Compare commits

...

35 Commits

Author SHA1 Message Date
Lance Release
11959cc5d6 Bump version: 0.10.0-beta.0 → 0.10.0 2024-07-13 08:55:22 +00:00
Lance Release
7c65cec8d7 Bump version: 0.9.0 → 0.10.0-beta.0 2024-07-13 08:55:22 +00:00
Adam Azzam
82621d5b13 chore: typing for lance.connect (#1441)
Feel free to close if this is a distraction, but untyped keywords in
lance.connect is throwing pylance errors in strict mode.

<img width="683" alt="Screenshot 2024-07-11 at 1 21 04 PM"
src="https://github.com/lancedb/lancedb/assets/33043305/fe6cd4d9-4e59-413d-87f2-aabb9ff84cc4">
2024-07-12 10:39:28 -07:00
Lei Xu
0708428357 feat: support update over binary field (#1440) 2024-07-12 09:22:00 -07:00
BubbleCal
137d86d3c5 chore: bump lance to 0.14.1 (#1442)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-07-12 21:41:59 +08:00
Ayush Chaurasia
bb2e624ff0 docs: add fine tuning section in retriever guide and minor fixes (#1438) 2024-07-11 17:34:29 +05:30
Cory Grinstead
fdc949bafb feat(nodejs): update({values | valuesSql}) (#1439) 2024-07-10 14:09:39 -05:00
Cory Grinstead
31be9212da docs(nodejs): add @lancedb/lancedb examples everywhere (#1411)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-07-10 13:29:03 -05:00
Joan Fontanals
cef24801f4 docs: add jina reranker to index (#1427)
PR to add JinaReranker documentation page to the rerankers index
2024-07-09 14:39:35 +05:30
forrestmckee
b4436e0804 refactor: update type hint and remove unused import (#1436)
change typehint on `_invert_score` from `List[float]` to `float`. remove
unnecessary typing import
2024-07-09 13:56:45 +05:30
Lei Xu
58c2cd01a5 docs: add fast search to openapi.yml (#1435) 2024-07-08 11:55:45 -07:00
Cory Grinstead
a1a1891c0c fix(nodejs): explain plan (#1434) 2024-07-08 13:07:24 -05:00
Lei Xu
3c6c21c137 feat(rust): enable fast search flag in rust (#1432) 2024-07-07 09:46:41 -07:00
Lei Xu
fd5ca20f34 chore: bump lance to 0.14 (#1430) 2024-07-06 14:10:42 -07:00
Lei Xu
ef30f87fd1 chore: propagate error for table index stats (#1426) 2024-07-04 14:53:49 -07:00
Joan Fontanals
08d25c5a80 feat: add Jina integration in Python for Embedding and Reranker (#1424)
Integration of Jina Embeddings and Rerankers through its API
2024-07-05 01:34:43 +05:30
Raghav Dixit
a5ff623443 docs: update lntegration docs & fixed links (#1423)
1. Updated langchain docs. 
2. Minor update to llamaindex doc.
3. Added notebook examples and linked them correctly
2024-07-03 21:50:33 +05:30
Cory Grinstead
b8ccea9f71 feat(nodejs): make tbl.search chainable (#1421)
so this was annoying me when writing the docs. 

for a `search` query, one needed to chain `async` calls.

```ts
const res = await (await tbl.search("greetings")).toArray()
```

now the promise will be deferred until the query is collected, leading
to a more functional API

```ts
const res = await tbl.search("greetings").toArray()
```
2024-07-02 14:31:57 -05:00
Nuvic
46c6ff889d feat: add the explain_plan function (#1328)
It's useful to see the underlying query plan for debugging purposes.
This exposes LanceScanner's `explain_plan` function. Addresses #1288

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-07-02 11:10:01 -07:00
BubbleCal
12b3c87964 feat: support to create more vector index types (#1407)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-07-02 10:53:03 -02:30
Lei Xu
020a437230 docs: add merge insert, create index and create scalar index to public rest api doc (#1420)
Added 3 APIs doc publicly:
- `merge_insert`
- `create_index`
- `create_scalar_index`

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-07-01 12:52:27 -07:00
Cory Grinstead
34f1aeb84c chore(nodejs): make opean optional, and apache-arrow a peer dep (#1417)
fyi, this should have no breaking changes as npm is opt-out instead of
opt-in when resolving dependencies

all peer and optional dependencies get installed by default, so users
need to manually opt out.

`npm i --omit optional --omit peer`
2024-07-01 12:50:01 -05:00
Cory Grinstead
5c3a88b6b2 feat(nodejs): add better typehints for registry (#1408)
previously the `registry` would return `undefined | EmbeddingFunction`
even for built in functions such as "openai"

now it'll return the correct type for `getRegistry().get("openai")

as well as pass in the correct options type to `create`

### before
```ts
const options: {model: 'not-a-real-model'}
// this'd compile just fine, but result in runtime error
const openai: EmbeddingFunction | undefined = getRegistry().get("openai").create(options)
// this'd also compile fine
const openai: EmbeddingFunction | undefined = getRegistry().get("openai").create({MODEL: ''})
```
### after
```ts
const options: {model: 'not-a-real-model'}

const openai: OpenAIEmbeddingFunction = getRegistry().get("openai").create(options)
// Type '"not-a-real-model"' is not assignable to type '"text-embedding-ada-002" | "text-embedding-3-large" | "text-embedding-3-small" | undefined'


```
2024-07-01 12:49:42 -05:00
Lei Xu
e780b2f51c ci: fix nodejs doc test (#1419)
Fixed nodejs doctest failures due to compiling JNI node.
2024-07-01 10:21:41 -07:00
Cory Grinstead
b8a1719174 feat(nodejs): catch unwinds in node bindings (#1414)
this bumps napi version to 2.16 which contains a few bug fixes.
Additionally, it adds `catch_unwind` to any method that may
unintentionally panic.

`catch_unwind` will unwind the panics and return a regular JS error
instead of panicking.
2024-07-01 09:28:10 -05:00
Ayush Chaurasia
ccded130ed docs: add reranking example (#1416) 2024-07-01 19:42:38 +05:30
Sidharth Rajaram
48f8d1b3b7 docs: addresses typos in HF embedding example docs (#1415)
* `table.add` requires `data` parameter on the docs page regarding use
of embedding models from HF
* also changed the name of example class from `TextModel` to `Words`
since that is what is used as parameter in the `db.create_table` call
* Per
https://lancedb.github.io/lancedb/python/python/#lancedb.table.Table.add
2024-07-01 12:14:17 +05:30
Will Jones
865ed99881 feat: dynamodb commit store support (#1410)
This allows users to specify URIs like:

```
s3+ddb://my_bucket/path?ddbTableName=myCommitTable
```

and it will support concurrent writes in S3.

* [x] Add dynamodb integration tests
* [x] Add modifications to get it working in Python sync API
* [x] Added section in documentation describing how to configure.

Closes #534

---------

Co-authored-by: universalmind303 <cory.grinstead@gmail.com>
2024-06-28 09:30:36 -07:00
Lei Xu
d6485f1215 docs: add openapi rest api page (#1413) 2024-06-27 21:32:34 -07:00
Cory Grinstead
79a1667753 feat(nodejs): feature parity [6/N] - make public interface work with multiple arrow versions (#1392)
previously we didnt have great compatibility with other versions of
apache arrow. This should bridge that gap a bit.


depends on https://github.com/lancedb/lancedb/pull/1391
see actual diff here
https://github.com/universalmind303/lancedb/compare/query-filter...universalmind303:arrow-compatibility
2024-06-25 11:10:08 -05:00
Thomas J. Fan
a866b78a31 docs: fixes polars formatting in docs (#1400)
Currently, the whole polars section is formatted as a code block:
https://lancedb.github.io/lancedb/guides/tables/#from-a-polars-dataframe

This PR fixes the formatting.
2024-06-25 08:46:16 -07:00
Will Jones
c7d37b3e6e docs: add tip about lzma linking (#1397)
Similar to https://github.com/lancedb/lance/pull/2505
2024-06-25 08:20:31 -07:00
Lance Release
4b71552b73 Updating package-lock.json 2024-06-25 00:26:08 +00:00
Lance Release
5ce5f64da3 Bump version: 0.6.0-beta.0 → 0.6.0 2024-06-25 00:25:45 +00:00
Lance Release
c582b0fc63 Bump version: 0.5.2 → 0.6.0-beta.0 2024-06-25 00:25:45 +00:00
100 changed files with 9771 additions and 777 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.5.2"
current_version = "0.6.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -24,7 +24,7 @@ env:
jobs:
test-python:
name: Test doc python code
runs-on: "buildjet-8vcpu-ubuntu-2204"
runs-on: "warp-ubuntu-latest-x64-4x"
steps:
- name: Checkout
uses: actions/checkout@v4
@@ -56,7 +56,7 @@ jobs:
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node:
name: Test doc nodejs code
runs-on: "buildjet-8vcpu-ubuntu-2204"
runs-on: "warp-ubuntu-latest-x64-4x"
timeout-minutes: 60
strategy:
fail-fast: false

1
.gitignore vendored
View File

@@ -4,6 +4,7 @@
**/__pycache__
.DS_Store
venv
.venv
.vscode
.zed

View File

@@ -14,8 +14,8 @@ repos:
hooks:
- id: local-biome-check
name: biome check
entry: npx @biomejs/biome@1.7.3 check --config-path nodejs/biome.json nodejs/
entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
language: system
types: [text]
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*

View File

@@ -20,11 +20,11 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.13.0", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.13.0" }
lance-linalg = { "version" = "=0.13.0" }
lance-testing = { "version" = "=0.13.0" }
lance-datafusion = { "version" = "=0.13.0" }
lance = { "version" = "=0.14.1", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.14.1" }
lance-linalg = { "version" = "=0.14.1" }
lance-testing = { "version" = "=0.14.1" }
lance-datafusion = { "version" = "=0.14.1" }
# Note that this one does not include pyarrow
arrow = { version = "51.0", optional = false }
arrow-array = "51.0"

View File

@@ -57,6 +57,8 @@ plugins:
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter
- render_swagger:
allow_arbitrary_locations : true
markdown_extensions:
- admonition
@@ -100,8 +102,10 @@ nav:
- Linear Combination Reranker: reranking/linear_combination.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
@@ -109,6 +113,7 @@ nav:
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- 🧬 Managing embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
@@ -123,10 +128,11 @@ nav:
- DuckDB: python/duckdb.md
- LangChain:
- LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙:
- LlamaIndex docs: integrations/llamaIndex.md
- LlamaIndex demo: https://docs.llamaindex.ai/en/stable/examples/vector_stores/LanceDBIndexDemo/
- LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
@@ -158,6 +164,7 @@ nav:
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- Quick start: basic.md
- Concepts:
@@ -180,8 +187,10 @@ nav:
- Linear Combination Reranker: reranking/linear_combination.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
@@ -189,6 +198,7 @@ nav:
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Managing Embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
@@ -201,9 +211,9 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗↗: https://python.langchain.com/docs/integrations/vectorstores/lancedb
- LangChain 🦜️🔗↗: integrations/langchain.md
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- LlamaIndex 🦙↗: integrations/llamaIndex.md
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
@@ -228,6 +238,7 @@ nav:
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
extra_css:
- styles/global.css

487
docs/openapi.yml Normal file
View File

@@ -0,0 +1,487 @@
openapi: 3.1.0
info:
version: 1.0.0
title: LanceDB Cloud API
description: |
LanceDB Cloud API is a RESTful API that allows users to access and modify data stored in LanceDB Cloud.
Table actions are considered temporary resource creations and all use POST method.
contact:
name: LanceDB support
url: https://lancedb.com
email: contact@lancedb.com
servers:
- url: https://{db}.{region}.api.lancedb.com
description: LanceDB Cloud REST endpoint.
variables:
db:
default: ""
description: the name of DB
region:
default: "us-east-1"
description: the service region of the DB
security:
- key_auth: []
components:
securitySchemes:
key_auth:
name: x-api-key
type: apiKey
in: header
parameters:
table_name:
name: name
in: path
description: name of the table
required: true
schema:
type: string
responses:
invalid_request:
description: Invalid request
content:
text/plain:
schema:
type: string
not_found:
description: Not found
content:
text/plain:
schema:
type: string
unauthorized:
description: Unauthorized
content:
text/plain:
schema:
type: string
requestBodies:
arrow_stream_buffer:
description: Arrow IPC stream buffer
required: true
content:
application/vnd.apache.arrow.stream:
schema:
type: string
format: binary
paths:
/v1/table/:
get:
description: List tables, optionally, with pagination.
tags:
- Tables
summary: List Tables
operationId: listTables
parameters:
- name: limit
in: query
description: Limits the number of items to return.
schema:
type: integer
- name: page_token
in: query
description: Specifies the starting position of the next query
schema:
type: string
responses:
"200":
description: Successfully returned a list of tables in the DB
content:
application/json:
schema:
type: object
properties:
tables:
type: array
items:
type: string
page_token:
type: string
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create/:
post:
description: Create a new table
summary: Create a new table
operationId: createTable
tags:
- Tables
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Table successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/query/:
post:
description: Vector Query
url: https://{db-uri}.{aws-region}.api.lancedb.com/v1/table/{name}/query/
tags:
- Data
summary: Vector Query
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
vector:
type: FixedSizeList
description: |
The targetted vector to search for. Required.
vector_column:
type: string
description: |
The column to query, it can be inferred from the schema if there is only one vector column.
prefilter:
type: boolean
description: |
Whether to prefilter the data. Optional.
k:
type: integer
description: |
The number of search results to return. Default is 10.
distance_type:
type: string
description: |
The distance metric to use for search. L2, Cosine, Dot and Hamming are supported. Default is L2.
bypass_vector_index:
type: boolean
description: |
Whether to bypass vector index. Optional.
filter:
type: string
description: |
A filter expression that specifies the rows to query. Optional.
columns:
type: array
items:
type: string
description: |
The columns to return. Optional.
nprobe:
type: integer
description: |
The number of probes to use for search. Optional.
refine_factor:
type: integer
description: |
The refine factor to use for search. Optional.
default: null
fast_search:
type: boolean
description: |
Whether to use fast search. Optional.
default: false
required:
- vector
responses:
"200":
description: top k results if query is successfully executed
content:
application/json:
schema:
type: object
properties:
results:
type: array
items:
type: object
properties:
id:
type: integer
selected_col_1_to_return:
type: col_1_type
selected_col_n_to_return:
type: col_n_type
_distance:
type: float
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/insert/:
post:
description: Insert new data to the Table.
tags:
- Data
operationId: insertData
summary: Insert new data.
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Insert successful
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/merge_insert/:
post:
description: Create a "merge insert" operation
This operation can add rows, update rows, and remove rows all in a single
transaction. See python method `lancedb.table.Table.merge_insert` for examples.
tags:
- Data
summary: Merge Insert
operationId: mergeInsert
parameters:
- $ref: "#/components/parameters/table_name"
- name: on
in: query
description: |
The column to use as the primary key for the merge operation.
required: true
schema:
type: string
- name: when_matched_update_all
in: query
description: |
Rows that exist in both the source table (new data) and
the target table (old data) will be updated, replacing
the old row with the corresponding matching row.
required: false
schema:
type: boolean
- name: when_matched_update_all_filt
in: query
description: |
If present then only rows that satisfy the filter expression will
be updated
required: false
schema:
type: string
- name: when_not_matched_insert_all
in: query
description: |
Rows that exist only in the source table (new data) will be
inserted into the target table (old data).
required: false
schema:
type: boolean
- name: when_not_matched_by_source_delete
in: query
description: |
Rows that exist only in the target table (old data) will be
deleted. An optional condition (`when_not_matched_by_source_delete_filt`)
can be provided to limit what data is deleted.
required: false
schema:
type: boolean
- name: when_not_matched_by_source_delete_filt
in: query
description: |
The filter expression that specifies the rows to delete.
required: false
schema:
type: string
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Merge Insert successful
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/delete/:
post:
description: Delete rows from a table.
tags:
- Data
summary: Delete rows from a table
operationId: deleteData
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
predicate:
type: string
description: |
A filter expression that specifies the rows to delete.
responses:
"200":
description: Delete successful
"401":
$ref: "#/components/responses/unauthorized"
/v1/table/{name}/drop/:
post:
description: Drop a table
tags:
- Tables
summary: Drop a table
operationId: dropTable
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Drop successful
"401":
$ref: "#/components/responses/unauthorized"
/v1/table/{name}/describe/:
post:
description: Describe a table and return Table Information.
tags:
- Tables
summary: Describe a table
operationId: describeTable
parameters:
- $ref: "#/components/parameters/table_name"
responses:
"200":
description: Table information
content:
application/json:
schema:
type: object
properties:
table:
type: string
version:
type: integer
schema:
type: string
stats:
type: object
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/index/list/:
post:
description: List indexes of a table
tags:
- Tables
summary: List indexes of a table
operationId: listIndexes
parameters:
- $ref: "#/components/parameters/table_name"
responses:
"200":
description: Available list of indexes on the table.
content:
application/json:
schema:
type: object
properties:
indexes:
type: array
items:
type: object
properties:
columns:
type: array
items:
type: string
index_name:
type: string
index_uuid:
type: string
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create_index/:
post:
description: Create vector index on a Table
tags:
- Tables
summary: Create vector index on a Table
operationId: createIndex
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
column:
type: string
metric_type:
type: string
nullable: false
description: |
The metric type to use for the index. L2, Cosine, Dot are supported.
index_type:
type: string
responses:
"200":
description: Index successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create_scalar_index/:
post:
description: Create a scalar index on a table
tags:
- Tables
summary: Create a scalar index on a table
operationId: createScalarIndex
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
column:
type: string
index_type:
type: string
required: false
responses:
"200":
description: Scalar Index successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"

