(dt_with_tz=datetime.now(tz))
ok = TestModel(dt_with_tz=datetime.now(tz))
try:
try:
TestModel(dt_with_tz=datetime.now(ZoneInfo("Asia/Shanghai")))
assert 0 == 1, "this should raise ValidationError"
except ValidationError:
except ValidationError:
print("A ValidationError was raised.")
pass
```
```
When you run this code it should print "A ValidationError was raised."
When you run this code it should print "A ValidationError was raised."
#### Pydantic custom types
#### Pydantic custom types
LanceDB does NOT yet support converting pydantic custom types. If this is something you need,
please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new).
LanceDB does NOT yet support converting pydantic custom types. If this is something you need,
please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new).
### Using Iterators / Writing Large Datasets
### Using Iterators / Writing Large Datasets
It is recommended to use iterators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
It is recommended to use iterators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generators producing supported data types.
LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generators producing supported data types.
Here's an example using using `RecordBatch` iterator for creating tables.
Here's an example using using `RecordBatch` iterator for creating tables.
```python
import pyarrow as pa
```python
import pyarrow as pa
def make_batches():
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
@@ -303,16 +250,47 @@ def make_batches():
["vector", "item", "price"],
)
schema = pa.schema([
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
])
db.create_table("batched_tale", make_batches(), schema=schema)
```
db.create_table("batched_tale", make_batches(), schema=schema)
```
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
=== "JavaScript"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
## Open existing tables
@@ -636,70 +614,6 @@ The `values` parameter is used to provide the new values for the columns as lite
When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards.
## Consistency
In LanceDB OSS, users can set the `read_consistency_interval` parameter on connections to achieve different levels of read consistency. This parameter determines how frequently the database synchronizes with the underlying storage system to check for updates made by other processes. If another process updates a table, the database will not see the changes until the next synchronization.
There are three possible settings for `read_consistency_interval`:
1. **Unset (default)**: The database does not check for updates to tables made by other processes. This provides the best query performance, but means that clients may not see the most up-to-date data. This setting is suitable for applications where the data does not change during the lifetime of the table reference.
2. **Zero seconds (Strong consistency)**: The database checks for updates on every read. This provides the strongest consistency guarantees, ensuring that all clients see the latest committed data. However, it has the most overhead. This setting is suitable when consistency matters more than having high QPS.
3. **Custom interval (Eventual consistency)**: The database checks for updates at a custom interval, such as every 5 seconds. This provides eventual consistency, allowing for some lag between write and read operations. Performance wise, this is a middle ground between strong consistency and no consistency check. This setting is suitable for applications where immediate consistency is not critical, but clients should see updated data eventually.
!!! tip "Consistency in LanceDB Cloud"
This is only tune-able in LanceDB OSS. In LanceDB Cloud, readers are always eventually consistent.
=== "Python"
To set strong consistency, use `timedelta(0)`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb",. read_consistency_interval=timedelta(0))
table = db.open_table("my_table")
```
For eventual consistency, use a custom `timedelta`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb", read_consistency_interval=timedelta(seconds=5))
table = db.open_table("my_table")
```
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
```python
db = lancedb.connect("./.lancedb")
table = db.open_table("my_table")
# (Other writes happen to my_table from another process)
# Check for updates
table.checkout_latest()
```
=== "JavaScript/Typescript"
To set strong consistency, use `0`:
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table");
```
For eventual consistency, specify the update interval as seconds:
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table");
```
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
Once it does, we can show manual consistency check for Node as well.
-->
## What's next?
Learn the best practices on creating an ANN index and getting the most out of it.

View File

@@ -1,49 +0,0 @@
# Hybrid Search
Hybrid Search is a broad (often misused) term. It can mean anything from combining multiple methods for searching, to applying ranking methods to better sort the results. In this blog, we use the definition of "hybrid search" to mean using a combination of keyword-based and vector search.
## The challenge of (re)ranking search results
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step-reranking.
There are two approaches for reranking search results from multiple sources.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example-Weighted linear combination of semantic search & keyword-based search results.
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example-Cross Encoder models
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset, application specific so it's hard to generalize.
### Example evaluation of hybrid search with Reranking
Here's some evaluation numbers from experiment comparing these re-rankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
<b> With OpenAI ada2 embedding </b>
Vector Search baseline - `0.64`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
| Linear Combination | `0.73` | `0.74` | `0.85` |
| Cross Encoder | `0.71` | `0.70` | `0.77` |
| Cohere | `0.81` | `0.81` | `0.85` |
| ColBERT | `0.68` | `0.68` | `0.73` |
<p>
<img src="https://github.com/AyushExel/assets/assets/15766192/d57b1780-ef27-414c-a5c3-73bee7808a45">
</p>
<b> With OpenAI embedding-v3-small </b>
Vector Search baseline - `0.59`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
| Linear Combination | `0.68` | `0.70` | `0.84` |
| Cross Encoder | `0.72` | `0.72` | `0.79` |
| Cohere | `0.79` | `0.79` | `0.84` |
| ColBERT | `0.70` | `0.70` | `0.76` |
<p>
<img src="https://github.com/AyushExel/assets/assets/15766192/259adfd2-6ec6-4df6-a77d-1456598970dd">
</p>
### Conclusion
The results show that the reranking methods are able to improve the search results. However, the improvement is not consistent across all rerankers. The choice of reranker depends on the dataset and the application. It is also important to note that the reranking methods are not a replacement for the search methods. They are complementary and should be used together to get the best results. The speed to recall tradeoff is also an important factor to consider when choosing the reranker.