View File

@@ -2,4 +2,5 @@ mkdocs==1.5.3
mkdocs-jupyter==0.24.1
mkdocs-material==9.5.3
mkdocstrings[python]==0.20.0
mkdocs-render-swagger-plugin
pydantic

View File

@@ -38,7 +38,21 @@ Lance supports `IVF_PQ` index type by default.
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "Typescript"
=== "TypeScript"
=== "@lancedb/lancedb"
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```typescript
--8<--- "nodejs/examples/ann_indexes.ts:import"
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
```
=== "vectordb (deprecated)"
Creating indexes is done via the [lancedb.Table.createIndex](../javascript/interfaces/Table.md/#createIndex) method.
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
@@ -150,7 +164,15 @@ There are a couple of parameters that can be used to fine-tune the search:
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
=== "Typescript"
=== "TypeScript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search1"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
@@ -176,7 +198,15 @@ You can further filter the elements returned by a search using a where clause.
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
=== "Typescript"
=== "TypeScript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search2"
```
=== "vectordb (deprecated)"
```javascript
--8<-- "docs/src/ann_indexes.ts:search2"
@@ -200,7 +230,15 @@ You can select the columns returned by the query using a select clause.
...
```
=== "Typescript"
=== "TypeScript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search3"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/ann_indexes.ts:search3"

View File

@@ -16,12 +16,43 @@
pip install lancedb
```
=== "Typescript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```shell
npm install @lancedb/lancedb
```
!!! note "Bundling `@lancedb/lancedb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ '@lancedb/lancedb': '@lancedb/lancedb' })
return config;
}
})
```
=== "vectordb (deprecated)"
```shell
npm install vectordb
```
!!! note "Bundling `vectordb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
=== "Rust"
```shell
@@ -58,7 +89,14 @@ recommend switching to stable releases.
pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb
```
=== "Typescript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```shell
npm install @lancedb/lancedb@preview
```
=== "vectordb (deprecated)"
```shell
npm install vectordb@preview
@@ -93,23 +131,22 @@ recommend switching to stable releases.
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
=== "Typescript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "docs/src/basic_legacy.ts:import"
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
--8<-- "docs/src/basic_legacy.ts:open_db"
--8<-- "nodejs/examples/basic.ts:connect"
```
!!! note "`@lancedb/lancedb` vs. `vectordb`"
=== "vectordb (deprecated)"
The Javascript SDK was originally released as `vectordb`. In an effort to
reduce maintenance we are aligning our SDKs. The new, aligned, Javascript
API is being released as `lancedb`. If you are starting new work we encourage
you to try out `lancedb`. Once the new API is feature complete we will begin
slowly deprecating `vectordb` in favor of `lancedb`. There is a
[migration guide](migration.md) detailing the differences which will assist
you in this process.
```typescript
--8<-- "docs/src/basic_legacy.ts:open_db"
```
=== "Rust"
@@ -152,14 +189,22 @@ table.
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
=== "Typescript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_table"
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
If you want to overwrite the table, you can pass in `mode:"overwrite"`
to the `createTable` function.
=== "Rust"
@@ -200,7 +245,15 @@ similar to a `CREATE TABLE` statement in SQL.
!!! note "You can define schema in Pydantic"
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
=== "Typescript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
@@ -223,12 +276,20 @@ Once created, you can open a table as follows:
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Typescript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:open_table"
```
=== "vectordb (deprecated)"
```typescript
const tbl = await db.openTable("myTable");
```
=== "Rust"
```rust
@@ -244,9 +305,16 @@ If you forget the name of your table, you can always get a listing of all table
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
=== "Javascript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```javascript
```typescript
--8<-- "nodejs/examples/basic.ts:table_names"
```
=== "vectordb (deprecated)"
```typescript
console.log(await db.tableNames());
```
@@ -267,7 +335,14 @@ After a table has been created, you can always add more data to it as follows:
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
=== "Typescript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:add_data"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:add"
@@ -292,7 +367,14 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
This returns a pandas DataFrame with the results.
=== "Typescript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:vector_search"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:search"
@@ -325,7 +407,14 @@ LanceDB allows you to create an ANN index on a table as follows:
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Typescript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_index"
```
=== "vectordb (deprecated)"
```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index"
@@ -357,7 +446,15 @@ This can delete any number of rows that match the filter.
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
=== "Typescript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:delete_rows"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:delete"
@@ -378,7 +475,13 @@ simple or complex as needed. To see what expressions are supported, see the
Read more: [lancedb.table.Table.delete][]
=== "Javascript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
Read more: [lancedb.Table.delete](javascript/interfaces/Table.md#delete)
=== "vectordb (deprecated)"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
@@ -401,7 +504,15 @@ Use the `drop_table()` method on the database to remove a table.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "Typescript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:drop_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
@@ -416,19 +527,6 @@ Use the `drop_table()` method on the database to remove a table.
--8<-- "rust/lancedb/examples/simple.rs:drop_table"
```
!!! note "Bundling `vectordb` apps with Webpack"
If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
## Using the Embedding API
You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more.
@@ -440,6 +538,22 @@ You can use the embedding API when working with embedding models. It automatical
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/).
@@ -448,3 +562,5 @@ Learn about using the existing integrations and creating custom embedding functi
This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts.
If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

View File

@@ -24,6 +24,7 @@ const example = async () => {
);
// --8<-- [end:create_table]
// --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({
vector: [i, i + 1],

1
docs/src/cloud/rest.md Normal file
View File

@@ -0,0 +1 @@
!!swagger ../../openapi.yml!!

View File

@@ -193,13 +193,13 @@ from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("huggingface").create(name='facebook/bart-base')
class TextModel(LanceModel):
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
table = db.create_table("greets", schema=Words)
table.add()
table.add(df)
query = "old greeting"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
@@ -427,6 +427,45 @@ Usage Example:
tbl.add(data)
```
### Jina Embeddings
Jina embeddings are used to generate embeddings for text and image data.
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
os.environ['JINA_API_KEY'] = 'jina_*'
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
class TextModel(LanceModel):
text: str = jina_embed.SourceField()
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
data = [{"text": "hello world"},
{"text": "goodbye world"}]
db = lancedb.connect("~/.lancedb-2")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```
### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
@@ -524,7 +563,7 @@ uris = [
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
[{"label": labels, "image_uri": uris, "image_bytes": image_bytes}]
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```
Now we can search using text from both the default vector column and the custom vector column
@@ -630,3 +669,54 @@ print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).
### Jina Embeddings
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import requests
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
os.environ['JINA_API_KEY'] = 'jina_*'
db = lancedb.connect("~/.lancedb")
func = get_registry().get("jina").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```

View File

@@ -29,17 +29,32 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "JavaScript""
=== "TypeScript"
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available.
```javascript
const lancedb = require("vectordb");
import * as lancedb from '@lancedb/lancedb'
import { getRegistry } from '@lancedb/lancedb/embeddings'
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
const func = getRegistry().get("openai").create({apiKey})
```
=== "Rust"
In the Rust SDK, the choices are more limited. For now, only the OpenAI
embedding function is available. But unlike the Python and TypeScript SDKs, you need manually register the OpenAI embedding function.
```toml
// Make sure to include the `openai` feature
[dependencies]
lancedb = {version = "*", features = ["openai"]}
```
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
## 2. Define the data model or schema
@@ -55,7 +70,7 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
=== "JavaScript"
=== "TypeScript"
For the TypeScript SDK, a schema can be inferred from input data, or an explicit
Arrow schema can be provided.
@@ -74,9 +89,18 @@ the embeddings at all:
table.add([{"image_uri": u} for u in uris])
```
=== "JavaScript"
=== "TypeScript"
```javascript
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:embedding_function"
```
=== "vectordb (deprecated)"
```ts
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
@@ -116,9 +140,19 @@ need to worry about it when you query the table:
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
=== "TypeScript"
```javascript
=== "@lancedb/lancedb"
```ts
const results = await table.search("What's the best pizza topping?")
.limit(10)
.toArray()
```
=== "vectordb (deprecated)
```ts
const results = await table
.search("What's the best pizza topping?")
.limit(10)

View File

@@ -7,7 +7,7 @@ LanceDB supports 3 methods of working with embeddings.
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md)
3. You can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions.
For python users, there is also a legacy [with_embeddings API](./legacy.md).
@@ -18,15 +18,103 @@ It is retained for compatibility and will be removed in a future version.
To get started with embeddings, you can use the built-in embedding functions.
### OpenAI Embedding function
LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`.
=== "Python"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
=== "TypeScript"
```typescript
--8<--- "nodejs/examples/embedding.ts:imports"
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<--- "rust/lancedb/examples/openai.rs:imports"
--8<--- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
### Sentence Transformers Embedding function
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
=== "Python"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
=== "TypeScript"
Coming Soon!
=== "Rust"
Coming Soon!
### Jina Embeddings
LanceDB registers the JinaAI embeddings function in the registry as `jina`. You can pass any supported model name to the `create`. By default it uses `"jina-clip-v1"`.
`jina-clip-v1` can handle both text and images and other models only support `text`.
You need to pass `JINA_API_KEY` in the environment variable or pass it as `api_key` to `create` method.
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
os.environ['JINA_API_KEY'] = "jina_*"
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
func = get_registry().get("jina").create(name="jina-clip-v1")
class Words(LanceModel):
text: str = func.SourceField()
@@ -44,31 +132,3 @@ query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### Sentence Transformers Embedding function
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -32,25 +32,51 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
db = lancedb.connect("az://bucket/path")
```
=== "JavaScript"
=== "TypeScript"
=== "@lancedb/lancedb"
AWS S3:
```javascript
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage:
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("gs://bucket/path");
```
Azure Blob Storage:
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("az://bucket/path");
```
=== "vectordb (deprecated)"
AWS S3:
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage:
```javascript
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("gs://bucket/path");
```
Azure Blob Storage:
```javascript
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("az://bucket/path");
```
@@ -78,12 +104,25 @@ If you only want this to apply to one particular connection, you can pass the `s
)
```
=== "JavaScript"
=== "TypeScript"
```javascript
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path", {
storageOptions: {timeout: "60s"}
});
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path",
{storageOptions: {timeout: "60s"}});
const db = await lancedb.connect("s3://bucket/path", {
storageOptions: {timeout: "60s"}
});
```
Getting even more specific, you can set the `timeout` for only a particular table:
@@ -101,10 +140,25 @@ Getting even more specific, you can set the `timeout` for only a particular tabl
)
```
=== "JavaScript"
=== "TypeScript"
=== "@lancedb/lancedb"
<!-- skip-test -->
```javascript
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable(
"table",
[{ a: 1, b: 2}],
{storageOptions: {timeout: "60s"}}
);
```
=== "vectordb (deprecated)"
<!-- skip-test -->
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable(
@@ -135,7 +189,6 @@ There are several options that can be set for all object stores, mostly related
| `proxy_ca_certificate` | PEM-formatted CA certificate for proxy connections. |
| `proxy_excludes` | List of hosts that bypass the proxy. This is a comma-separated list of domains and IP masks. Any subdomain of the provided domain will be bypassed. For example, `example.com, 192.168.1.0/24` would bypass `https://api.example.com`, `https://www.example.com`, and any IP in the range `192.168.1.0/24`. |
### AWS S3
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` keys. Region can also be set, but it is not mandatory when using AWS.
@@ -155,9 +208,27 @@ These can be set as environment variables or passed in the `storage_options` par
)
```
=== "JavaScript"
=== "TypeScript"
```javascript
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
@@ -188,7 +259,6 @@ The following keys can be used as both environment variables or keys in the `sto
| `aws_sse_kms_key_id` | The KMS key ID to use for server-side encryption. If set, `aws_server_side_encryption` must be `"aws:kms"` or `"aws:kms:dsse"`. |
| `aws_sse_bucket_key_enabled` | Whether to use bucket keys for server-side encryption. |
!!! tip "Automatic cleanup for failed writes"
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
@@ -265,6 +335,108 @@ For **read-only access**, LanceDB will need a policy such as:
}
```
#### DynamoDB Commit Store for concurrent writes
By default, S3 does not support concurrent writes. Having two or more processes
writing to the same table at the same time can lead to data corruption. This is
because S3, unlike other object stores, does not have any atomic put or copy
operation.
To enable concurrent writes, you can configure LanceDB to use a DynamoDB table
as a commit store. This table will be used to coordinate writes between
different processes. To enable this feature, you must modify your connection
URI to use the `s3+ddb` scheme and add a query parameter `ddbTableName` with the
name of the table to use.
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
);
```
The DynamoDB table must be created with the following schema:
- Hash key: `base_uri` (string)
- Range key: `version` (number)
You can create this programmatically with:
=== "Python"
<!-- skip-test -->
```python
import boto3
dynamodb = boto3.client("dynamodb")
table = dynamodb.create_table(
TableName=table_name,
KeySchema=[
{"AttributeName": "base_uri", "KeyType": "HASH"},
{"AttributeName": "version", "KeyType": "RANGE"},
],
AttributeDefinitions=[
{"AttributeName": "base_uri", "AttributeType": "S"},
{"AttributeName": "version", "AttributeType": "N"},
],
ProvisionedThroughput={"ReadCapacityUnits": 1, "WriteCapacityUnits": 1},
)
```
=== "JavaScript"
<!-- skip-test -->
```javascript
import {
CreateTableCommand,
DynamoDBClient,
} from "@aws-sdk/client-dynamodb";
const dynamodb = new DynamoDBClient({
region: CONFIG.awsRegion,
credentials: {
accessKeyId: CONFIG.awsAccessKeyId,
secretAccessKey: CONFIG.awsSecretAccessKey,
},
endpoint: CONFIG.awsEndpoint,
});
const command = new CreateTableCommand({
TableName: table_name,
AttributeDefinitions: [
{
AttributeName: "base_uri",
AttributeType: "S",
},
{
AttributeName: "version",
AttributeType: "N",
},
],
KeySchema: [
{ AttributeName: "base_uri", KeyType: "HASH" },
{ AttributeName: "version", KeyType: "RANGE" },
],
ProvisionedThroughput: {
ReadCapacityUnits: 1,
WriteCapacityUnits: 1,
},
});
await client.send(command);
```
#### S3-compatible stores
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify both region and endpoint:
@@ -282,9 +454,26 @@ LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you m
)
```
=== "JavaScript"
=== "TypeScript"
```javascript
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
@@ -326,10 +515,12 @@ To configure LanceDB to use an S3 Express endpoint, you must set the storage opt
)
```
=== "JavaScript"
=== "TypeScript"
```javascript
const lancedb = require("lancedb");
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
{
@@ -341,6 +532,20 @@ To configure LanceDB to use an S3 Express endpoint, you must set the storage opt
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
{
storageOptions: {
region: "us-east-1",
s3Express: "true",
}
}
);
```
### Google Cloud Storage
@@ -359,9 +564,25 @@ GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environme
)
```
=== "JavaScript"
=== "TypeScript"
```javascript
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"gs://my-bucket/my-database",
{
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"gs://my-bucket/my-database",
@@ -373,12 +594,10 @@ GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environme
);
```
!!! info "HTTP/2 support"
By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`.
The following keys can be used as both environment variables or keys in the `storage_options` parameter:
<!-- source: https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html -->
@@ -388,7 +607,6 @@ The following keys can be used as both environment variables or keys in the `sto
| ``google_service_account_key`` | The serialized service account key. |
| ``google_application_credentials`` | Path to the application credentials. |
### Azure Blob Storage
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME`and `AZURE_STORAGE_ACCOUNT_KEY` environment variables. Alternatively, you can pass the account name and key in the `storage_options` parameter:
@@ -407,9 +625,26 @@ Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_A
)
```
=== "JavaScript"
=== "TypeScript"
```javascript
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"az://my-container/my-database",
{
storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"az://my-container/my-database",

View File

@@ -8,26 +8,39 @@ This guide will show how to create tables, insert data into them, and update the
## Creating a LanceDB Table
Initialize a LanceDB connection and create a table
=== "Python"
Initialize a LanceDB connection and create a table using one of the many methods listed below.
```python
import lancedb
db = lancedb.connect("./.lancedb")
```
=== "Javascript"
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
Initialize a VectorDB connection and create a table using one of the many methods listed below.
=== "Typescript[^1]"
```javascript
=== "@lancedb/lancedb"
```typescript
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
=== "vectordb (deprecated)"
```typescript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
### From list of tuples or dictionaries
@@ -45,6 +58,7 @@ This guide will show how to create tables, insert data into them, and update the
db["my_table"].head()
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default.
@@ -63,79 +77,109 @@ This guide will show how to create tables, insert data into them, and update the
db.create_table("name", data, mode="overwrite")
```
=== "Javascript"
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
=== "Typescript[^1]"
You can create a LanceDB table in JavaScript using an array of records as follows.
```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/basic.ts:create_table"
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
```ts
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
```
!!! info "Note"
`createTable` supports an optional `existsOk` parameter. When set to true
and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case.
```ts
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
```ts
--8<-- "nodejs/examples/basic.ts:create_table_overwrite"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/basic_legacy.ts:create_table"
```
!!! warning
`existsOk` option is not supported in `vectordb`
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
```ts
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
### From a Pandas DataFrame
### From a Pandas DataFrame
```python
import pandas as pd
```python
import pandas as pd
data = pd.DataFrame({
data = pd.DataFrame({
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
})
db.create_table("my_table", data)
db.create_table("my_table", data)
db["my_table"].head()
```
!!! info "Note"
db["my_table"].head()
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()),
pa.field("long", pa.float32())
])
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()),
pa.field("long", pa.float32())
])
table = db.create_table("my_table", data, schema=custom_schema)
```
table = db.create_table("my_table", data, schema=custom_schema)
```
### From a Polars DataFrame
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
is on the way.
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
is on the way.
```python
import polars as pl
```python
import polars as pl
data = pl.DataFrame({
data = pl.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pl_table", data=data)
```
})
table = db.create_table("pl_table", data=data)
```
### From an Arrow Table
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
=== "Python"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
```python
import pyarrows as pa
@@ -160,11 +204,17 @@ This guide will show how to create tables, insert data into them, and update the
tbl = db.create_table("f16_tbl", data, schema=schema)
```
=== "Javascript"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports Float16 data type!
=== "Typescript[^1]"
```javascript
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_f16_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
```
@@ -329,23 +379,24 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
tbl = db.open_table("my_table")
```
=== "JavaScript"
=== "Typescript[^1]"
If you forget the name of your table, you can always get a listing of all table names.
```javascript
```typescript
console.log(await db.tableNames());
```
Then, you can open any existing tables.
```javascript
```typescript
const tbl = await db.openTable("my_table");
```
## Creating empty table
You can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
=== "Python"
In Python, you can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
```python
@@ -382,9 +433,23 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
## Adding to a table
After a table has been created, you can always add more data to it using the various methods available.
After a table has been created, you can always add more data to it usind the `add` method
=== "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
@@ -472,9 +537,7 @@ After a table has been created, you can always add more data to it using the var
tbl.add(models)
```
=== "JavaScript"
=== "Typescript[^1]"
```javascript
await tbl.add(
@@ -530,15 +593,15 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
# 0 3 [5.0, 6.0]
```
=== "JavaScript"
=== "Typescript[^1]"
```javascript
```ts
await tbl.delete('item = "fizz"')
```
### Deleting row with specific column value
```javascript
```ts
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [1, 2]},
@@ -552,7 +615,7 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
### Delete from a list of values
```javascript
```ts
const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
@@ -609,11 +672,32 @@ This can be used to update zero to all rows depending on how many rows match the
2 2 [10.0, 10.0]
```
=== "JavaScript/Typescript"
=== "Typescript[^1]"
=== "@lancedb/lancedb"
API Reference: [lancedb.Table.update](../js/classes/Table.md/#update)
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("./.lancedb");
const data = [
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({vector: [10, 10]}, { where: "x = 2"})
```
=== "vectordb (deprecated)"
API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update)
```javascript
```ts
const lancedb = require("vectordb");
const db = await lancedb.connect("./.lancedb");
@@ -628,7 +712,9 @@ This can be used to update zero to all rows depending on how many rows match the
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
```
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
#### Updating using a sql query
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python"
@@ -647,9 +733,15 @@ The `values` parameter is used to provide the new values for the columns as lite
2 3 [10.0, 10.0]
```
=== "JavaScript/Typescript"
=== "Typescript[^1]"
```javascript
=== "@lancedb/lancedb"
Coming Soon!
=== "vectordb (deprecated)"
```ts
await tbl.update({ valuesSql: { x: "x + 1" } })
```
@@ -672,7 +764,7 @@ Use the `drop_table()` method on the database to remove a table.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "Javascript/Typescript"
=== "TypeScript"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
@@ -726,18 +818,18 @@ There are three possible settings for `read_consistency_interval`:
table.checkout_latest()
```
=== "JavaScript/Typescript"
=== "Typescript[^1]"
To set strong consistency, use `0`:
```javascript
```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table");
```
For eventual consistency, specify the update interval as seconds:
```javascript
```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table");
```
@@ -749,3 +841,5 @@ There are three possible settings for `read_consistency_interval`:
## What's next?
Learn the best practices on creating an ANN index and getting the most out of it.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

View File

@@ -1,4 +1,7 @@
## Improving retriever performance
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
There are serveral ways to improve the performance of retrievers. Some of the common techniques are:

View File

@@ -1,4 +1,6 @@
Continuing from the previous example, we can now rerank the results using more complex rerankers.
Continuing from the previous section, we can now rerank the results using more complex rerankers.
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
## Reranking search results
You can rerank any search results using a reranker. The syntax for reranking is as follows:

View File

@@ -0,0 +1,82 @@
## Finetuning the Embedding Model
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model.
We'll use the same dataset as in the previous sections. Start off by splitting the dataset into training and validation sets:
```python
from sklearn.model_selection import train_test_split
train_df, validation_df = train_test_split("data_qa.csv", test_size=0.2, random_state=42)
train_df.to_csv("data_train.csv", index=False)
validation_df.to_csv("data_val.csv", index=False)
```
You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model.
Then parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node.
```python
from llama_index.core.node_parser import SentenceSplitter
from llama_index.readers.file import PagedCSVReader
from llama_index.finetuning import generate_qa_embedding_pairs
from llama_index.core.evaluation import EmbeddingQAFinetuneDataset
def load_corpus(file):
loader = PagedCSVReader(encoding="utf-8")
docs = loader.load_data(file=Path(file))
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(docs)
return nodes
from llama_index.llms.openai import OpenAI
train_dataset = generate_qa_embedding_pairs(
llm=OpenAI(model="gpt-3.5-turbo"), nodes=train_nodes, verbose=False
)
val_dataset = generate_qa_embedding_pairs(
llm=OpenAI(model="gpt-3.5-turbo"), nodes=val_nodes, verbose=False
)
```
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model.
```python
from llama_index.finetuning import SentenceTransformersFinetuneEngine
finetune_engine = SentenceTransformersFinetuneEngine(
train_dataset,
model_id="BAAI/bge-small-en-v1.5",
model_output_path="tuned_model",
val_dataset=val_dataset,
)
finetune_engine.finetune()
embed_model = finetune_engine.get_finetuned_model()
```
This saves the fine tuned embedding model in `tuned_model` folder. This al
# Evaluation results
In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever.
On performing the same hit-rate evaluation as before, we see a significant improvement in the hit-rate across all query types.
### Baseline
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.640 |
| Full-text Search | 0.595 |
| Reranked Vector Search | 0.677 |
| Reranked Full-text Search | 0.672 |
| Hybrid Search (w/ CohereReranker) | 0.759|
### Fine-tuned model ( 2 iterations )
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.672 |
| Full-text Search | 0.595 |
| Reranked Vector Search | 0.754 |
| Reranked Full-text Search | 0.672|
| Hybrid Search (w/ CohereReranker) | 0.768 |

View File

@@ -2,7 +2,7 @@
![Illustration](../assets/langchain.png)
## Quick Start
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model.
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model. Checkout Complete example here - [LangChain demo](../notebooks/langchain_example.ipynb)
```python
import os
from langchain.document_loaders import TextLoader
@@ -38,6 +38,8 @@ The exhaustive list of parameters for `LanceDB` vector store are :
- `api_key`: (Optional) API key to use for LanceDB cloud database. Defaults to `None`.
- `region`: (Optional) Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`.
- `mode`: (Optional) Mode to use for adding data to the table. Defaults to `'overwrite'`.
- `reranker`: (Optional) The reranker to use for LanceDB.
- `relevance_score_fn`: (Optional[Callable[[float], float]]) Langchain relevance score function to be used. Defaults to `None`.
```python
db_url = "db://lang_test" # url of db you created
@@ -54,12 +56,14 @@ vector_store = LanceDB(
```
### Methods
To add texts and store respective embeddings automatically:
##### add_texts()
- `texts`: `Iterable` of strings to add to the vectorstore.
- `metadatas`: Optional `list[dict()]` of metadatas associated with the texts.
- `ids`: Optional `list` of ids to associate with the texts.
- `kwargs`: `Any`
This method adds texts and stores respective embeddings automatically.
```python
vector_store.add_texts(texts = ['test_123'], metadatas =[{'source' :'wiki'}])
@@ -74,7 +78,6 @@ pd_df.to_csv("docsearch.csv", index=False)
# you can also create a new vector store object using an older connection object:
vector_store = LanceDB(connection=tbl, embedding=embeddings)
```
For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
##### create_index()
- `col_name`: `Optional[str] = None`
- `vector_col`: `Optional[str] = None`
@@ -82,6 +85,8 @@ For index creation make sure your table has enough data in it. An ANN index is u
- `num_sub_vectors`: `Optional[int] = 96`
- `index_cache_size`: `Optional[int] = None`
This method creates an index for the vector store. For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
```python
# for creating vector index
vector_store.create_index(vector_col='vector', metric = 'cosine')
@@ -90,3 +95,107 @@ vector_store.create_index(vector_col='vector', metric = 'cosine')
vector_store.create_index(col_name='text')
```
##### similarity_search()
- `query`: `str`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `fts`: `Optional[bool] = False`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
Return documents most similar to the query without relevance scores
```python
docs = docsearch.similarity_search(query)
print(docs[0].page_content)
```
##### similarity_search_by_vector()
- `embedding`: `List[float]`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
Returns documents most similar to the query vector.
```python
docs = docsearch.similarity_search_by_vector(query)
print(docs[0].page_content)
```
##### similarity_search_with_score()
- `query`: `str`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `kwargs`: `Any`
Returns documents most similar to the query string with relevance scores, gets called by base class's `similarity_search_with_relevance_scores` which selects relevance score based on our `_select_relevance_score_fn`.
```python
docs = docsearch.similarity_search_with_relevance_scores(query)
print("relevance score - ", docs[0][1])
print("text- ", docs[0][0].page_content[:1000])
```
##### similarity_search_by_vector_with_relevance_scores()
- `embedding`: `List[float]`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
Return documents most similar to the query vector with relevance scores.
Relevance score
```python
docs = docsearch.similarity_search_by_vector_with_relevance_scores(query_embedding)
print("relevance score - ", docs[0][1])
print("text- ", docs[0][0].page_content[:1000])
```
##### max_marginal_relevance_search()
- `query`: `str`
- `k`: `Optional[int] = None`
- `fetch_k` : Number of Documents to fetch to pass to MMR algorithm, `Optional[int] = None`
- `lambda_mult`: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5. `float = 0.5`
- `filter`: `Optional[Dict[str, str]] = None`
- `kwargs`: `Any`
Returns docs selected using the maximal marginal relevance(MMR).
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
Similarly, `max_marginal_relevance_search_by_vector()` function returns docs most similar to the embedding passed to the function using MMR. instead of a string query you need to pass the embedding to be searched for.
```python
result = docsearch.max_marginal_relevance_search(
query="text"
)
result_texts = [doc.page_content for doc in result]
print(result_texts)
## search by vector :
result = docsearch.max_marginal_relevance_search_by_vector(
embeddings.embed_query("text")
)
result_texts = [doc.page_content for doc in result]
print(result_texts)
```
##### add_images()
- `uris` : File path to the image. `List[str]`.
- `metadatas` : Optional list of metadatas. `(Optional[List[dict]], optional)`
- `ids` : Optional list of IDs. `(Optional[List[str]], optional)`
Adds images by automatically creating their embeddings and adds them to the vectorstore.
```python
vec_store.add_images(uris=image_uris)
# here image_uris are local fs paths to the images.
```