View File

@@ -1,242 +0,0 @@
# Hybrid Search
LanceDB supports both semantic and keyword-based search (also termed full-text search, or FTS). In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
## Hybrid search in LanceDB
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
```python
import os
import lancedb
import openai
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
db = lancedb.connect("~/.lancedb")
# Ingest embedding function in LanceDB table
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
embeddings = get_registry().get("openai").create()
class Documents(LanceModel):
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
text: str = embeddings.SourceField()
table = db.create_table("documents", schema=Documents)
data = [
{ "text": "rebel spaceships striking from a hidden base"},
{ "text": "have won their first victory against the evil Galactic Empire"},
{ "text": "during the battle rebel spies managed to steal secret plans"},
{ "text": "to the Empire's ultimate weapon the Death Star"}
]
# ingest docs with auto-vectorization
table.add(data)
# Create a fts index before the hybrid search
table.create_fts_index("text")
# hybrid search with default re-ranker
results = table.search("flower moon", query_type="hybrid").to_pandas()
```
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
### `rerank()` arguments
* `normalize`: `str`, default `"score"`:
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
The reranker to use. If not specified, the default reranker is used.
## Available Rerankers
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method. Here's a list of available re-rankers:
### Linear Combination Reranker
This is the default re-ranker used by LanceDB. It combines the results of semantic and full-text search using a linear combination of the scores. The weights for the linear combination can be specified. It defaults to 0.7, i.e, 70% weight for semantic search and 30% weight for full-text search.
```python
from lancedb.rerankers import LinearCombinationReranker
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `weight`: `float`, default `0.7`:
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
* `fill`: `float`, default `1.0`:
The score to give to results that are only in one of the two result sets.This is treated as penalty, so a higher value means a lower score.
TODO: We should just hardcode this-- its pretty confusing as we invert scores to calculate final score
* `return_score` : str, default `"relevance"`
options are "relevance" or "all"
The type of score to return. If "relevance", will return only the `_relevance_score. If "all", will return all scores from the vector and FTS search along with the relevance score.
### Cohere Reranker
This re-ranker uses the [Cohere](https://cohere.ai/) API to combine the results of semantic and full-text search. You can use this re-ranker by passing `CohereReranker()` to the `rerank()` method. Note that you'll need to set the `COHERE_API_KEY` environment variable to use this re-ranker.
```python
from lancedb.rerankers import CohereReranker
reranker = CohereReranker()
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : str, default `"rerank-english-v2.0"`
The name of the cross encoder model to use. Available cohere models are:
- rerank-english-v2.0
- rerank-multilingual-v2.0
* `column` : str, default `"text"`
The name of the column to use as input to the cross encoder model.
* `top_n` : str, default `None`
The number of results to return. If None, will return all results.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### Cross Encoder Reranker
This reranker uses the [Sentence Transformers](https://www.sbert.net/) library to combine the results of semantic and full-text search. You can use it by passing `CrossEncoderReranker()` to the `rerank()` method.
```python
from lancedb.rerankers import CrossEncoderReranker
reranker = CrossEncoderReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
* `column` : str, default `"text"`
The name of the column to use as input to the cross encoder model.
* `device` : str, default `None`
The device to use for the cross encoder model. If None, will use "cuda" if available, otherwise "cpu".
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### ColBERT Reranker
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### OpenAI Reranker
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
!!! Note
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
!!! Tip
- You might run out of token limit so set the search `limits` based on your token limit.
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
```python
from lancedb.rerankers import OpenaiReranker
reranker = OpenaiReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"gpt-4-turbo-preview"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are "relevance" or "all". Only "relevance" is supported for now.
* `api_key` : `str`, default `None`
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
## Building Custom Rerankers
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
The `Reranker` base interface comes with a `merge_results()` method that can be used to combine the results of semantic and full-text search. This is a vanilla merging algorithm that simply concatenates the results and removes the duplicates without taking the scores into consideration. It only keeps the first copy of the row encountered. This works well in cases that don't require the scores of semantic and full-text search to combine the results. If you want to use the scores or want to support `return_score="all"`, you'll need to implement your own merging algorithm.
```python
from lancedb.rerankers import Reranker
import pyarrow as pa
class MyReranker(Reranker):
def __init__(self, param1, param2, ..., return_score="relevance"):
super().__init__(return_score)
self.param1 = param1
self.param2 = param2
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
# Use the built-in merging function
combined_result = self.merge_results(vector_results, fts_results)
# Do something with the combined results
# ...
# Return the combined results
return combined_result
```
### Example of a Custom Reranker
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
```python
from typing import List, Union
import pandas as pd
from lancedb.rerankers import CohereReranker
class MofidifiedCohereReranker(CohereReranker):
def __init__(self, filters: Union[str, List[str]], **kwargs):
super().__init__(**kwargs)
filters = filters if isinstance(filters, list) else [filters]
self.filters = filters
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
combined_result = super().rerank_hybrid(query, vector_results, fts_results)
df = combined_result.to_pandas()
for filter in self.filters:
df = df.query("not text.str.contains(@filter)")
return pa.Table.from_pandas(df)
```
!!! tip
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.

View File

@@ -28,7 +28,7 @@ LanceDB **Cloud** is a SaaS (software-as-a-service) solution that runs serverles
* Fast production-scale vector similarity, full-text & hybrid search and a SQL query interface (via [DataFusion](https://github.com/apache/arrow-datafusion))
* Python, Javascript/Typescript, and Rust support
* Native Python and Javascript/Typescript support
* Store, query & manage multi-modal data (text, images, videos, point clouds, etc.), not just the embeddings and metadata
@@ -54,4 +54,3 @@ The following pages go deeper into the internal of LanceDB and how to use it.
* [Ecosystem Integrations](integrations/index.md): Integrate LanceDB with other tools in the data ecosystem
* [Python API Reference](python/python.md): Python OSS and Cloud API references
* [JavaScript API Reference](javascript/modules.md): JavaScript OSS and Cloud API references
* [Rust API Reference](https://docs.rs/lancedb/latest/lancedb/index.html): Rust API reference

View File

@@ -13,7 +13,7 @@ Get started using these examples and quick links.
| Integrations | |
|---|---:|
| <h3> LlamaIndex </h3>LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. Llama index integrates with LanceDB as the serverless VectorDB. <h3>[Lean More](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html) </h3> |<img src="../assets/llama-index.jpg" alt="image" width="150" height="auto">|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/docs/integrations/vectorstores/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Langchain TS</h3> Javascript bindings for Langchain. It integrates with LanceDB's serverless vectordb allowing you to build powerful AI applications through composibility using only serverless functions. <h3>[Learn More]( https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Voxel51</h3> It is an open source toolkit that enables you to build better computer vision workflows by improving the quality of your datasets and delivering insights about your models.<h3>[Learn More](./voxel51.md) | <img src="../assets/voxel.gif" alt="image" width="150" height="auto">|
| <h3>PromptTools</h3> Offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.<h3>[Learn More](./prompttools.md) | <img src="../assets/prompttools.jpeg" alt="image" width="150" height="auto">|