View File

@@ -2,7 +2,8 @@
![Illustration](../assets/llama-index.jpg)
## Quick start
You would need to install the integration via `pip install llama-index-vector-stores-lancedb` in order to use it. You can run the below script to try it out :
You would need to install the integration via `pip install llama-index-vector-stores-lancedb` in order to use it.
You can run the below script to try it out :
```python
import logging
import sys
@@ -43,6 +44,8 @@ retriever = index.as_retriever(vector_store_kwargs={"where": lance_filter})
response = retriever.retrieve("What did the author do growing up?")
```
Checkout Complete example here - [LlamaIndex demo](../notebooks/LlamaIndex_example.ipynb)
### Filtering
For metadata filtering, you can use a Lance SQL-like string filter as demonstrated in the example above. Additionally, you can also filter using the `MetadataFilters` class from LlamaIndex:
```python

View File

@@ -0,0 +1,538 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "2db56c9b",
"metadata": {},
"source": [
"<a href=\"https://colab.research.google.com/github/run-llama/llama_index/blob/main/docs/docs/examples/vector_stores/LanceDBIndexDemo.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "db0855d0",
"metadata": {},
"source": [
"# LanceDB Vector Store\n",
"In this notebook we are going to show how to use [LanceDB](https://www.lancedb.com) to perform vector searches in LlamaIndex"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f44170b2",
"metadata": {},
"source": [
"If you're opening this Notebook on colab, you will probably need to install LlamaIndex 🦙."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c84199c",
"metadata": {},
"outputs": [],
"source": [
"%pip install llama-index llama-index-vector-stores-lancedb"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1a90ce34",
"metadata": {},
"outputs": [],
"source": [
"%pip install lancedb==0.6.13 #Only required if the above cell installs an older version of lancedb (pypi package may not be released yet)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "39c62671",
"metadata": {},
"outputs": [],
"source": [
"# Refresh vector store URI if restarting or re-using the same notebook\n",
"! rm -rf ./lancedb"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59b54276",
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import sys\n",
"\n",
"# Uncomment to see debug logs\n",
"# logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)\n",
"# logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))\n",
"\n",
"\n",
"from llama_index.core import SimpleDirectoryReader, Document, StorageContext\n",
"from llama_index.core import VectorStoreIndex\n",
"from llama_index.vector_stores.lancedb import LanceDBVectorStore\n",
"import textwrap"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "26c71b6d",
"metadata": {},
"source": [
"### Setup OpenAI\n",
"The first step is to configure the openai key. It will be used to created embeddings for the documents loaded into the index"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "67b86621",
"metadata": {},
"outputs": [],
"source": [
"import openai\n",
"\n",
"openai.api_key = \"sk-\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "073f0a68",
"metadata": {},
"source": [
"Download Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eef1b911",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2024-06-11 16:42:37-- https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.108.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 75042 (73K) [text/plain]\n",
"Saving to: data/paul_graham/paul_graham_essay.txt\n",
"\n",
"data/paul_graham/pa 100%[===================>] 73.28K --.-KB/s in 0.02s \n",
"\n",
"2024-06-11 16:42:37 (3.97 MB/s) - data/paul_graham/paul_graham_essay.txt saved [75042/75042]\n",
"\n"
]
}
],
"source": [
"!mkdir -p 'data/paul_graham/'\n",
"!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f7010b1d-d1bb-4f08-9309-a328bb4ea396",
"metadata": {},
"source": [
"### Loading documents\n",
"Load the documents stored in the `data/paul_graham/` using the SimpleDirectoryReader"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c154dd4b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Document ID: cac1ba78-5007-4cf8-89ba-280264790115 Document Hash: fe2d4d3ef3a860780f6c2599808caa587c8be6516fe0ba4ca53cf117044ba953\n"
]
}
],
"source": [
"documents = SimpleDirectoryReader(\"./data/paul_graham/\").load_data()\n",
"print(\"Document ID:\", documents[0].doc_id, \"Document Hash:\", documents[0].hash)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c0232fd1",
"metadata": {},
"source": [
"### Create the index\n",
"Here we create an index backed by LanceDB using the documents loaded previously. LanceDBVectorStore takes a few arguments.\n",
"- uri (str, required): Location where LanceDB will store its files.\n",
"- table_name (str, optional): The table name where the embeddings will be stored. Defaults to \"vectors\".\n",
"- nprobes (int, optional): The number of probes used. A higher number makes search more accurate but also slower. Defaults to 20.\n",
"- refine_factor: (int, optional): Refine the results by reading extra elements and re-ranking them in memory. Defaults to None\n",
"\n",
"- More details can be found at [LanceDB docs](https://lancedb.github.io/lancedb/ann_indexes)"
]
},
{
"cell_type": "markdown",
"id": "1f2e20ef",
"metadata": {},
"source": [
"##### For LanceDB cloud :\n",
"```python\n",
"vector_store = LanceDBVectorStore( \n",
" uri=\"db://db_name\", # your remote DB URI\n",
" api_key=\"sk_..\", # lancedb cloud api key\n",
" region=\"your-region\" # the region you configured\n",
" ...\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8731da62",
"metadata": {},
"outputs": [],
"source": [
"vector_store = LanceDBVectorStore(\n",
" uri=\"./lancedb\", mode=\"overwrite\", query_type=\"hybrid\"\n",
")\n",
"storage_context = StorageContext.from_defaults(vector_store=vector_store)\n",
"\n",
"index = VectorStoreIndex.from_documents(\n",
" documents, storage_context=storage_context\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "8ee4473a-094f-4d0a-a825-e1213db07240",
"metadata": {},
"source": [
"### Query the index\n",
"We can now ask questions using our index. We can use filtering via `MetadataFilters` or use native lance `where` clause."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5eb6419b",
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core.vector_stores import (\n",
" MetadataFilters,\n",
" FilterOperator,\n",
" FilterCondition,\n",
" MetadataFilter,\n",
")\n",
"\n",
"from datetime import datetime\n",
"\n",
"\n",
"query_filters = MetadataFilters(\n",
" filters=[\n",
" MetadataFilter(\n",
" key=\"creation_date\",\n",
" operator=FilterOperator.EQ,\n",
" value=datetime.now().strftime(\"%Y-%m-%d\"),\n",
" ),\n",
" MetadataFilter(\n",
" key=\"file_size\", value=75040, operator=FilterOperator.GT\n",
" ),\n",
" ],\n",
" condition=FilterCondition.AND,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "ee201930",
"metadata": {},
"source": [
"### Hybrid Search\n",
"\n",
"LanceDB offers hybrid search with reranking capabilities. For complete documentation, refer [here](https://lancedb.github.io/lancedb/hybrid_search/hybrid_search/).\n",
"\n",
"This example uses the `colbert` reranker. The following cell installs the necessary dependencies for `colbert`. If you choose a different reranker, make sure to adjust the dependencies accordingly."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e12d1454",
"metadata": {},
"outputs": [],
"source": [
"! pip install -U torch transformers tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985"
]
},
{
"cell_type": "markdown",
"id": "c742cb07",
"metadata": {},
"source": [
"if you want to add a reranker at vector store initialization, you can pass it in the arguments like below :\n",
"```\n",
"from lancedb.rerankers import ColbertReranker\n",
"reranker = ColbertReranker()\n",
"vector_store = LanceDBVectorStore(uri=\"./lancedb\", reranker=reranker, mode=\"overwrite\")\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "27ea047b",
"metadata": {},
"outputs": [],
"source": [
"import lancedb"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8414517f",
"metadata": {},
"outputs": [],
"source": [
"from lancedb.rerankers import ColbertReranker\n",
"\n",
"reranker = ColbertReranker()\n",
"vector_store._add_reranker(reranker)\n",
"\n",
"query_engine = index.as_query_engine(\n",
" filters=query_filters,\n",
" # vector_store_kwargs={\n",
" # \"query_type\": \"fts\",\n",
" # },\n",
")\n",
"\n",
"response = query_engine.query(\"How much did Viaweb charge per month?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc6ccb7a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Viaweb charged $100 a month for a small store and $300 a month for a big one.\n",
"metadata - {'65ed5f07-5b8a-4143-a939-e8764884828e': {'file_path': '/Users/raghavdixit/Desktop/open_source/llama_index_lance/docs/docs/examples/vector_stores/data/paul_graham/paul_graham_essay.txt', 'file_name': 'paul_graham_essay.txt', 'file_type': 'text/plain', 'file_size': 75042, 'creation_date': '2024-06-11', 'last_modified_date': '2024-06-11'}, 'be231827-20b8-4988-ac75-94fa79b3c22e': {'file_path': '/Users/raghavdixit/Desktop/open_source/llama_index_lance/docs/docs/examples/vector_stores/data/paul_graham/paul_graham_essay.txt', 'file_name': 'paul_graham_essay.txt', 'file_type': 'text/plain', 'file_size': 75042, 'creation_date': '2024-06-11', 'last_modified_date': '2024-06-11'}}\n"
]
}
],
"source": [
"print(response)\n",
"print(\"metadata -\", response.metadata)"
]
},
{
"cell_type": "markdown",
"id": "0c1c6c73",
"metadata": {},
"source": [
"##### lance filters(SQL like) directly via the `where` clause :"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0a2bcc07",
"metadata": {},
"outputs": [],
"source": [
"lance_filter = \"metadata.file_name = 'paul_graham_essay.txt' \"\n",
"retriever = index.as_retriever(vector_store_kwargs={\"where\": lance_filter})\n",
"response = retriever.retrieve(\"What did the author do growing up?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7ac47cf9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"What I Worked On\n",
"\n",
"February 2021\n",
"\n",
"Before college the two main things I worked on, outside of school, were writing and programming. I didn't write essays. I wrote what beginning writers were supposed to write then, and probably still are: short stories. My stories were awful. They had hardly any plot, just characters with strong feelings, which I imagined made them deep.\n",
"\n",
"The first programs I tried writing were on the IBM 1401 that our school district used for what was then called \"data processing.\" This was in 9th grade, so I was 13 or 14. The school district's 1401 happened to be in the basement of our junior high school, and my friend Rich Draves and I got permission to use it. It was like a mini Bond villain's lair down there, with all these alien-looking machines — CPU, disk drives, printer, card reader — sitting up on a raised floor under bright fluorescent lights.\n",
"\n",
"The language we used was an early version of Fortran. You had to type programs on punch cards, then stack them in the card reader and press a button to load the program into memory and run it. The result would ordinarily be to print something on the spectacularly loud printer.\n",
"\n",
"I was puzzled by the 1401. I couldn't figure out what to do with it. And in retrospect there's not much I could have done with it. The only form of input to programs was data stored on punched cards, and I didn't have any data stored on punched cards. The only other option was to do things that didn't rely on any input, like calculate approximations of pi, but I didn't know enough math to do anything interesting of that type. So I'm not surprised I can't remember any programs I wrote, because they can't have done much. My clearest memory is of the moment I learned it was possible for programs not to terminate, when one of mine didn't. On a machine without time-sharing, this was a social as well as a technical error, as the data center manager's expression made clear.\n",
"\n",
"With microcomputers, everything changed. Now you could have a computer sitting right in front of you, on a desk, that could respond to your keystrokes as it was running instead of just churning through a stack of punch cards and then stopping. [1]\n",
"\n",
"The first of my friends to get a microcomputer built it himself. It was sold as a kit by Heathkit. I remember vividly how impressed and envious I felt watching him sitting in front of it, typing programs right into the computer.\n",
"\n",
"Computers were expensive in those days and it took me years of nagging before I convinced my father to buy one, a TRS-80, in about 1980. The gold standard then was the Apple II, but a TRS-80 was good enough. This was when I really started programming. I wrote simple games, a program to predict how high my model rockets would fly, and a word processor that my father used to write at least one book. There was only room in memory for about 2 pages of text, so he'd write 2 pages at a time and then print them out, but it was a lot better than a typewriter.\n",
"\n",
"Though I liked programming, I didn't plan to study it in college. In college I was going to study philosophy, which sounded much more powerful. It seemed, to my naive high school self, to be the study of the ultimate truths, compared to which the things studied in other fields would be mere domain knowledge. What I discovered when I got to college was that the other fields took up so much of the space of ideas that there wasn't much left for these supposed ultimate truths. All that seemed left for philosophy were edge cases that people in other fields felt could safely be ignored.\n",
"\n",
"I couldn't have put this into words when I was 18. All I knew at the time was that I kept taking philosophy courses and they kept being boring. So I decided to switch to AI.\n",
"\n",
"AI was in the air in the mid 1980s, but there were two things especially that made me want to work on it: a novel by Heinlein called The Moon is a Harsh Mistress, which featured an intelligent computer called Mike, and a PBS documentary that showed Terry Winograd using SHRDLU. I haven't tried rereading The Moon is a Harsh Mistress, so I don't know how well it has aged, but when I read it I was drawn entirely into its world.\n",
"metadata - {'file_path': '/Users/raghavdixit/Desktop/open_source/llama_index_lance/docs/docs/examples/vector_stores/data/paul_graham/paul_graham_essay.txt', 'file_name': 'paul_graham_essay.txt', 'file_type': 'text/plain', 'file_size': 75042, 'creation_date': '2024-06-11', 'last_modified_date': '2024-06-11'}\n"
]
}
],
"source": [
"print(response[0].get_content())\n",
"print(\"metadata -\", response[0].metadata)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "6afc84ac",
"metadata": {},
"source": [
"### Appending data\n",
"You can also add data to an existing index"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "759a532e",
"metadata": {},
"outputs": [],
"source": [
"nodes = [node.node for node in response]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "069fc099",
"metadata": {},
"outputs": [],
"source": [
"del index\n",
"\n",
"index = VectorStoreIndex.from_documents(\n",
" [Document(text=\"The sky is purple in Portland, Maine\")],\n",
" uri=\"/tmp/new_dataset\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a64ed441",
"metadata": {},
"outputs": [],
"source": [
"index.insert_nodes(nodes)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b5cffcfe",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Portland, Maine\n"
]
}
],
"source": [
"query_engine = index.as_query_engine()\n",
"response = query_engine.query(\"Where is the sky purple?\")\n",
"print(textwrap.fill(str(response), 100))"
]
},
{
"cell_type": "markdown",
"id": "ec548a02",
"metadata": {},
"source": [
"You can also create an index from an existing table"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc99404d",
"metadata": {},
"outputs": [],
"source": [
"del index\n",
"\n",
"vec_store = LanceDBVectorStore.from_table(vector_store._table)\n",
"index = VectorStoreIndex.from_vector_store(vec_store)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7b2e8cca",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The author started Viaweb and Aspra.\n"
]
}
],
"source": [
"query_engine = index.as_query_engine()\n",
"response = query_engine.query(\"What companies did the author start?\")\n",
"print(textwrap.fill(str(response), 100))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,566 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "683953b3",
"metadata": {},
"source": [
"# LanceDB\n",
"\n",
">[LanceDB](https://lancedb.com/) is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings. Fully open source.\n",
"\n",
"This notebook shows how to use functionality related to the `LanceDB` vector database based on the Lance data format."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1051ba9",
"metadata": {},
"outputs": [],
"source": [
"! pip install tantivy"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "88ac92c0",
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain-openai langchain-community"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a1c84d6-a10f-428c-95cd-46d3a1702e07",
"metadata": {},
"outputs": [],
"source": [
"! pip install lancedb"
]
},
{
"cell_type": "markdown",
"id": "99134dd1-b91e-486f-8d90-534248e43b9d",
"metadata": {},
"source": [
"We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a0361f5c-e6f4-45f4-b829-11680cf03cec",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d114ed78",
"metadata": {},
"outputs": [],
"source": [
"! rm -rf /tmp/lancedb"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a3c3999a",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import TextLoader\n",
"from langchain_community.vectorstores import LanceDB\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain_text_splitters import CharacterTextSplitter\n",
"\n",
"loader = TextLoader(\"../../how_to/state_of_the_union.txt\")\n",
"documents = loader.load()\n",
"\n",
"documents = CharacterTextSplitter().split_documents(documents)\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "markdown",
"id": "e9517bb0",
"metadata": {},
"source": [
"##### For LanceDB cloud, you can invoke the vector store as follows :\n",
"\n",
"\n",
"```python\n",
"db_url = \"db://lang_test\" # url of db you created\n",
"api_key = \"xxxxx\" # your API key\n",
"region=\"us-east-1-dev\" # your selected region\n",
"\n",
"vector_store = LanceDB(\n",
" uri=db_url,\n",
" api_key=api_key,\n",
" region=region,\n",
" embedding=embeddings,\n",
" table_name='langchain_test'\n",
" )\n",
"```\n",
"\n",
"You can also add `region`, `api_key`, `uri` to `from_documents()` classmethod\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6e104aee",
"metadata": {},
"outputs": [],
"source": [
"from lancedb.rerankers import LinearCombinationReranker\n",
"\n",
"reranker = LinearCombinationReranker(weight=0.3)\n",
"\n",
"docsearch = LanceDB.from_documents(documents, embeddings, reranker=reranker)\n",
"query = \"What did the president say about Ketanji Brown Jackson\""
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "259c7988",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"relevance score - 0.7066475030191711\n",
"text- They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun. \n",
"\n",
"Officer Mora was 27 years old. \n",
"\n",
"Officer Rivera was 22. \n",
"\n",
"Both Dominican Americans whod grown up on the same streets they later chose to patrol as police officers. \n",
"\n",
"I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. \n",
"\n",
"Ive worked on these issues a long time. \n",
"\n",
"I know what works: Investing in crime prevention and community police officers wholl walk the beat, wholl know the neighborhood, and who can restore trust and safety. \n",
"\n",
"So lets not abandon our streets. Or choose between safety and equal justice. \n",
"\n",
"Lets come together to protect our communities, restore trust, and hold law enforcement accountable. \n",
"\n",
"Thats why the Justice Department required body cameras, banned chokeholds, and restricted no-knock warrants for its officers. \n",
"\n",
"Thats why the American Rescue \n"
]
}
],
"source": [
"docs = docsearch.similarity_search_with_relevance_scores(query)\n",
"print(\"relevance score - \", docs[0][1])\n",
"print(\"text- \", docs[0][0].page_content[:1000])"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "9fa29dae",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"distance - 0.30000001192092896\n",
"text- My administration is providing assistance with job training and housing, and now helping lower-income veterans get VA care debt-free. \n",
"\n",
"Our troops in Iraq and Afghanistan faced many dangers. \n",
"\n",
"One was stationed at bases and breathing in toxic smoke from “burn pits” that incinerated wastes of war—medical and hazard material, jet fuel, and more. \n",
"\n",
"When they came home, many of the worlds fittest and best trained warriors were never the same. \n",
"\n",
"Headaches. Numbness. Dizziness. \n",
"\n",
"A cancer that would put them in a flag-draped coffin. \n",
"\n",
"I know. \n",
"\n",
"One of those soldiers was my son Major Beau Biden. \n",
"\n",
"We dont know for sure if a burn pit was the cause of his brain cancer, or the diseases of so many of our troops. \n",
"\n",
"But Im committed to finding out everything we can. \n",
"\n",
"Committed to military families like Danielle Robinson from Ohio. \n",
"\n",
"The widow of Sergeant First Class Heath Robinson. \n",
"\n",
"He was born a soldier. Army National Guard. Combat medic in Kosovo and Iraq. \n",
"\n",
"Stationed near Baghdad, just ya\n"
]
}
],
"source": [
"docs = docsearch.similarity_search_with_score(query=\"Headaches\", query_type=\"hybrid\")\n",
"print(\"distance - \", docs[0][1])\n",
"print(\"text- \", docs[0][0].page_content[:1000])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e70ad201",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"reranker : <lancedb.rerankers.linear_combination.LinearCombinationReranker object at 0x107ef1130>\n"
]
}
],
"source": [
"print(\"reranker : \", docsearch._reranker)"
]
},
{
"cell_type": "markdown",
"id": "f5e1cdfd",
"metadata": {},
"source": [
"Additionaly, to explore the table you can load it into a df or save it in a csv file: \n",
"```python\n",
"tbl = docsearch.get_table()\n",
"print(\"tbl:\", tbl)\n",
"pd_df = tbl.to_pandas()\n",
"# pd_df.to_csv(\"docsearch.csv\", index=False)\n",
"\n",
"# you can also create a new vector store object using an older connection object:\n",
"vector_store = LanceDB(connection=tbl, embedding=embeddings)\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "9c608226",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"metadata : {'source': '../../how_to/state_of_the_union.txt'}\n",
"\n",
"SQL filtering :\n",
"\n",
"They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun. \n",
"\n",
"Officer Mora was 27 years old. \n",
"\n",
"Officer Rivera was 22. \n",
"\n",
"Both Dominican Americans whod grown up on the same streets they later chose to patrol as police officers. \n",
"\n",
"I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. \n",
"\n",
"Ive worked on these issues a long time. \n",
"\n",
"I know what works: Investing in crime prevention and community police officers wholl walk the beat, wholl know the neighborhood, and who can restore trust and safety. \n",
"\n",
"So lets not abandon our streets. Or choose between safety and equal justice. \n",
"\n",
"Lets come together to protect our communities, restore trust, and hold law enforcement accountable. \n",
"\n",
"Thats why the Justice Department required body cameras, banned chokeholds, and restricted no-knock warrants for its officers. \n",
"\n",
"Thats why the American Rescue Plan provided $350 Billion that cities, states, and counties can use to hire more police and invest in proven strategies like community violence interruption—trusted messengers breaking the cycle of violence and trauma and giving young people hope. \n",
"\n",
"We should all agree: The answer is not to Defund the police. The answer is to FUND the police with the resources and training they need to protect our communities. \n",
"\n",
"I ask Democrats and Republicans alike: Pass my budget and keep our neighborhoods safe. \n",
"\n",
"And I will keep doing everything in my power to crack down on gun trafficking and ghost guns you can buy online and make at home—they have no serial numbers and cant be traced. \n",
"\n",
"And I ask Congress to pass proven measures to reduce gun violence. Pass universal background checks. Why should anyone on a terrorist list be able to purchase a weapon? \n",
"\n",
"Ban assault weapons and high-capacity magazines. \n",
"\n",
"Repeal the liability shield that makes gun manufacturers the only industry in America that cant be sued. \n",
"\n",
"These laws dont infringe on the Second Amendment. They save lives. \n",
"\n",
"The most fundamental right in America is the right to vote and to have it counted. And its under assault. \n",
"\n",
"In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections. \n",
"\n",
"We cannot let this happen. \n",
"\n",
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence. \n",
"\n",
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
"\n",
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n",
"\n",
"We can do both. At our border, weve installed new technology like cutting-edge scanners to better detect drug smuggling. \n",
"\n",
"Weve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n",
"\n",
"Were putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster.\n"
]
}
],
"source": [
"docs = docsearch.similarity_search(\n",
" query=query, filter={\"metadata.source\": \"../../how_to/state_of_the_union.txt\"}\n",
")\n",
"\n",
"print(\"metadata :\", docs[0].metadata)\n",
"\n",
"# or you can directly supply SQL string filters :\n",
"\n",
"print(\"\\nSQL filtering :\\n\")\n",
"docs = docsearch.similarity_search(query=query, filter=\"text LIKE '%Officer Rivera%'\")\n",
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "9a173c94",
"metadata": {},
"source": [
"## Adding images "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "05f669d7",
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain-experimental"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3ed69810",
"metadata": {},
"outputs": [],
"source": [
"! pip install open_clip_torch torch"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "2cacb5ee",
"metadata": {},
"outputs": [],
"source": [
"! rm -rf '/tmp/multimmodal_lance'"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "b3456e2c",
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.open_clip import OpenCLIPEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "3848eba2",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import requests\n",
"\n",
"# List of image URLs to download\n",
"image_urls = [\n",
" \"https://github.com/raghavdixit99/assets/assets/34462078/abf47cc4-d979-4aaa-83be-53a2115bf318\",\n",
" \"https://github.com/raghavdixit99/assets/assets/34462078/93be928e-522b-4e37-889d-d4efd54b2112\",\n",
"]\n",
"\n",
"texts = [\"bird\", \"dragon\"]\n",
"\n",
"# Directory to save images\n",
"dir_name = \"./photos/\"\n",
"\n",
"# Create directory if it doesn't exist\n",
"os.makedirs(dir_name, exist_ok=True)\n",
"\n",
"image_uris = []\n",
"# Download and save each image\n",
"for i, url in enumerate(image_urls, start=1):\n",
" response = requests.get(url)\n",
" path = os.path.join(dir_name, f\"image{i}.jpg\")\n",
" image_uris.append(path)\n",
" with open(path, \"wb\") as f:\n",
" f.write(response.content)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "3d62c2a0",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import LanceDB\n",
"\n",
"vec_store = LanceDB(\n",
" table_name=\"multimodal_test\",\n",
" embedding=OpenCLIPEmbeddings(),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "ebbb4881",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['b673620b-01f0-42ca-a92e-d033bb92c0a6',\n",
" '99c3a5b0-b577-417a-8177-92f4a655dbfb']"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vec_store.add_images(uris=image_uris)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "3c29dea3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['f7adde5d-a4a3-402b-9e73-088b230722c3',\n",
" 'cbed59da-0aec-4bff-8820-9e59d81a2140']"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vec_store.add_texts(texts)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "8b2f25ce",
"metadata": {},
"outputs": [],
"source": [
"img_embed = vec_store._embedding.embed_query(\"bird\")"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "87a24079",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='bird', metadata={'id': 'f7adde5d-a4a3-402b-9e73-088b230722c3'})"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vec_store.similarity_search_by_vector(img_embed)[0]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "78557867",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LanceTable(connection=LanceDBConnection(/tmp/lancedb), name=\"multimodal_test\")"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vec_store._table"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -15,7 +15,6 @@ LanceDB comes with some built-in rerankers. Some of the rerankers that are avail
Using rerankers is optional for vector and FTS. However, for hybrid search, rerankers are required. To use a reranker, you need to create an instance of the reranker and pass it to the `rerank` method of the query builder.
```python
import numpy
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
@@ -54,6 +53,7 @@ LanceDB comes with some built-in rerankers. Here are some of the rerankers that
- [ColBERT Reranker](./colbert.md)
- [OpenAI Reranker](./openai.md)
- [Linear Combination Reranker](./linear_combination.md)
- [Jina Reranker](./jina.md)
## Creating Custom Rerankers

View File

@@ -0,0 +1,78 @@
# Jina Reranker
This re-ranker uses the [Jina](https://jina.ai/reranker/) API to rerank the search results. You can use this re-ranker by passing `JinaReranker()` to the `rerank()` method. Note that you'll either need to set the `JINA_API_KEY` environment variable or pass the `api_key` argument to use this re-ranker.
!!! note
Supported Query Types: Hybrid, Vector, FTS
```python
import os
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import JinaReranker
os.environ['JINA_API_KEY'] = "jina_*"
embedder = get_registry().get("jina").create()
db = lancedb.connect("~/.lancedb")
class Schema(LanceModel):
text: str = embedder.SourceField()
vector: Vector(embedder.ndims()) = embedder.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"}
]
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add(data)
reranker = JinaReranker(api_key="key")
# Run vector search with a reranker
result = tbl.search("hello").rerank(reranker=reranker).to_list()
# Run FTS search with a reranker
result = tbl.search("hello", query_type="fts").rerank(reranker=reranker).to_list()
# Run hybrid search with a reranker
tbl.create_fts_index("text", replace=True)
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()
```
Accepted Arguments
----------------
| Argument | Type | Default | Description |
| --- | --- | --- | --- |
| `model_name` | `str` | `"jina-reranker-v2-base-multilingual"` | The name of the reranker model to use. You can find the list of available models in https://jina.ai/reranker/|
| `column` | `str` | `"text"` | The name of the column to use as input to the cross encoder model. |
| `top_n` | `str` | `None` | The number of results to return. If None, will return all results. |
| `api_key` | `str` | `None` | The API key for the Jina API. If not provided, the `JINA_API_KEY` environment variable is used. |
| `return_score` | str | `"relevance"` | Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all" is supported, will return relevance score along with the vector and/or fts scores depending on query type |
## Supported Scores for each query type
You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:
### Hybrid Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
| `all` | ❌ Not Supported | Returns have vector(`_distance`) and FTS(`score`) along with Hybrid Search score(`_relevance_score`) |
### Vector Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
| `all` | ✅ Supported | Returns have vector(`_distance`) along with Hybrid Search score(`_relevance_score`) |
### FTS Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
| `all` | ✅ Supported | Returns have FTS(`score`) along with Hybrid Search score(`_relevance_score`) |

View File

@@ -53,9 +53,20 @@ db.create_table("my_vectors", data=data)
.to_list()
```
=== "JavaScript"
=== "TypeScript"
```javascript
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/search.ts:import"
--8<-- "nodejs/examples/search.ts:search1"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/search_legacy.ts:import"
--8<-- "docs/src/search_legacy.ts:search1"
@@ -73,7 +84,15 @@ By default, `l2` will be used as metric type. You can specify the metric type as
.to_list()
```
=== "JavaScript"
=== "TypeScript"
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/search.ts:search2"
```
=== "vectordb (deprecated)"
```javascript
--8<-- "docs/src/search_legacy.ts:search2"

View File

@@ -44,9 +44,17 @@ const tbl = await db.createTable('myVectors', data)
)
```
=== "JavaScript"
=== "TypeScript"
```javascript
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.ts:search"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/sql_legacy.ts:search"
```
@@ -78,9 +86,17 @@ For example, the following filter string is acceptable:
.to_arrow()
```
=== "Javascript"
=== "TypeScript"
```javascript
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.ts:vec_search"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/sql_legacy.ts:vec_search"
```
@@ -148,9 +164,17 @@ You can also filter your data without search.
tbl.search().where("id = 10").limit(10).to_arrow()
```
=== "JavaScript"
=== "TypeScript"
```javascript
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.ts:sql_search"
```
=== "vectordb (deprecated)"
```ts
--8<---- "docs/src/sql_legacy.ts:sql_search"
```

View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.5.2",
"version": "0.6.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.5.2",
"version": "0.6.0",
"cpu": [
"x64",
"arm64"

View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.5.2",
"version": "0.6.0",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
"scripts": {
"tsc": "tsc -b",
"build": "npm run tsc && cargo-cp-artifact --artifact cdylib lancedb_node index.node -- cargo build --message-format=json",
"build": "npm run tsc && cargo-cp-artifact --artifact cdylib lancedb_node index.node -- cargo build -p lancedb-node --message-format=json",
"build-release": "npm run build -- --release",
"test": "npm run tsc && mocha -recursive dist/test",
"integration-test": "npm run tsc && mocha -recursive dist/integration_test",

View File

@@ -15,11 +15,11 @@ crate-type = ["cdylib"]
arrow-ipc.workspace = true
futures.workspace = true
lancedb = { path = "../rust/lancedb" }
napi = { version = "2.15", default-features = false, features = [
"napi7",
napi = { version = "2.16.8", default-features = false, features = [
"napi9",
"async",
] }
napi-derive = "2"
napi-derive = "2.16.4"
# Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] }

View File

@@ -63,6 +63,7 @@ describe("Registry", () => {
return data.map(() => [1, 2, 3]);
}
}
const func = getRegistry()
.get<MockEmbeddingFunction>("mock-embedding")!
.create();