62
docs/src/javascript.md Normal file
View File

@@ -0,0 +1,62 @@
# Javascript API Reference
This section contains the API reference for LanceDB Javascript API.
## Installation
```bash
npm install vectordb
```
This will download the appropriate native library for your platform. We currently
support:
* Linux (x86_64 and aarch64)
* MacOS (Intel and ARM/M1/M2)
* Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or arch64 Windows.
## Usage
### Basic Example
Connect to a local directory
```javascript
const lancedb = require('vectordb');
//connect to a local database
const db = await lancedb.connect('data/sample-lancedb');
```
Connect to LancdDB cloud
```javascript
connect to LanceDB Cloud
const db = await lancedb.connect({
uri: "db://my-database",
apiKey: "sk_...",
region: "us-east-1"
});
```
Create a table followed by a search
```javascript
const table = await db.createTable("my_table",
[{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 }])
const results = await table.search([0.1, 0.3]).limit(20).execute();
console.log(results);
```
The [examples](./examples) folder contains complete examples.
## Table of contents
### Connection
Connect to a LanceDB database.
- [Connection](interfaces/Connection.md)
### Table
A Table is a collection of Records in a LanceDB Database.
- [Table](interfaces/Table.md)
### Query
The LanceDB Query
- [Query](classes/Query.md)

View File

@@ -38,4 +38,4 @@ A [WriteMode](../enums/WriteMode.md) to use on this operation
#### Defined in
[index.ts:1019](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1019)
[index.ts:1070](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1070)

View File

@@ -46,7 +46,7 @@ A connection to a LanceDB database.
#### Defined in
[index.ts:489](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L489)
[index.ts:496](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L496)
## Properties
@@ -56,7 +56,7 @@ A connection to a LanceDB database.
#### Defined in
[index.ts:487](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L487)
[index.ts:494](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L494)
___
@@ -74,7 +74,7 @@ ___
#### Defined in
[index.ts:486](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L486)
[index.ts:493](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L493)
## Accessors
@@ -92,7 +92,7 @@ ___
#### Defined in
[index.ts:494](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L494)
[index.ts:501](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L501)
## Methods
@@ -113,7 +113,7 @@ Creates a new Table, optionally initializing it with new data.
| Name | Type |
| :------ | :------ |
| `name` | `string` \| [`CreateTableOptions`](../interfaces/CreateTableOptions.md)\<`T`\> |
| `data?` | `Record`\<`string`, `unknown`\>[] |
| `data?` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] |
| `optsOrEmbedding?` | [`WriteOptions`](../interfaces/WriteOptions.md) \| [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
| `opt?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
@@ -127,7 +127,7 @@ Creates a new Table, optionally initializing it with new data.
#### Defined in
[index.ts:542](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L542)
[index.ts:549](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L549)
___
@@ -158,7 +158,7 @@ ___
#### Defined in
[index.ts:576](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L576)
[index.ts:583](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L583)
___
@@ -184,7 +184,7 @@ Drop an existing table.
#### Defined in
[index.ts:630](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L630)
[index.ts:637](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L637)
___
@@ -210,7 +210,7 @@ Open a table in the database.
#### Defined in
[index.ts:510](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L510)
[index.ts:517](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L517)
**openTable**\<`T`\>(`name`, `embeddings`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
@@ -239,7 +239,7 @@ Connection.openTable
#### Defined in
[index.ts:518](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L518)
[index.ts:525](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L525)
**openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
@@ -266,7 +266,7 @@ Connection.openTable
#### Defined in
[index.ts:522](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L522)
[index.ts:529](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L529)
___
@@ -286,4 +286,4 @@ Get the names of all tables in the database.
#### Defined in
[index.ts:501](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L501)
[index.ts:508](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L508)

View File

@@ -74,7 +74,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in
[index.ts:642](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L642)
[index.ts:649](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L649)
**new LocalTable**\<`T`\>(`tbl`, `name`, `options`, `embeddings`)
@@ -95,7 +95,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in
[index.ts:649](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L649)
[index.ts:656](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L656)
## Properties
@@ -105,7 +105,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in
[index.ts:639](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L639)
[index.ts:646](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L646)
___
@@ -115,7 +115,7 @@ ___
#### Defined in
[index.ts:638](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L638)
[index.ts:645](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L645)
___
@@ -125,7 +125,7 @@ ___
#### Defined in
[index.ts:637](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L637)
[index.ts:644](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L644)
___
@@ -143,7 +143,7 @@ ___
#### Defined in
[index.ts:640](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L640)
[index.ts:647](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L647)
___
@@ -153,7 +153,7 @@ ___
#### Defined in
[index.ts:636](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L636)
[index.ts:643](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L643)
___
@@ -179,7 +179,7 @@ Creates a filter query to find all rows matching the specified criteria
#### Defined in
[index.ts:688](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L688)
[index.ts:695](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L695)
## Accessors
@@ -197,7 +197,7 @@ Creates a filter query to find all rows matching the specified criteria
#### Defined in
[index.ts:668](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L668)
[index.ts:675](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L675)
___
@@ -215,7 +215,7 @@ ___
#### Defined in
[index.ts:849](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L849)
[index.ts:875](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L875)
## Methods
@@ -229,7 +229,7 @@ Insert records into this Table.
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
@@ -243,7 +243,7 @@ The number of rows added to the table
#### Defined in
[index.ts:696](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L696)
[index.ts:703](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L703)
___
@@ -257,7 +257,7 @@ ___
#### Defined in
[index.ts:861](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L861)
[index.ts:887](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L887)
___
@@ -267,6 +267,8 @@ ___
Clean up old versions of the table, freeing disk space.
Note: this API is not yet available on LanceDB Cloud
#### Parameters
| Name | Type | Description |
@@ -280,7 +282,7 @@ Clean up old versions of the table, freeing disk space.
#### Defined in
[index.ts:808](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L808)
[index.ts:833](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L833)
___
@@ -293,6 +295,8 @@ Run the compaction process on the table.
This can be run after making several small appends to optimize the table
for faster reads.
Note: this API is not yet available on LanceDB Cloud
#### Parameters
| Name | Type | Description |
@@ -307,7 +311,7 @@ Metrics about the compaction operation.
#### Defined in
[index.ts:831](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L831)
[index.ts:857](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L857)
___
@@ -327,7 +331,7 @@ Returns the number of rows in this table.
#### Defined in
[index.ts:749](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L749)
[index.ts:773](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L773)
___
@@ -357,7 +361,7 @@ VectorIndexParams.
#### Defined in
[index.ts:734](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L734)
[index.ts:758](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L758)
___
@@ -392,7 +396,7 @@ await table.createScalarIndex('my_col')
#### Defined in
[index.ts:742](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L742)
[index.ts:766](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L766)
___
@@ -418,7 +422,7 @@ Delete rows from this table.
#### Defined in
[index.ts:758](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L758)
[index.ts:782](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L782)
___
@@ -440,7 +444,7 @@ Creates a filter query to find all rows matching the specified criteria
#### Defined in
[index.ts:684](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L684)
[index.ts:691](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L691)
___
@@ -454,7 +458,7 @@ ___
#### Defined in
[index.ts:854](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L854)
[index.ts:880](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L880)
___
@@ -480,7 +484,7 @@ Get statistics about an index.
#### Defined in
[index.ts:845](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L845)
[index.ts:871](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L871)
___
@@ -500,7 +504,7 @@ List the indicies on this table.
#### Defined in
[index.ts:841](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L841)
[index.ts:867](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L867)
___
@@ -514,7 +518,7 @@ Insert records into this Table, replacing its contents.
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table Type Table is ArrowTable |
#### Returns
@@ -528,7 +532,7 @@ The number of rows added to the table
#### Defined in
[index.ts:716](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L716)
[index.ts:732](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L732)
___
@@ -554,7 +558,7 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in
[index.ts:676](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L676)
[index.ts:683](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L683)
___
@@ -580,4 +584,4 @@ Update rows in this table.
#### Defined in
[index.ts:771](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L771)
[index.ts:795](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L795)

View File

@@ -0,0 +1,56 @@
[vectordb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions
# Class: MakeArrowTableOptions
Options to control the makeArrowTable call.
## Table of contents
### Constructors
- [constructor](MakeArrowTableOptions.md#constructor)
### Properties
- [schema](MakeArrowTableOptions.md#schema)
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
## Constructors
### constructor
**new MakeArrowTableOptions**(`values?`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
#### Defined in
[arrow.ts:56](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/arrow.ts#L56)
## Properties
### schema
`Optional` **schema**: `Schema`\<`any`\>
Provided schema.
#### Defined in
[arrow.ts:49](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/arrow.ts#L49)
___
### vectorColumns
**vectorColumns**: `Record`\<`string`, `VectorColumnOptions`\>
Vector columns
#### Defined in
[arrow.ts:52](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/arrow.ts#L52)

View File

@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L21)
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/openai.ts#L22)
## Properties
@@ -50,17 +50,17 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L19)
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/openai.ts#L20)
___
### \_openai
`Private` `Readonly` **\_openai**: `any`
`Private` `Readonly` **\_openai**: `OpenAI`
#### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L18)
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/openai.ts#L19)
___
@@ -76,7 +76,7 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L50)
[embedding/openai.ts:56](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/openai.ts#L56)
## Methods
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
#### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L38)
[embedding/openai.ts:43](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/openai.ts#L43)

View File

@@ -65,7 +65,7 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in
[query.ts:38](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L38)
[query.ts:38](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L38)
## Properties
@@ -75,7 +75,7 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in
[query.ts:36](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L36)
[query.ts:36](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L36)
___
@@ -85,7 +85,7 @@ ___
#### Defined in
[query.ts:33](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L33)
[query.ts:33](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L33)
___
@@ -95,7 +95,7 @@ ___
#### Defined in
[query.ts:29](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L29)
[query.ts:29](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L29)
___
@@ -105,7 +105,7 @@ ___
#### Defined in
[query.ts:34](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L34)
[query.ts:34](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L34)
___
@@ -115,7 +115,7 @@ ___
#### Defined in
[query.ts:31](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L31)
[query.ts:31](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L31)
___
@@ -125,7 +125,7 @@ ___
#### Defined in
[query.ts:35](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L35)
[query.ts:35](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L35)
___
@@ -135,7 +135,7 @@ ___
#### Defined in
[query.ts:26](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L26)
[query.ts:26](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L26)
___
@@ -145,7 +145,7 @@ ___
#### Defined in
[query.ts:28](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L28)
[query.ts:28](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L28)
___
@@ -155,7 +155,7 @@ ___
#### Defined in
[query.ts:30](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L30)
[query.ts:30](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L30)
___
@@ -165,7 +165,7 @@ ___
#### Defined in
[query.ts:32](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L32)
[query.ts:32](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L32)
___
@@ -175,7 +175,7 @@ ___
#### Defined in
[query.ts:27](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L27)
[query.ts:27](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L27)
___
@@ -201,7 +201,7 @@ A filter statement to be applied to this query.
#### Defined in
[query.ts:87](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L87)
[query.ts:87](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L87)
## Methods
@@ -223,7 +223,7 @@ Execute the query and return the results as an Array of Objects
#### Defined in
[query.ts:115](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L115)
[query.ts:115](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L115)
___
@@ -245,7 +245,7 @@ A filter statement to be applied to this query.
#### Defined in
[query.ts:82](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L82)
[query.ts:82](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L82)
___
@@ -259,7 +259,7 @@ ___
#### Defined in
[query.ts:142](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L142)
[query.ts:143](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L143)
___
@@ -281,7 +281,7 @@ Sets the number of results that will be returned
#### Defined in
[query.ts:55](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L55)
[query.ts:55](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L55)
___
@@ -307,7 +307,7 @@ MetricType for the different options
#### Defined in
[query.ts:102](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L102)
[query.ts:102](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L102)
___
@@ -329,7 +329,7 @@ The number of probes used. A higher number makes search more accurate but also s
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L73)
[query.ts:73](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L73)
___
@@ -349,7 +349,7 @@ ___
#### Defined in
[query.ts:107](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L107)
[query.ts:107](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L107)
___
@@ -371,7 +371,7 @@ Refine the results by reading extra elements and re-ranking them in memory.
#### Defined in
[query.ts:64](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L64)
[query.ts:64](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L64)
___
@@ -393,4 +393,4 @@ Return only the specified columns.
#### Defined in
[query.ts:93](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L93)
[query.ts:93](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L93)