View File

@@ -14,6 +14,11 @@
/* eslint-disable @typescript-eslint/naming-convention */
import {
CreateTableCommand,
DeleteTableCommand,
DynamoDBClient,
} from "@aws-sdk/client-dynamodb";
import {
CreateKeyCommand,
KMSClient,
@@ -38,6 +43,7 @@ const CONFIG = {
awsAccessKeyId: "ACCESSKEY",
awsSecretAccessKey: "SECRETKEY",
awsEndpoint: "http://127.0.0.1:4566",
dynamodbEndpoint: "http://127.0.0.1:4566",
awsRegion: "us-east-1",
};
@@ -66,7 +72,6 @@ class S3Bucket {
} catch {
// It's fine if the bucket doesn't exist
}
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
await client.send(new CreateBucketCommand({ Bucket: name }));
return new S3Bucket(name);
}
@@ -79,32 +84,27 @@ class S3Bucket {
static async deleteBucket(client: S3Client, name: string) {
// Must delete all objects before we can delete the bucket
const objects = await client.send(
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
new ListObjectsV2Command({ Bucket: name }),
);
if (objects.Contents) {
for (const object of objects.Contents) {
await client.send(
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
new DeleteObjectCommand({ Bucket: name, Key: object.Key }),
);
}
}
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
await client.send(new DeleteBucketCommand({ Bucket: name }));
}
public async assertAllEncrypted(path: string, keyId: string) {
const client = S3Bucket.s3Client();
const objects = await client.send(
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
new ListObjectsV2Command({ Bucket: this.name, Prefix: path }),
);
if (objects.Contents) {
for (const object of objects.Contents) {
const metadata = await client.send(
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
new HeadObjectCommand({ Bucket: this.name, Key: object.Key }),
);
expect(metadata.ServerSideEncryption).toBe("aws:kms");
@@ -143,7 +143,6 @@ class KmsKey {
public async delete() {
const client = KmsKey.kmsClient();
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
await client.send(new ScheduleKeyDeletionCommand({ KeyId: this.keyId }));
}
}
@@ -224,3 +223,91 @@ maybeDescribe("storage_options", () => {
await bucket.assertAllEncrypted("test/table2.lance", kmsKey.keyId);
});
});
class DynamoDBCommitTable {
name: string;
constructor(name: string) {
this.name = name;
}
static dynamoClient() {
return new DynamoDBClient({
region: CONFIG.awsRegion,
credentials: {
accessKeyId: CONFIG.awsAccessKeyId,
secretAccessKey: CONFIG.awsSecretAccessKey,
},
endpoint: CONFIG.awsEndpoint,
});
}
public static async create(name: string): Promise<DynamoDBCommitTable> {
const client = DynamoDBCommitTable.dynamoClient();
const command = new CreateTableCommand({
TableName: name,
AttributeDefinitions: [
{
AttributeName: "base_uri",
AttributeType: "S",
},
{
AttributeName: "version",
AttributeType: "N",
},
],
KeySchema: [
{ AttributeName: "base_uri", KeyType: "HASH" },
{ AttributeName: "version", KeyType: "RANGE" },
],
ProvisionedThroughput: {
ReadCapacityUnits: 1,
WriteCapacityUnits: 1,
},
});
await client.send(command);
return new DynamoDBCommitTable(name);
}
public async delete() {
const client = DynamoDBCommitTable.dynamoClient();
await client.send(new DeleteTableCommand({ TableName: this.name }));
}
}
maybeDescribe("DynamoDB Lock", () => {
let bucket: S3Bucket;
let commitTable: DynamoDBCommitTable;
beforeAll(async () => {
bucket = await S3Bucket.create("lancedb2");
commitTable = await DynamoDBCommitTable.create("commitTable");
});
afterAll(async () => {
await commitTable.delete();
await bucket.delete();
});
it("can be used to configure a DynamoDB table for commit log", async () => {
const uri = `s3+ddb://${bucket.name}/test?ddbTableName=${commitTable.name}`;
const db = await connect(uri, {
storageOptions: CONFIG,
readConsistencyInterval: 0,
});
const table = await db.createTable("test", [{ a: 1, b: 2 }]);
// 5 concurrent appends
const futs = Array.from({ length: 5 }, async () => {
// Open a table so each append has a separate table reference. Otherwise
// they will share the same table reference and the internal ReadWriteLock
// will prevent any real concurrency.
const table = await db.openTable("test");
await table.add([{ a: 2, b: 3 }]);
});
await Promise.all(futs);
const rowCount = await table.countRows();
expect(rowCount).toBe(6);
});
});

View File

@@ -39,7 +39,9 @@ describe.each([arrow, arrowOld])("Given a table", (arrow: any) => {
let tmpDir: tmp.DirResult;
let table: Table;
const schema = new arrow.Schema([
const schema:
| import("apache-arrow").Schema
| import("apache-arrow-old").Schema = new arrow.Schema([
new arrow.Field("id", new arrow.Float64(), true),
]);
@@ -94,6 +96,50 @@ describe.each([arrow, arrowOld])("Given a table", (arrow: any) => {
expect(await table.countRows("id == 10")).toBe(1);
});
it("should let me update values with `values`", async () => {
await table.add([{ id: 1 }]);
expect(await table.countRows("id == 1")).toBe(1);
expect(await table.countRows("id == 7")).toBe(0);
await table.update({ values: { id: 7 } });
expect(await table.countRows("id == 1")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
await table.add([{ id: 2 }]);
// Test Map as input
await table.update({
values: {
id: "10",
},
where: "id % 2 == 0",
});
expect(await table.countRows("id == 2")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
expect(await table.countRows("id == 10")).toBe(1);
});
it("should let me update values with `valuesSql`", async () => {
await table.add([{ id: 1 }]);
expect(await table.countRows("id == 1")).toBe(1);
expect(await table.countRows("id == 7")).toBe(0);
await table.update({
valuesSql: {
id: "7",
},
});
expect(await table.countRows("id == 1")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
await table.add([{ id: 2 }]);
// Test Map as input
await table.update({
valuesSql: {
id: "10",
},
where: "id % 2 == 0",
});
expect(await table.countRows("id == 2")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
expect(await table.countRows("id == 10")).toBe(1);
});
// https://github.com/lancedb/lancedb/issues/1293
test.each([new arrow.Float16(), new arrow.Float32(), new arrow.Float64()])(
"can create empty table with non default float type: %s",
@@ -315,7 +361,7 @@ describe("When creating an index", () => {
.query()
.limit(2)
.nearestTo(queryVec)
.distanceType("DoT")
.distanceType("dot")
.toArrow();
expect(rst.numRows).toBe(2);
@@ -704,10 +750,10 @@ describe("table.search", () => {
const data = [{ text: "hello world" }, { text: "goodbye world" }];
const table = await db.createTable("test", data, { schema });
const results = await table.search("greetings").then((r) => r.toArray());
const results = await table.search("greetings").toArray();
expect(results[0].text).toBe(data[0].text);
const results2 = await table.search("farewell").then((r) => r.toArray());
const results2 = await table.search("farewell").toArray();
expect(results2[0].text).toBe(data[1].text);
});
@@ -719,7 +765,7 @@ describe("table.search", () => {
];
const table = await db.createTable("test", data);
expect(table.search("hello")).rejects.toThrow(
expect(table.search("hello").toArray()).rejects.toThrow(
"No embedding functions are defined in the table",
);
});
@@ -743,3 +789,27 @@ describe("table.search", () => {
expect(results[0].text).toBe(data[1].text);
});
});
describe("when calling explainPlan", () => {
let tmpDir: tmp.DirResult;
let table: Table;
let queryVec: number[];
beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
const con = await connect(tmpDir.name);
table = await con.createTable("vectors", [{ id: 1, vector: [0.1, 0.2] }]);
});
afterEach(() => {
tmpDir.removeCallback();
});
it("retrieves query plan", async () => {
queryVec = Array(2)
.fill(1)
.map(() => Math.random());
const plan = await table.query().nearestTo(queryVec).explainPlan(true);
expect(plan).toMatch("KNN");
});
});

View File

@@ -6,5 +6,5 @@
"target": "es2022",
"types": ["jest", "node"]
},
"include": ["**/*"]
"include": ["**/*", "../examples/ann_indexes.ts"]
}

View File

@@ -0,0 +1,28 @@
import { IntoSql, toSQL } from "../lancedb/util";
test.each([
["string", "'string'"],
[123, "123"],
[1.11, "1.11"],
[true, "TRUE"],
[false, "FALSE"],
[null, "NULL"],
[new Date("2021-01-01T00:00:00.000Z"), "'2021-01-01T00:00:00.000Z'"],
[[1, 2, 3], "[1, 2, 3]"],
[new ArrayBuffer(8), "X'0000000000000000'"],
[Buffer.from("hello"), "X'68656c6c6f'"],
["Hello 'world'", "'Hello ''world'''"],
])("toSQL(%p) === %p", (value, expected) => {
expect(toSQL(value)).toBe(expected);
});
test("toSQL({}) throws on unsupported value type", () => {
expect(() => toSQL({} as unknown as IntoSql)).toThrow(
"Unsupported value type: object value: ([object Object])",
);
});
test("toSQL() throws on unsupported value type", () => {
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
expect(() => (<any>toSQL)()).toThrow(
"Unsupported value type: undefined value: (undefined)",
);
});

View File

@@ -1,5 +1,5 @@
{
"$schema": "https://biomejs.dev/schemas/1.7.3/schema.json",
"$schema": "https://biomejs.dev/schemas/1.8.3/schema.json",
"organizeImports": {
"enabled": true
},
@@ -94,12 +94,28 @@
"useValidTypeof": "error"
}
},
"ignore": ["**/dist/**/*", "**/native.js", "**/native.d.ts"]
"ignore": [
"**/dist/**/*",
"**/native.js",
"**/native.d.ts",
"__test__/docs/**/*",
"examples/**/*"
]
},
"javascript": {
"globals": []
},
"overrides": [
{
"include": ["__test__/s3_integration.test.ts"],
"linter": {
"rules": {
"style": {
"useNamingConvention": "off"
}
}
}
},
{
"include": [
"**/*.ts",

1
nodejs/examples/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
data/

View File

@@ -0,0 +1,49 @@
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
// --8<-- [end:import]
// --8<-- [start:ingest]
const db = await lancedb.connect("/tmp/lancedb/");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
const table = await db.createTable("my_vectors", data, { mode: "overwrite" });
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 16,
numSubVectors: 48,
}),
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const _results1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.toArray();
// --8<-- [end:search2]
// --8<-- [start:search3]
const _results3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.toArray();
// --8<-- [end:search3]
console.log("Ann indexes: done");

149
nodejs/examples/basic.ts Normal file
View File

@@ -0,0 +1,149 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import { Field, FixedSizeList, Float16, Int32, Schema } from "apache-arrow";
// --8<-- [end:imports]
// --8<-- [start:connect]
const uri = "/tmp/lancedb/";
const db = await lancedb.connect(uri);
// --8<-- [end:connect]
{
// --8<-- [start:create_table]
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const _tbl = await db.createTable("myTable", data);
// --8<-- [end:create_table]
{
// --8<-- [start:create_table_exists_ok]
const _tbl = await db.createTable("myTable", data, {
existsOk: true,
});
// --8<-- [end:create_table_exists_ok]
}
{
// --8<-- [start:create_table_overwrite]
const _tbl = await db.createTable("myTable", data, {
mode: "overwrite",
});
// --8<-- [end:create_table_overwrite]
}
}
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const _tbl = await db.createTable("myTable", data, {
schema,
});
// --8<-- [end:create_table_with_schema]
}
{
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
]);
const _tbl = await db.createEmptyTable("empty_table", schema);
// --8<-- [end:create_empty_table]
}
{
// --8<-- [start:open_table]
const _tbl = await db.openTable("myTable");
// --8<-- [end:open_table]
}
{
// --8<-- [start:table_names]
const tableNames = await db.tableNames();
console.log(tableNames);
// --8<-- [end:table_names]
}
const tbl = await db.openTable("myTable");
{
// --8<-- [start:add_data]
const data = [
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
];
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:vector_search]
const _res = tbl.search([100, 100]).limit(2).toArray();
// --8<-- [end:vector_search]
}
{
const data = Array.from({ length: 1000 })
.fill(null)
.map(() => ({
vector: [Math.random(), Math.random()],
item: "autogen",
price: Math.round(Math.random() * 100),
}));
await tbl.add(data);
}
// --8<-- [start:create_index]
await tbl.createIndex("vector");
// --8<-- [end:create_index]
// --8<-- [start:delete_rows]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete_rows]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
await db.dropTable("empty_table");
{
// --8<-- [start:create_f16_table]
const db = await lancedb.connect("/tmp/lancedb");
const dim = 16;
const total = 10;
const f16Schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema: f16Schema },
);
const _table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}

View File

@@ -0,0 +1,83 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import { LanceSchema, getRegistry, register } from "@lancedb/lancedb/embedding";
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
import { type Float, Float32, Utf8 } from "apache-arrow";
// --8<-- [end:imports]
{
// --8<-- [start:openai_embeddings]
const db = await lancedb.connect("/tmp/db");
const func = getRegistry()
.get("openai")
?.create({ model: "text-embedding-ada-002" }) as EmbeddingFunction;
const wordsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createEmptyTable("words", wordsSchema, {
mode: "overwrite",
});
await tbl.add([{ text: "hello world" }, { text: "goodbye world" }]);
const query = "greetings";
const actual = (await (await tbl.search(query)).limit(1).toArray())[0];
// --8<-- [end:openai_embeddings]
console.log("result = ", actual.text);
}
{
// --8<-- [start:embedding_function]
const db = await lancedb.connect("/tmp/db");
@register("my_embedding")
class MyEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {};
}
ndims() {
return 3;
}
embeddingDataType(): Float {
return new Float32();
}
async computeQueryEmbeddings(_data: string) {
// This is a placeholder for a real embedding function
return [1, 2, 3];
}
async computeSourceEmbeddings(data: string[]) {
// This is a placeholder for a real embedding function
return Array.from({ length: data.length }).fill([1, 2, 3]) as number[][];
}
}
const func = new MyEmbeddingFunction();
const data = [{ text: "pepperoni" }, { text: "pineapple" }];
// Option 1: manually specify the embedding function
const table = await db.createTable("vectors", data, {
embeddingFunction: {
function: func,
sourceColumn: "text",
vectorColumn: "vector",
},
mode: "overwrite",
});
// Option 2: provide the embedding function through a schema
const schema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const table2 = await db.createTable("vectors2", data, {
schema,
mode: "overwrite",
});
// --8<-- [end:embedding_function]
}

View File

@@ -0,0 +1,34 @@
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
// --8<-- [start:search]
const _result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.where("id = 10")
.toArray();
// --8<-- [end:search]
// --8<-- [start:vec_search]
await tbl
.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.postfilter()
.toArray();
// --8<-- [end:vec_search]
// --8<-- [start:sql_search]
await tbl.query().where("id = 10").limit(10).toArray();
// --8<-- [end:sql_search]
console.log("SQL search: done");

View File

@@ -0,0 +1,27 @@
{
"compilerOptions": {
// Enable latest features
"lib": ["ESNext", "DOM"],
"target": "ESNext",
"module": "ESNext",
"moduleDetection": "force",
"jsx": "react-jsx",
"allowJs": true,
// Bundler mode
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"verbatimModuleSyntax": true,
"noEmit": true,
// Best practices
"strict": true,
"skipLibCheck": true,
"noFallthroughCasesInSwitch": true,
// Some stricter flags (disabled by default)
"noUnusedLocals": false,
"noUnusedParameters": false,
"noPropertyAccessFromIndexSignature": false
}
}

79
nodejs/examples/package-lock.json generated Normal file
View File

@@ -0,0 +1,79 @@
{
"name": "examples",
"version": "1.0.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "examples",
"version": "1.0.0",
"license": "Apache-2.0",
"dependencies": {
"@lancedb/lancedb": "file:../"
},
"peerDependencies": {
"typescript": "^5.0.0"
}
},
"..": {
"name": "@lancedb/lancedb",
"version": "0.6.0",
"cpu": [
"x64",
"arm64"
],
"license": "Apache 2.0",
"os": [
"darwin",
"linux",
"win32"
],
"dependencies": {
"apache-arrow": "^15.0.0",
"axios": "^1.7.2",
"openai": "^4.29.2",
"reflect-metadata": "^0.2.2"
},
"devDependencies": {
"@aws-sdk/client-kms": "^3.33.0",
"@aws-sdk/client-s3": "^3.33.0",
"@biomejs/biome": "^1.7.3",
"@jest/globals": "^29.7.0",
"@napi-rs/cli": "^2.18.0",
"@types/axios": "^0.14.0",
"@types/jest": "^29.1.2",
"@types/tmp": "^0.2.6",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"eslint": "^8.57.0",
"jest": "^29.7.0",
"shx": "^0.3.4",
"tmp": "^0.2.3",
"ts-jest": "^29.1.2",
"typedoc": "^0.25.7",
"typedoc-plugin-markdown": "^3.17.1",
"typescript": "^5.3.3",
"typescript-eslint": "^7.1.0"
},
"engines": {
"node": ">= 18"
}
},
"node_modules/@lancedb/lancedb": {
"resolved": "..",
"link": true
},
"node_modules/typescript": {
"version": "5.5.2",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.2.tgz",
"integrity": "sha512-NcRtPEOsPFFWjobJEtfihkLCZCXZt/os3zf8nTxjVH3RvTSxjrCamJpbExGvYOF+tFHc3pA65qpdwPbzjohhew==",
"peer": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
},
"engines": {
"node": ">=14.17"
}
}
}
}

View File

@@ -0,0 +1,18 @@
{
"name": "examples",
"version": "1.0.0",
"description": "Examples for LanceDB",
"main": "index.js",
"type": "module",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"@lancedb/lancedb": "file:../"
},
"peerDependencies": {
"typescript": "^5.0.0"
}
}