View File

@@ -0,0 +1,224 @@
[vectordb](../README.md) / [Exports](../modules.md) / RemoteConnection
# Class: RemoteConnection
Remote connection.
## Implements
- [`Connection`](../interfaces/Connection.md)
## Table of contents
### Constructors
- [constructor](RemoteConnection.md#constructor)
### Properties
- [\_client](RemoteConnection.md#_client)
- [\_dbName](RemoteConnection.md#_dbname)
### Accessors
- [uri](RemoteConnection.md#uri)
### Methods
- [createTable](RemoteConnection.md#createtable)
- [dropTable](RemoteConnection.md#droptable)
- [openTable](RemoteConnection.md#opentable)
- [tableNames](RemoteConnection.md#tablenames)
## Constructors
### constructor
**new RemoteConnection**(`opts`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `opts` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
#### Defined in
[remote/index.ts:48](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L48)
## Properties
### \_client
`Private` `Readonly` **\_client**: `HttpLancedbClient`
#### Defined in
[remote/index.ts:45](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L45)
___
### \_dbName
`Private` `Readonly` **\_dbName**: `string`
#### Defined in
[remote/index.ts:46](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L46)
## Accessors
### uri
`get` **uri**(): `string`
#### Returns
`string`
#### Implementation of
[Connection](../interfaces/Connection.md).[uri](../interfaces/Connection.md#uri)
#### Defined in
[remote/index.ts:75](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L75)
## Methods
### createTable
**createTable**\<`T`\>(`nameOrOpts`, `data?`, `optsOrEmbedding?`, `opt?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
Creates a new Table, optionally initializing it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `nameOrOpts` | `string` \| [`CreateTableOptions`](../interfaces/CreateTableOptions.md)\<`T`\> |
| `data?` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] |
| `optsOrEmbedding?` | [`WriteOptions`](../interfaces/WriteOptions.md) \| [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
| `opt?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
#### Returns
`Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[createTable](../interfaces/Connection.md#createtable)
#### Defined in
[remote/index.ts:107](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L107)
___
### dropTable
**dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table to drop. |
#### Returns
`Promise`\<`void`\>
#### Implementation of
[Connection](../interfaces/Connection.md).[dropTable](../interfaces/Connection.md#droptable)
#### Defined in
[remote/index.ts:175](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L175)
___
### openTable
**openTable**(`name`): `Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
Open a table in the database.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
#### Returns
`Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[openTable](../interfaces/Connection.md#opentable)
#### Defined in
[remote/index.ts:91](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L91)
**openTable**\<`T`\>(`name`, `embeddings`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
#### Returns
`Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of
Connection.openTable
#### Defined in
[remote/index.ts:92](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L92)
___
### tableNames
**tableNames**(`pageToken?`, `limit?`): `Promise`\<`string`[]\>
#### Parameters
| Name | Type | Default value |
| :------ | :------ | :------ |
| `pageToken` | `string` | `''` |
| `limit` | `number` | `10` |
#### Returns
`Promise`\<`string`[]\>
#### Implementation of
[Connection](../interfaces/Connection.md).[tableNames](../interfaces/Connection.md#tablenames)
#### Defined in
[remote/index.ts:80](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L80)

View File

@@ -0,0 +1,470 @@
[vectordb](../README.md) / [Exports](../modules.md) / RemoteTable
# Class: RemoteTable\<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Implements
- [`Table`](../interfaces/Table.md)\<`T`\>
## Table of contents
### Constructors
- [constructor](RemoteTable.md#constructor)
### Properties
- [\_client](RemoteTable.md#_client)
- [\_embeddings](RemoteTable.md#_embeddings)
- [\_name](RemoteTable.md#_name)
### Accessors
- [name](RemoteTable.md#name)
- [schema](RemoteTable.md#schema)
### Methods
- [add](RemoteTable.md#add)
- [countRows](RemoteTable.md#countrows)
- [createIndex](RemoteTable.md#createindex)
- [createScalarIndex](RemoteTable.md#createscalarindex)
- [delete](RemoteTable.md#delete)
- [indexStats](RemoteTable.md#indexstats)
- [listIndices](RemoteTable.md#listindices)
- [overwrite](RemoteTable.md#overwrite)
- [search](RemoteTable.md#search)
- [update](RemoteTable.md#update)
## Constructors
### constructor
**new RemoteTable**\<`T`\>(`client`, `name`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `client` | `HttpLancedbClient` |
| `name` | `string` |
#### Defined in
[remote/index.ts:234](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L234)
**new RemoteTable**\<`T`\>(`client`, `name`, `embeddings`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `client` | `HttpLancedbClient` |
| `name` | `string` |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
#### Defined in
[remote/index.ts:235](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L235)
## Properties
### \_client
`Private` `Readonly` **\_client**: `HttpLancedbClient`
#### Defined in
[remote/index.ts:230](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L230)
___
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\>
#### Defined in
[remote/index.ts:231](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L231)
___
### \_name
`Private` `Readonly` **\_name**: `string`
#### Defined in
[remote/index.ts:232](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L232)
## Accessors
### name
`get` **name**(): `string`
#### Returns
`string`
#### Implementation of
[Table](../interfaces/Table.md).[name](../interfaces/Table.md#name)
#### Defined in
[remote/index.ts:250](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L250)
___
### schema
`get` **schema**(): `Promise`\<`any`\>
#### Returns
`Promise`\<`any`\>
#### Implementation of
[Table](../interfaces/Table.md).[schema](../interfaces/Table.md#schema)
#### Defined in
[remote/index.ts:254](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L254)
## Methods
### add
**add**(`data`): `Promise`\<`number`\>
Insert records into this Table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`\<`number`\>
The number of rows added to the table
#### Implementation of
[Table](../interfaces/Table.md).[add](../interfaces/Table.md#add)
#### Defined in
[remote/index.ts:273](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L273)
___
### countRows
**countRows**(): `Promise`\<`number`\>
Returns the number of rows in this table.
#### Returns
`Promise`\<`number`\>
#### Implementation of
[Table](../interfaces/Table.md).[countRows](../interfaces/Table.md#countrows)
#### Defined in
[remote/index.ts:372](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L372)
___
### createIndex
**createIndex**(`indexParams`): `Promise`\<`void`\>
Create an ANN index on this Table vector index.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | [`IvfPQIndexConfig`](../interfaces/IvfPQIndexConfig.md) | The parameters of this Index, |
#### Returns
`Promise`\<`void`\>
**`See`**
VectorIndexParams.
#### Implementation of
[Table](../interfaces/Table.md).[createIndex](../interfaces/Table.md#createindex)
#### Defined in
[remote/index.ts:326](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L326)
___
### createScalarIndex
**createScalarIndex**(`column`, `replace`): `Promise`\<`void`\>
Create a scalar index on this Table for the given column
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `column` | `string` | The column to index |
| `replace` | `boolean` | If false, fail if an index already exists on the column Scalar indices, like vector indices, can be used to speed up scans. A scalar index can speed up scans that contain filter expressions on the indexed column. For example, the following scan will be faster if the column `my_col` has a scalar index: ```ts const con = await lancedb.connect('./.lancedb'); const table = await con.openTable('images'); const results = await table.where('my_col = 7').execute(); ``` Scalar indices can also speed up scans containing a vector search and a prefilter: ```ts const con = await lancedb.connect('././lancedb'); const table = await con.openTable('images'); const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true); ``` Scalar indices can only speed up scans for basic filters using equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set membership (e.g. `my_col IN (0, 1, 2)`) Scalar indices can be used if the filter contains multiple indexed columns and the filter criteria are AND'd or OR'd together (e.g. `my_col < 0 AND other_col> 100`) Scalar indices may be used if the filter contains non-indexed columns but, depending on the structure of the filter, they may not be usable. For example, if the column `not_indexed` does not have a scalar index then the filter `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on `my_col`. |
#### Returns
`Promise`\<`void`\>
**`Examples`**
```ts
const con = await lancedb.connect('././lancedb')
const table = await con.openTable('images')
await table.createScalarIndex('my_col')
```
#### Implementation of
[Table](../interfaces/Table.md).[createScalarIndex](../interfaces/Table.md#createscalarindex)
#### Defined in
[remote/index.ts:368](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L368)
___
### delete
▸ **delete**(`filter`): `Promise`\<`void`\>
Delete rows from this table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
#### Returns
`Promise`\<`void`\>
**`Examples`**
```ts
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [1, 2]},
{id: 2, vector: [3, 4]},
{id: 3, vector: [5, 6]},
];
const tbl = await con.createTable("my_table", data)
await tbl.delete("id = 2")
await tbl.countRows() // Returns 2
```
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
```ts
const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
```
#### Implementation of
[Table](../interfaces/Table.md).[delete](../interfaces/Table.md#delete)
#### Defined in
[remote/index.ts:377](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L377)
___
### indexStats
▸ **indexStats**(`indexUuid`): `Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
Get statistics about an index.
#### Parameters
| Name | Type |
| :------ | :------ |
| `indexUuid` | `string` |
#### Returns
`Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
#### Implementation of
[Table](../interfaces/Table.md).[indexStats](../interfaces/Table.md#indexstats)
#### Defined in
[remote/index.ts:414](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L414)
___
### listIndices
▸ **listIndices**(): `Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
List the indicies on this table.
#### Returns
`Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
#### Implementation of
[Table](../interfaces/Table.md).[listIndices](../interfaces/Table.md#listindices)
#### Defined in
[remote/index.ts:403](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L403)
___
### overwrite
▸ **overwrite**(`data`): `Promise`\<`number`\>
Insert records into this Table, replacing its contents.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`\<`number`\>
The number of rows added to the table
#### Implementation of
[Table](../interfaces/Table.md).[overwrite](../interfaces/Table.md#overwrite)
#### Defined in
[remote/index.ts:300](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L300)
___
### search
▸ **search**(`query`): [`Query`](Query.md)\<`T`\>
Creates a search query to find the nearest neighbors of the given search term
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `query` | `T` | The query search term |
#### Returns
[`Query`](Query.md)\<`T`\>
#### Implementation of
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#search)
#### Defined in
[remote/index.ts:269](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L269)
___
### update
▸ **update**(`args`): `Promise`\<`void`\>
Update rows in this table.
This can be used to update a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `args` | [`UpdateArgs`](../interfaces/UpdateArgs.md) \| [`UpdateSqlArgs`](../interfaces/UpdateSqlArgs.md) | see [UpdateArgs](../interfaces/UpdateArgs.md) and [UpdateSqlArgs](../interfaces/UpdateSqlArgs.md) for more details |
#### Returns
`Promise`\<`void`\>
**`Examples`**
```ts
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [3, 3], name: 'Ye'},
{id: 2, vector: [4, 4], name: 'Mike'},
];
const tbl = await con.createTable("my_table", data)
await tbl.update({
where: "id = 2",
values: { vector: [2, 2], name: "Michael" },
})
let results = await tbl.search([1, 1]).execute();
// Returns [
// {id: 2, vector: [2, 2], name: 'Michael'}
// {id: 1, vector: [3, 3], name: 'Ye'}
// ]
```
#### Implementation of
[Table](../interfaces/Table.md).[update](../interfaces/Table.md#update)
#### Defined in
[remote/index.ts:383](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L383)

View File

@@ -22,7 +22,7 @@ Cosine distance
#### Defined in
[index.ts:1041](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1041)
[index.ts:1092](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1092)
___
@@ -34,7 +34,7 @@ Dot product
#### Defined in
[index.ts:1046](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1046)
[index.ts:1097](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1097)
___
@@ -46,4 +46,4 @@ Euclidean distance
#### Defined in
[index.ts:1036](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1036)
[index.ts:1087](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1087)

View File

@@ -22,7 +22,7 @@ Append new data to the table.
#### Defined in
[index.ts:1007](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1007)
[index.ts:1058](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1058)
___
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
#### Defined in
[index.ts:1003](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1003)
[index.ts:1054](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1054)
___
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
#### Defined in
[index.ts:1005](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1005)
[index.ts:1056](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1056)

View File

@@ -18,7 +18,7 @@
#### Defined in
[index.ts:54](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L54)
[index.ts:57](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L57)
___
@@ -28,7 +28,7 @@ ___
#### Defined in
[index.ts:56](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L56)
[index.ts:59](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L59)
___
@@ -38,4 +38,4 @@ ___
#### Defined in
[index.ts:58](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L58)
[index.ts:61](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L61)