37
nodejs/examples/search.ts Normal file
View File

@@ -0,0 +1,37 @@
// --8<-- [end:import]
import * as fs from "node:fs";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
async function setup() {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
await db.createTable("my_vectors", data);
}
await setup();
// --8<-- [start:search1]
const db = await lancedb.connect("data/sample-lancedb");
const tbl = await db.openTable("my_vectors");
const _results1 = await tbl.search(Array(1536).fill(1.2)).limit(10).toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await tbl
.search(Array(1536).fill(1.2))
.distanceType("cosine")
.limit(10)
.toArray();
// --8<-- [end:search2]
console.log("search: done");

View File

@@ -15,6 +15,7 @@
import {
Table as ArrowTable,
Binary,
BufferType,
DataType,
Field,
FixedSizeBinary,
@@ -37,14 +38,72 @@ import {
type makeTable,
vectorFromArray,
} from "apache-arrow";
import { Buffers } from "apache-arrow/data";
import { type EmbeddingFunction } from "./embedding/embedding_function";
import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
import { sanitizeField, sanitizeSchema, sanitizeType } from "./sanitize";
import {
sanitizeField,
sanitizeSchema,
sanitizeTable,
sanitizeType,
} from "./sanitize";
export * from "apache-arrow";
export type SchemaLike =
| Schema
| {
fields: FieldLike[];
metadata: Map<string, string>;
get names(): unknown[];
};
export type FieldLike =
| Field
| {
type: string;
name: string;
nullable?: boolean;
metadata?: Map<string, string>;
};
export type IntoVector = Float32Array | Float64Array | number[];
export type DataLike =
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
| import("apache-arrow").Data<Struct<any>>
| {
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
type: any;
length: number;
offset: number;
stride: number;
nullable: boolean;
children: DataLike[];
get nullCount(): number;
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
values: Buffers<any>[BufferType.DATA];
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
typeIds: Buffers<any>[BufferType.TYPE];
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
nullBitmap: Buffers<any>[BufferType.VALIDITY];
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
valueOffsets: Buffers<any>[BufferType.OFFSET];
};
export function isArrowTable(value: object): value is ArrowTable {
export type RecordBatchLike =
| RecordBatch
| {
schema: SchemaLike;
data: DataLike;
};
export type TableLike =
| ArrowTable
| { schema: SchemaLike; batches: RecordBatchLike[] };
export type IntoVector =
| Float32Array
| Float64Array
| number[]
| Promise<Float32Array | Float64Array | number[]>;
export function isArrowTable(value: object): value is TableLike {
if (value instanceof ArrowTable) return true;
return "schema" in value && "batches" in value;
}
@@ -135,7 +194,7 @@ export function isFixedSizeList(value: unknown): value is FixedSizeList {
}
/** Data type accepted by NodeJS SDK */
export type Data = Record<string, unknown>[] | ArrowTable;
export type Data = Record<string, unknown>[] | TableLike;
/*
* Options to control how a column should be converted to a vector array
@@ -162,7 +221,7 @@ export class MakeArrowTableOptions {
* The schema must be specified if there are no records (e.g. to make
* an empty table)
*/
schema?: Schema;
schema?: SchemaLike;
/*
* Mapping from vector column name to expected type
@@ -310,7 +369,7 @@ export function makeArrowTable(
if (opt.schema !== undefined && opt.schema !== null) {
opt.schema = sanitizeSchema(opt.schema);
opt.schema = validateSchemaEmbeddings(
opt.schema,
opt.schema as Schema,
data,
options?.embeddingFunction,
);
@@ -394,7 +453,7 @@ export function makeArrowTable(
// `new ArrowTable(schema, batches)` which does not do any schema inference
const firstTable = new ArrowTable(columns);
const batchesFixed = firstTable.batches.map(
(batch) => new RecordBatch(opt.schema!, batch.data),
(batch) => new RecordBatch(opt.schema as Schema, batch.data),
);
let schema: Schema;
if (metadata !== undefined) {
@@ -407,9 +466,9 @@ export function makeArrowTable(
}
}
schema = new Schema(opt.schema.fields, schemaMetadata);
schema = new Schema(opt.schema.fields as Field[], schemaMetadata);
} else {
schema = opt.schema;
schema = opt.schema as Schema;
}
return new ArrowTable(schema, batchesFixed);
}
@@ -425,7 +484,7 @@ export function makeArrowTable(
* Create an empty Arrow table with the provided schema
*/
export function makeEmptyTable(
schema: Schema,
schema: SchemaLike,
metadata?: Map<string, string>,
): ArrowTable {
return makeArrowTable([], { schema }, metadata);
@@ -563,17 +622,16 @@ async function applyEmbeddingsFromMetadata(
async function applyEmbeddings<T>(
table: ArrowTable,
embeddings?: EmbeddingFunctionConfig,
schema?: Schema,
schema?: SchemaLike,
): Promise<ArrowTable> {
if (schema?.metadata.has("embedding_functions")) {
return applyEmbeddingsFromMetadata(table, schema!);
} else if (embeddings == null || embeddings === undefined) {
return table;
}
if (schema !== undefined && schema !== null) {
schema = sanitizeSchema(schema);
}
if (schema?.metadata.has("embedding_functions")) {
return applyEmbeddingsFromMetadata(table, schema! as Schema);
} else if (embeddings == null || embeddings === undefined) {
return table;
}
// Convert from ArrowTable to Record<String, Vector>
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
@@ -650,7 +708,7 @@ async function applyEmbeddings<T>(
`When using embedding functions and specifying a schema the schema should include the embedding column but the column ${destColumn} was missing`,
);
}
return alignTable(newTable, schema);
return alignTable(newTable, schema as Schema);
}
return newTable;
}
@@ -744,7 +802,7 @@ export async function fromRecordsToStreamBuffer(
export async function fromTableToBuffer(
table: ArrowTable,
embeddings?: EmbeddingFunctionConfig,
schema?: Schema,
schema?: SchemaLike,
): Promise<Buffer> {
if (schema !== undefined && schema !== null) {
schema = sanitizeSchema(schema);
@@ -771,7 +829,7 @@ export async function fromDataToBuffer(
schema = sanitizeSchema(schema);
}
if (isArrowTable(data)) {
return fromTableToBuffer(data, embeddings, schema);
return fromTableToBuffer(sanitizeTable(data), embeddings, schema);
} else {
const table = await convertToTable(data, embeddings, { schema });
return fromTableToBuffer(table);
@@ -789,7 +847,7 @@ export async function fromDataToBuffer(
export async function fromTableToStreamBuffer(
table: ArrowTable,
embeddings?: EmbeddingFunctionConfig,
schema?: Schema,
schema?: SchemaLike,
): Promise<Buffer> {
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema);
const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings);
@@ -854,7 +912,6 @@ function validateSchemaEmbeddings(
for (let field of schema.fields) {
if (isFixedSizeList(field.type)) {
field = sanitizeField(field);
if (data.length !== 0 && data?.[0]?.[field.name] === undefined) {
if (schema.metadata.has("embedding_functions")) {
const embeddings = JSON.parse(

View File

@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { Table as ArrowTable, Data, Schema } from "./arrow";
import { Data, Schema, SchemaLike, TableLike } from "./arrow";
import { fromTableToBuffer, makeEmptyTable } from "./arrow";
import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
import { Connection as LanceDbConnection } from "./native";
@@ -50,7 +50,7 @@ export interface CreateTableOptions {
* The default is true while the new format is in beta
*/
useLegacyFormat?: boolean;
schema?: Schema;
schema?: SchemaLike;
embeddingFunction?: EmbeddingFunctionConfig;
}
@@ -167,12 +167,12 @@ export abstract class Connection {
/**
* Creates a new Table and initialize it with new data.
* @param {string} name - The name of the table.
* @param {Record<string, unknown>[] | ArrowTable} data - Non-empty Array of Records
* @param {Record<string, unknown>[] | TableLike} data - Non-empty Array of Records
* to be inserted into the table
*/
abstract createTable(
name: string,
data: Record<string, unknown>[] | ArrowTable,
data: Record<string, unknown>[] | TableLike,
options?: Partial<CreateTableOptions>,
): Promise<Table>;
@@ -183,7 +183,7 @@ export abstract class Connection {
*/
abstract createEmptyTable(
name: string,
schema: Schema,
schema: import("./arrow").SchemaLike,
options?: Partial<CreateTableOptions>,
): Promise<Table>;
@@ -235,7 +235,7 @@ export class LocalConnection extends Connection {
nameOrOptions:
| string
| ({ name: string; data: Data } & Partial<CreateTableOptions>),
data?: Record<string, unknown>[] | ArrowTable,
data?: Record<string, unknown>[] | TableLike,
options?: Partial<CreateTableOptions>,
): Promise<Table> {
if (typeof nameOrOptions !== "string" && "name" in nameOrOptions) {
@@ -259,7 +259,7 @@ export class LocalConnection extends Connection {
async createEmptyTable(
name: string,
schema: Schema,
schema: import("./arrow").SchemaLike,
options?: Partial<CreateTableOptions>,
): Promise<Table> {
let mode: string = options?.mode ?? "create";

View File

@@ -35,6 +35,11 @@ export interface FunctionOptions {
[key: string]: any;
}
export interface EmbeddingFunctionConstructor<
T extends EmbeddingFunction = EmbeddingFunction,
> {
new (modelOptions?: T["TOptions"]): T;
}
/**
* An embedding function that automatically creates vector representation for a given column.
*/
@@ -43,6 +48,12 @@ export abstract class EmbeddingFunction<
T = any,
M extends FunctionOptions = FunctionOptions,
> {
/**
* @ignore
* This is only used for associating the options type with the class for type checking
*/
// biome-ignore lint/style/useNamingConvention: we want to keep the name as it is
readonly TOptions!: M;
/**
* Convert the embedding function to a JSON object
* It is used to serialize the embedding function to the schema
@@ -170,7 +181,7 @@ export abstract class EmbeddingFunction<
/**
Compute the embeddings for a single query
*/
async computeQueryEmbeddings(data: T): Promise<IntoVector> {
async computeQueryEmbeddings(data: T): Promise<Awaited<IntoVector>> {
return this.computeSourceEmbeddings([data]).then(
(embeddings) => embeddings[0],
);

View File

@@ -13,24 +13,29 @@
// limitations under the License.
import type OpenAI from "openai";
import { type EmbeddingCreateParams } from "openai/resources";
import { Float, Float32 } from "../arrow";
import { EmbeddingFunction } from "./embedding_function";
import { register } from "./registry";
export type OpenAIOptions = {
apiKey?: string;
model?: string;
apiKey: string;
model: EmbeddingCreateParams["model"];
};
@register("openai")
export class OpenAIEmbeddingFunction extends EmbeddingFunction<
string,
OpenAIOptions
Partial<OpenAIOptions>
> {
#openai: OpenAI;
#modelName: string;
#modelName: OpenAIOptions["model"];
constructor(options: OpenAIOptions = { model: "text-embedding-ada-002" }) {
constructor(
options: Partial<OpenAIOptions> = {
model: "text-embedding-ada-002",
},
) {
super();
const openAIKey = options?.apiKey ?? process.env.OPENAI_API_KEY;
if (!openAIKey) {
@@ -73,7 +78,7 @@ export class OpenAIEmbeddingFunction extends EmbeddingFunction<
case "text-embedding-3-small":
return 1536;
default:
return null as never;
throw new Error(`Unknown model: ${this.#modelName}`);
}
}

View File

@@ -12,21 +12,15 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import type { EmbeddingFunction } from "./embedding_function";
import {
type EmbeddingFunction,
type EmbeddingFunctionConstructor,
} from "./embedding_function";
import "reflect-metadata";
export interface EmbeddingFunctionOptions {
[key: string]: unknown;
}
export interface EmbeddingFunctionFactory<
T extends EmbeddingFunction = EmbeddingFunction,
> {
new (modelOptions?: EmbeddingFunctionOptions): T;
}
import { OpenAIEmbeddingFunction } from "./openai";
interface EmbeddingFunctionCreate<T extends EmbeddingFunction> {
create(options?: EmbeddingFunctionOptions): T;
create(options?: T["TOptions"]): T;
}
/**
@@ -36,7 +30,7 @@ interface EmbeddingFunctionCreate<T extends EmbeddingFunction> {
* or TextEmbeddingFunction and registering it with the registry
*/
export class EmbeddingFunctionRegistry {
#functions: Map<string, EmbeddingFunctionFactory> = new Map();
#functions = new Map<string, EmbeddingFunctionConstructor>();
/**
* Register an embedding function
@@ -44,7 +38,9 @@ export class EmbeddingFunctionRegistry {
* @param func The function to register
* @throws Error if the function is already registered
*/
register<T extends EmbeddingFunctionFactory = EmbeddingFunctionFactory>(
register<
T extends EmbeddingFunctionConstructor = EmbeddingFunctionConstructor,
>(
this: EmbeddingFunctionRegistry,
alias?: string,
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
@@ -69,18 +65,34 @@ export class EmbeddingFunctionRegistry {
* Fetch an embedding function by name
* @param name The name of the function
*/
get<T extends EmbeddingFunction<unknown> = EmbeddingFunction>(
name: string,
): EmbeddingFunctionCreate<T> | undefined {
get<T extends EmbeddingFunction<unknown>, Name extends string = "">(
name: Name extends "openai" ? "openai" : string,
//This makes it so that you can use string constants as "types", or use an explicitly supplied type
// ex:
// `registry.get("openai") -> EmbeddingFunctionCreate<OpenAIEmbeddingFunction>`
// `registry.get<MyCustomEmbeddingFunction>("my_func") -> EmbeddingFunctionCreate<MyCustomEmbeddingFunction> | undefined`
//
// the reason this is important is that we always know our built in functions are defined so the user isnt forced to do a non null/undefined
// ```ts
// const openai: OpenAIEmbeddingFunction = registry.get("openai").create()
// ```
): Name extends "openai"
? EmbeddingFunctionCreate<OpenAIEmbeddingFunction>
: EmbeddingFunctionCreate<T> | undefined {
type Output = Name extends "openai"
? EmbeddingFunctionCreate<OpenAIEmbeddingFunction>
: EmbeddingFunctionCreate<T> | undefined;
const factory = this.#functions.get(name);
if (!factory) {
return undefined;
return undefined as Output;
}
return {
create: function (options: EmbeddingFunctionOptions) {
return new factory(options) as unknown as T;
create: function (options?: T["TOptions"]) {
return new factory(options);
},
};
} as Output;
}
/**
@@ -104,7 +116,7 @@ export class EmbeddingFunctionRegistry {
name: string;
sourceColumn: string;
vectorColumn: string;
model: EmbeddingFunctionOptions;
model: EmbeddingFunction["TOptions"];
};
const functions = <FunctionConfig[]>(
JSON.parse(metadata.get("embedding_functions")!)