View File

@@ -19,7 +19,7 @@ The number of bytes removed from disk.
#### Defined in
[index.ts:878](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L878)
[index.ts:904](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L904)
___
@@ -31,4 +31,4 @@ The number of old table versions removed.
#### Defined in
[index.ts:882](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L882)
[index.ts:908](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L908)

View File

@@ -22,7 +22,7 @@ fragments added.
#### Defined in
[index.ts:933](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L933)
[index.ts:959](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L959)
___
@@ -35,7 +35,7 @@ file.
#### Defined in
[index.ts:928](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L928)
[index.ts:954](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L954)
___
@@ -47,7 +47,7 @@ The number of new fragments that were created.
#### Defined in
[index.ts:923](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L923)
[index.ts:949](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L949)
___
@@ -59,4 +59,4 @@ The number of fragments that were removed.
#### Defined in
[index.ts:919](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L919)
[index.ts:945](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L945)

View File

@@ -24,7 +24,7 @@ Default is true.
#### Defined in
[index.ts:901](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L901)
[index.ts:927](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L927)
___
@@ -38,7 +38,7 @@ the deleted rows. Default is 10%.
#### Defined in
[index.ts:907](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L907)
[index.ts:933](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L933)
___
@@ -50,7 +50,7 @@ The maximum number of rows per group. Defaults to 1024.
#### Defined in
[index.ts:895](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L895)
[index.ts:921](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L921)
___
@@ -63,7 +63,7 @@ the number of cores on the machine.
#### Defined in
[index.ts:912](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L912)
[index.ts:938](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L938)
___
@@ -77,4 +77,4 @@ Defaults to 1024 * 1024.
#### Defined in
[index.ts:891](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L891)
[index.ts:917](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L917)

View File

@@ -9,6 +9,7 @@ Connection could be local against filesystem or remote against a server.
## Implemented by
- [`LocalConnection`](../classes/LocalConnection.md)
- [`RemoteConnection`](../classes/RemoteConnection.md)
## Table of contents
@@ -31,7 +32,7 @@ Connection could be local against filesystem or remote against a server.
#### Defined in
[index.ts:183](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L183)
[index.ts:188](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L188)
## Methods
@@ -59,7 +60,7 @@ Creates a new Table, optionally initializing it with new data.
#### Defined in
[index.ts:207](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L207)
[index.ts:212](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L212)
**createTable**(`name`, `data`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
@@ -70,7 +71,7 @@ Creates a new Table and initialize it with new data.
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
#### Returns
@@ -78,7 +79,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:221](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L221)
[index.ts:226](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L226)
**createTable**(`name`, `data`, `options`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
@@ -89,7 +90,7 @@ Creates a new Table and initialize it with new data.
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
#### Returns
@@ -98,7 +99,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:233](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L233)
[index.ts:238](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L238)
**createTable**\<`T`\>(`name`, `data`, `embeddings`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
@@ -115,7 +116,7 @@ Creates a new Table and initialize it with new data.
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
#### Returns
@@ -124,7 +125,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:246](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L246)
[index.ts:251](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L251)
**createTable**\<`T`\>(`name`, `data`, `embeddings`, `options`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
@@ -141,7 +142,7 @@ Creates a new Table and initialize it with new data.
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
@@ -151,7 +152,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:259](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L259)
[index.ts:264](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L264)
___
@@ -173,7 +174,7 @@ Drop an existing table.
#### Defined in
[index.ts:270](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L270)
[index.ts:275](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L275)
___
@@ -202,7 +203,7 @@ Open a table in the database.
#### Defined in
[index.ts:193](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L193)
[index.ts:198](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L198)
___
@@ -216,4 +217,4 @@ ___
#### Defined in
[index.ts:185](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L185)
[index.ts:190](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L190)

View File

@@ -19,9 +19,13 @@
`Optional` **apiKey**: `string`
API key for the remote connections
Can also be passed by setting environment variable `LANCEDB_API_KEY`
#### Defined in
[index.ts:81](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L81)
[index.ts:88](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L88)
___
@@ -35,7 +39,7 @@ If not provided, LanceDB will use the default credentials provider chain.
#### Defined in
[index.ts:75](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L75)
[index.ts:78](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L78)
___
@@ -47,7 +51,7 @@ AWS region to connect to. Default is defaultAwsRegion.
#### Defined in
[index.ts:78](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L78)
[index.ts:81](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L81)
___
@@ -55,13 +59,13 @@ ___
`Optional` **hostOverride**: `string`
Override the host URL for the remote connections.
Override the host URL for the remote connection.
This is useful for local testing.
#### Defined in
[index.ts:91](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L91)
[index.ts:98](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L98)
___
@@ -73,7 +77,7 @@ Region to connect
#### Defined in
[index.ts:84](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L84)
[index.ts:91](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L91)
___
@@ -85,8 +89,8 @@ LanceDB database URI.
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (SaaS)
- `db://host:port` - remote database (LanceDB cloud)
#### Defined in
[index.ts:69](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L69)
[index.ts:72](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L72)

View File

@@ -26,7 +26,7 @@
#### Defined in
[index.ts:116](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L116)
[index.ts:121](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L121)
___
@@ -36,7 +36,7 @@ ___
#### Defined in
[index.ts:122](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L122)
[index.ts:127](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L127)
___
@@ -46,7 +46,7 @@ ___
#### Defined in
[index.ts:113](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L113)
[index.ts:118](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L118)
___
@@ -56,7 +56,7 @@ ___
#### Defined in
[index.ts:119](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L119)
[index.ts:124](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L124)
___
@@ -66,4 +66,4 @@ ___
#### Defined in
[index.ts:125](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L125)
[index.ts:130](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L130)

View File

@@ -45,7 +45,7 @@ Creates a vector representation for the given values.
#### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/embedding_function.ts#L27)
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/embedding_function.ts#L27)
___
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/embedding_function.ts#L22)
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/embedding_function.ts#L22)

View File

@@ -17,7 +17,7 @@
#### Defined in
[index.ts:478](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L478)
[index.ts:485](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L485)
___
@@ -27,4 +27,4 @@ ___
#### Defined in
[index.ts:479](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L479)
[index.ts:486](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L486)

View File

@@ -29,7 +29,7 @@ The column to be indexed
#### Defined in
[index.ts:942](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L942)
[index.ts:968](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L968)
___
@@ -41,7 +41,7 @@ Cache size of the index
#### Defined in
[index.ts:991](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L991)
[index.ts:1042](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1042)
___
@@ -49,11 +49,11 @@ ___
`Optional` **index\_name**: `string`
A unique name for the index
Note: this parameter is not supported on LanceDB Cloud
#### Defined in
[index.ts:947](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L947)
[index.ts:976](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L976)
___
@@ -61,11 +61,11 @@ ___
`Optional` **max\_iters**: `number`
The max number of iterations for kmeans training.
Note: this parameter is not yet supported on LanceDB Cloud
#### Defined in
[index.ts:962](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L962)
[index.ts:997](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L997)
___
@@ -73,11 +73,11 @@ ___
`Optional` **max\_opq\_iters**: `number`
Max number of iterations to train OPQ, if `use_opq` is true.
Note: this parameter is not yet supported on LanceDB Cloud
#### Defined in
[index.ts:981](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L981)
[index.ts:1029](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1029)
___
@@ -89,7 +89,7 @@ Metric type, L2 or Cosine
#### Defined in
[index.ts:952](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L952)
[index.ts:981](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L981)
___
@@ -97,11 +97,11 @@ ___
`Optional` **num\_bits**: `number`
The number of bits to present one PQ centroid.
Note: this parameter is not yet supported on LanceDB Cloud
#### Defined in
[index.ts:976](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L976)
[index.ts:1021](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1021)
___
@@ -109,11 +109,11 @@ ___
`Optional` **num\_partitions**: `number`
The number of partitions this index
Note: this parameter is not yet supported on LanceDB Cloud
#### Defined in
[index.ts:957](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L957)
[index.ts:989](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L989)
___
@@ -121,11 +121,11 @@ ___
`Optional` **num\_sub\_vectors**: `number`
Number of subvectors to build PQ code
Note: this parameter is not yet supported on LanceDB Cloud
#### Defined in
[index.ts:972](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L972)
[index.ts:1013](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1013)
___
@@ -133,11 +133,11 @@ ___
`Optional` **replace**: `boolean`
Replace an existing index with the same name if it exists.
Note: this parameter is not yet supported on LanceDB Cloud
#### Defined in
[index.ts:986](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L986)
[index.ts:1037](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1037)
___
@@ -147,7 +147,7 @@ ___
#### Defined in
[index.ts:993](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L993)
[index.ts:1044](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1044)
___
@@ -155,8 +155,8 @@ ___
• `Optional` **use\_opq**: `boolean`
Train as optimized product quantization.
Note: this parameter is not yet supported on LanceDB Cloud
#### Defined in
[index.ts:967](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L967)
[index.ts:1005](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1005)

View File

@@ -13,6 +13,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
## Implemented by
- [`LocalTable`](../classes/LocalTable.md)
- [`RemoteTable`](../classes/RemoteTable.md)
## Table of contents
@@ -35,7 +36,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
### add
**add**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
**add**: (`data`: `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
#### Type declaration
@@ -47,7 +48,7 @@ Insert records into this Table.
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns
@@ -57,7 +58,7 @@ The number of rows added to the table
#### Defined in
[index.ts:291](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L291)
[index.ts:296](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L296)
___
@@ -77,7 +78,7 @@ Returns the number of rows in this table.
#### Defined in
[index.ts:361](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L361)
[index.ts:368](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L368)
___
@@ -107,7 +108,7 @@ VectorIndexParams.
#### Defined in
[index.ts:306](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L306)
[index.ts:313](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L313)
___
@@ -142,7 +143,7 @@ await table.createScalarIndex('my_col')
#### Defined in
[index.ts:356](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L356)
[index.ts:363](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L363)
___
@@ -194,7 +195,7 @@ await tbl.countRows() // Returns 1
#### Defined in
[index.ts:395](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L395)
[index.ts:402](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L402)
___
@@ -220,7 +221,7 @@ Get statistics about an index.
#### Defined in
[index.ts:438](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L438)
[index.ts:445](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L445)
___
@@ -240,7 +241,7 @@ List the indicies on this table.
#### Defined in
[index.ts:433](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L433)
[index.ts:440](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L440)
___
@@ -250,13 +251,13 @@ ___
#### Defined in
[index.ts:277](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L277)
[index.ts:282](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L282)
___
### overwrite
• **overwrite**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
• **overwrite**: (`data`: `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
#### Type declaration
@@ -268,7 +269,7 @@ Insert records into this Table, replacing its contents.
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns
@@ -278,7 +279,7 @@ The number of rows added to the table
#### Defined in
[index.ts:299](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L299)
[index.ts:304](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L304)
___
@@ -288,7 +289,7 @@ ___
#### Defined in
[index.ts:440](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L440)
[index.ts:447](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L447)
___
@@ -314,7 +315,7 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in
[index.ts:283](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L283)
[index.ts:288](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L288)
___
@@ -365,4 +366,4 @@ let results = await tbl.search([1, 1]).execute();
#### Defined in
[index.ts:428](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L428)
[index.ts:435](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L435)

View File

@@ -20,7 +20,7 @@ new values to set
#### Defined in
[index.ts:454](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L454)
[index.ts:461](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L461)
___
@@ -33,4 +33,4 @@ in which case all rows will be updated.
#### Defined in
[index.ts:448](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L448)
[index.ts:455](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L455)

View File

@@ -20,7 +20,7 @@ new values to set as SQL expressions.
#### Defined in
[index.ts:468](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L468)
[index.ts:475](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L475)
___
@@ -33,4 +33,4 @@ in which case all rows will be updated.
#### Defined in
[index.ts:462](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L462)
[index.ts:469](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L469)

View File

@@ -18,7 +18,7 @@
#### Defined in
[index.ts:472](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L472)
[index.ts:479](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L479)
___
@@ -28,7 +28,7 @@ ___
#### Defined in
[index.ts:473](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L473)
[index.ts:480](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L480)
___
@@ -38,4 +38,4 @@ ___
#### Defined in
[index.ts:474](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L474)
[index.ts:481](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L481)

View File

@@ -24,4 +24,4 @@ A [WriteMode](../enums/WriteMode.md) to use on this operation
#### Defined in
[index.ts:1015](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1015)
[index.ts:1066](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1066)

Some files were not shown because too many files have changed in this diff Show More