View File

@@ -89,15 +89,26 @@ export interface QueryExecutionOptions {
}
/** Common methods supported by all query types */
export class QueryBase<
NativeQueryType extends NativeQuery | NativeVectorQuery,
QueryType,
> implements AsyncIterable<RecordBatch>
export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
implements AsyncIterable<RecordBatch>
{
protected constructor(protected inner: NativeQueryType) {
protected constructor(
protected inner: NativeQueryType | Promise<NativeQueryType>,
) {
// intentionally empty
}
// call a function on the inner (either a promise or the actual object)
protected doCall(fn: (inner: NativeQueryType) => void) {
if (this.inner instanceof Promise) {
this.inner = this.inner.then((inner) => {
fn(inner);
return inner;
});
} else {
fn(this.inner);
}
}
/**
* A filter statement to be applied to this query.
*
@@ -110,16 +121,16 @@ export class QueryBase<
* Filtering performance can often be improved by creating a scalar index
* on the filter column(s).
*/
where(predicate: string): QueryType {
this.inner.onlyIf(predicate);
return this as unknown as QueryType;
where(predicate: string): this {
this.doCall((inner: NativeQueryType) => inner.onlyIf(predicate));
return this;
}
/**
* A filter statement to be applied to this query.
* @alias where
* @deprecated Use `where` instead
*/
filter(predicate: string): QueryType {
filter(predicate: string): this {
return this.where(predicate);
}
@@ -155,7 +166,7 @@ export class QueryBase<
*/
select(
columns: string[] | Map<string, string> | Record<string, string> | string,
): QueryType {
): this {
let columnTuples: [string, string][];
if (typeof columns === "string") {
columns = [columns];
@@ -167,8 +178,10 @@ export class QueryBase<
} else {
columnTuples = Object.entries(columns);
}
this.inner.select(columnTuples);
return this as unknown as QueryType;
this.doCall((inner: NativeQueryType) => {
inner.select(columnTuples);
});
return this;
}
/**
@@ -177,16 +190,20 @@ export class QueryBase<
* By default, a plain search has no limit. If this method is not
* called then every valid row from the table will be returned.
*/
limit(limit: number): QueryType {
this.inner.limit(limit);
return this as unknown as QueryType;
limit(limit: number): this {
this.doCall((inner: NativeQueryType) => inner.limit(limit));
return this;
}
protected nativeExecute(
options?: Partial<QueryExecutionOptions>,
): Promise<NativeBatchIterator> {
if (this.inner instanceof Promise) {
return this.inner.then((inner) => inner.execute(options?.maxBatchLength));
} else {
return this.inner.execute(options?.maxBatchLength);
}
}
/**
* Execute the query and return the results as an @see {@link AsyncIterator}
@@ -214,7 +231,13 @@ export class QueryBase<
/** Collect the results as an Arrow @see {@link ArrowTable}. */
async toArrow(options?: Partial<QueryExecutionOptions>): Promise<ArrowTable> {
const batches = [];
for await (const batch of new RecordBatchIterable(this.inner, options)) {
let inner;
if (this.inner instanceof Promise) {
inner = await this.inner;
} else {
inner = this.inner;
}
for await (const batch of new RecordBatchIterable(inner, options)) {
batches.push(batch);
}
return new ArrowTable(batches);
@@ -226,6 +249,28 @@ export class QueryBase<
const tbl = await this.toArrow(options);
return tbl.toArray();
}
/**
* Generates an explanation of the query execution plan.
*
* @example
* import * as lancedb from "@lancedb/lancedb"
* const db = await lancedb.connect("./.lancedb");
* const table = await db.createTable("my_table", [
* { vector: [1.1, 0.9], id: "1" },
* ]);
* const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
*
* @param verbose - If true, provides a more detailed explanation. Defaults to false.
* @returns A Promise that resolves to a string containing the query execution plan explanation.
*/
async explainPlan(verbose = false): Promise<string> {
if (this.inner instanceof Promise) {
return this.inner.then((inner) => inner.explainPlan(verbose));
} else {
return this.inner.explainPlan(verbose);
}
}
}
/**
@@ -240,8 +285,8 @@ export interface ExecutableQuery {}
*
* This builder can be reused to execute the query many times.
*/
export class VectorQuery extends QueryBase<NativeVectorQuery, VectorQuery> {
constructor(inner: NativeVectorQuery) {
export class VectorQuery extends QueryBase<NativeVectorQuery> {
constructor(inner: NativeVectorQuery | Promise<NativeVectorQuery>) {
super(inner);
}
@@ -268,7 +313,8 @@ export class VectorQuery extends QueryBase<NativeVectorQuery, VectorQuery> {
* you the desired recall.
*/
nprobes(nprobes: number): VectorQuery {
this.inner.nprobes(nprobes);
super.doCall((inner) => inner.nprobes(nprobes));
return this;
}
@@ -282,7 +328,7 @@ export class VectorQuery extends QueryBase<NativeVectorQuery, VectorQuery> {
* whose data type is a fixed-size-list of floats.
*/
column(column: string): VectorQuery {
this.inner.column(column);
super.doCall((inner) => inner.column(column));
return this;
}
@@ -300,8 +346,10 @@ export class VectorQuery extends QueryBase<NativeVectorQuery, VectorQuery> {
*
* By default "l2" is used.
*/
distanceType(distanceType: string): VectorQuery {
this.inner.distanceType(distanceType);
distanceType(
distanceType: Required<IvfPqOptions>["distanceType"],
): VectorQuery {
super.doCall((inner) => inner.distanceType(distanceType));
return this;
}
@@ -335,7 +383,7 @@ export class VectorQuery extends QueryBase<NativeVectorQuery, VectorQuery> {
* distance between the query vector and the actual uncompressed vector.
*/
refineFactor(refineFactor: number): VectorQuery {
this.inner.refineFactor(refineFactor);
super.doCall((inner) => inner.refineFactor(refineFactor));
return this;
}
@@ -360,7 +408,7 @@ export class VectorQuery extends QueryBase<NativeVectorQuery, VectorQuery> {
* factor can often help restore some of the results lost by post filtering.
*/
postfilter(): VectorQuery {
this.inner.postfilter();
super.doCall((inner) => inner.postfilter());
return this;
}
@@ -374,13 +422,13 @@ export class VectorQuery extends QueryBase<NativeVectorQuery, VectorQuery> {
* calculate your recall to select an appropriate value for nprobes.
*/
bypassVectorIndex(): VectorQuery {
this.inner.bypassVectorIndex();
super.doCall((inner) => inner.bypassVectorIndex());
return this;
}
}
/** A builder for LanceDB queries. */
export class Query extends QueryBase<NativeQuery, Query> {
export class Query extends QueryBase<NativeQuery> {
constructor(tbl: NativeTable) {
super(tbl.query());
}
@@ -423,7 +471,37 @@ export class Query extends QueryBase<NativeQuery, Query> {
* a default `limit` of 10 will be used. @see {@link Query#limit}
*/
nearestTo(vector: IntoVector): VectorQuery {
if (this.inner instanceof Promise) {
const nativeQuery = this.inner.then(async (inner) => {
if (vector instanceof Promise) {
const arr = await vector.then((v) => Float32Array.from(v));
return inner.nearestTo(arr);
} else {
return inner.nearestTo(Float32Array.from(vector));
}
});
return new VectorQuery(nativeQuery);
}
if (vector instanceof Promise) {
const res = (async () => {
try {
const v = await vector;
const arr = Float32Array.from(v);
//
// biome-ignore lint/suspicious/noExplicitAny: we need to get the `inner`, but js has no package scoping
const value: any = this.nearestTo(arr);
const inner = value.inner as
| NativeVectorQuery
| Promise<NativeVectorQuery>;
return inner;
} catch (e) {
return Promise.reject(e);
}
})();
return new VectorQuery(res);
} else {
const vectorQuery = this.inner.nearestTo(Float32Array.from(vector));
return new VectorQuery(vectorQuery);
}
}
}

View File

@@ -55,7 +55,7 @@ export class RestfulLanceDBClient {
return axios.create({
baseURL: this.url,
headers: {
// biome-ignore lint/style/useNamingConvention: external api
// biome-ignore lint: external API
Authorization: `Bearer ${this.#apiKey}`,
},
transformResponse: decodeErrorData,

View File

@@ -1,5 +1,10 @@
import { Schema } from "apache-arrow";
import { Data, fromTableToStreamBuffer, makeEmptyTable } from "../arrow";
import {
Data,
SchemaLike,
fromTableToStreamBuffer,
makeEmptyTable,
} from "../arrow";
import {
Connection,
CreateTableOptions,
@@ -156,7 +161,7 @@ export class RemoteConnection extends Connection {
async createEmptyTable(
name: string,
schema: Schema,
schema: SchemaLike,
options?: Partial<CreateTableOptions> | undefined,
): Promise<Table> {
if (options?.mode) {

View File

@@ -22,6 +22,7 @@ import { IndexOptions } from "../indices";
import { MergeInsertBuilder } from "../merge";
import { VectorQuery } from "../query";
import { AddDataOptions, Table, UpdateOptions } from "../table";
import { IntoSql, toSQL } from "../util";
import { RestfulLanceDBClient } from "./client";
export class RemoteTable extends Table {
@@ -84,12 +85,66 @@ export class RemoteTable extends Table {
}
async update(
updates: Map<string, string> | Record<string, string>,
optsOrUpdates:
| (Map<string, string> | Record<string, string>)
| ({
values: Map<string, IntoSql> | Record<string, IntoSql>;
} & Partial<UpdateOptions>)
| ({
valuesSql: Map<string, string> | Record<string, string>;
} & Partial<UpdateOptions>),
options?: Partial<UpdateOptions>,
): Promise<void> {
const isValues =
"values" in optsOrUpdates && typeof optsOrUpdates.values !== "string";
const isValuesSql =
"valuesSql" in optsOrUpdates &&
typeof optsOrUpdates.valuesSql !== "string";
const isMap = (obj: unknown): obj is Map<string, string> => {
return obj instanceof Map;
};
let predicate;
let columns: [string, string][];
switch (true) {
case isMap(optsOrUpdates):
columns = Array.from(optsOrUpdates.entries());
predicate = options?.where;
break;
case isValues && isMap(optsOrUpdates.values):
columns = Array.from(optsOrUpdates.values.entries()).map(([k, v]) => [
k,
toSQL(v),
]);
predicate = optsOrUpdates.where;
break;
case isValues && !isMap(optsOrUpdates.values):
columns = Object.entries(optsOrUpdates.values).map(([k, v]) => [
k,
toSQL(v),
]);
predicate = optsOrUpdates.where;
break;
case isValuesSql && isMap(optsOrUpdates.valuesSql):
columns = Array.from(optsOrUpdates.valuesSql.entries());
predicate = optsOrUpdates.where;
break;
case isValuesSql && !isMap(optsOrUpdates.valuesSql):
columns = Object.entries(optsOrUpdates.valuesSql).map(([k, v]) => [
k,
v,
]);
predicate = optsOrUpdates.where;
break;
default:
columns = Object.entries(optsOrUpdates as Record<string, string>);
predicate = options?.where;
}
await this.#client.post(`${this.#tablePrefix}/update/`, {
predicate: options?.where ?? null,
updates: Object.entries(updates).map(([key, value]) => [key, value]),
predicate: predicate ?? null,
updates: columns,
});
}
async countRows(filter?: unknown): Promise<number> {
@@ -122,9 +177,8 @@ export class RemoteTable extends Table {
query(): import("..").Query {
throw new Error("query() is not yet supported on the LanceDB cloud");
}
search(query: IntoVector): VectorQuery;
search(query: string): Promise<VectorQuery>;
search(_query: string | IntoVector): VectorQuery | Promise<VectorQuery> {
search(_query: string | IntoVector): VectorQuery {
throw new Error("search() is not yet supported on the LanceDB cloud");
}
vectorSearch(_vector: unknown): import("..").VectorQuery {

View File

@@ -20,10 +20,12 @@
// comes from the exact same library instance. This is not always the case
// and so we must sanitize the input to ensure that it is compatible.
import { BufferType, Data } from "apache-arrow";
import type { IntBitWidth, TKeys, TimeBitWidth } from "apache-arrow/type";
import {
Binary,
Bool,
DataLike,
DataType,
DateDay,
DateMillisecond,
@@ -56,9 +58,14 @@ import {
Map_,
Null,
type Precision,
RecordBatch,
RecordBatchLike,
Schema,
SchemaLike,
SparseUnion,
Struct,
Table,
TableLike,
Time,
TimeMicrosecond,
TimeMillisecond,
@@ -488,7 +495,7 @@ export function sanitizeField(fieldLike: unknown): Field {
* instance because they might be using a different instance of apache-arrow
* than lancedb is using.
*/
export function sanitizeSchema(schemaLike: unknown): Schema {
export function sanitizeSchema(schemaLike: SchemaLike): Schema {
if (schemaLike instanceof Schema) {
return schemaLike;
}
@@ -514,3 +521,68 @@ export function sanitizeSchema(schemaLike: unknown): Schema {
);
return new Schema(sanitizedFields, metadata);
}
export function sanitizeTable(tableLike: TableLike): Table {
if (tableLike instanceof Table) {
return tableLike;
}
if (typeof tableLike !== "object" || tableLike === null) {
throw Error("Expected a Table but object was null/undefined");
}
if (!("schema" in tableLike)) {
throw Error(
"The table passed in does not appear to be a table (no 'schema' property)",
);
}
if (!("batches" in tableLike)) {
throw Error(
"The table passed in does not appear to be a table (no 'columns' property)",
);
}
const schema = sanitizeSchema(tableLike.schema);
const batches = tableLike.batches.map(sanitizeRecordBatch);
return new Table(schema, batches);
}
function sanitizeRecordBatch(batchLike: RecordBatchLike): RecordBatch {
if (batchLike instanceof RecordBatch) {
return batchLike;
}
if (typeof batchLike !== "object" || batchLike === null) {
throw Error("Expected a RecordBatch but object was null/undefined");
}
if (!("schema" in batchLike)) {
throw Error(
"The record batch passed in does not appear to be a record batch (no 'schema' property)",
);
}
if (!("data" in batchLike)) {
throw Error(
"The record batch passed in does not appear to be a record batch (no 'data' property)",
);
}
const schema = sanitizeSchema(batchLike.schema);
const data = sanitizeData(batchLike.data);
return new RecordBatch(schema, data);
}
function sanitizeData(
dataLike: DataLike,
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
): import("apache-arrow").Data<Struct<any>> {
if (dataLike instanceof Data) {
return dataLike;
}
return new Data(
dataLike.type,
dataLike.offset,
dataLike.length,
dataLike.nullCount,
{
[BufferType.OFFSET]: dataLike.valueOffsets,
[BufferType.DATA]: dataLike.values,
[BufferType.VALIDITY]: dataLike.nullBitmap,
[BufferType.TYPE]: dataLike.typeIds,
},
);
}

View File

@@ -17,6 +17,7 @@ import {
Data,
IntoVector,
Schema,
TableLike,
fromDataToBuffer,
fromTableToBuffer,
fromTableToStreamBuffer,
@@ -38,6 +39,9 @@ import {
Table as _NativeTable,
} from "./native";
import { Query, VectorQuery } from "./query";
import { sanitizeTable } from "./sanitize";
import { IntoSql, toSQL } from "./util";
export { IndexConfig } from "./native";
/**
* Options for adding data to a table.
@@ -120,6 +124,34 @@ export abstract class Table {
* @param {Data} data Records to be inserted into the Table
*/
abstract add(data: Data, options?: Partial<AddDataOptions>): Promise<void>;
/**
* Update existing records in the Table
* @param opts.values The values to update. The keys are the column names and the values
* are the values to set.
* @example
* ```ts
* table.update({where:"x = 2", values:{"vector": [10, 10]}})
* ```
*/
abstract update(
opts: {
values: Map<string, IntoSql> | Record<string, IntoSql>;
} & Partial<UpdateOptions>,
): Promise<void>;
/**
* Update existing records in the Table
* @param opts.valuesSql The values to update. The keys are the column names and the values
* are the values to set. The values are SQL expressions.
* @example
* ```ts
* table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
* ```
*/
abstract update(
opts: {
valuesSql: Map<string, string> | Record<string, string>;
} & Partial<UpdateOptions>,
): Promise<void>;
/**
* Update existing records in the Table
*
@@ -149,6 +181,7 @@ export abstract class Table {
updates: Map<string, string> | Record<string, string>,
options?: Partial<UpdateOptions>,
): Promise<void>;
/** Count the total number of rows in the dataset. */
abstract countRows(filter?: string): Promise<number>;
/** Delete the rows that satisfy the predicate. */
@@ -241,9 +274,9 @@ export abstract class Table {
* Create a search query to find the nearest neighbors
* of the given query vector
* @param {string} query - the query. This will be converted to a vector using the table's provided embedding function
* @rejects {Error} If no embedding functions are defined in the table
* @note If no embedding functions are defined in the table, this will error when collecting the results.
*/
abstract search(query: string): Promise<VectorQuery>;
abstract search(query: string): VectorQuery;
/**
* Create a search query to find the nearest neighbors
* of the given query vector
@@ -381,8 +414,7 @@ export abstract class Table {
abstract indexStats(name: string): Promise<IndexStatistics | undefined>;
static async parseTableData(
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
data: Record<string, unknown>[] | ArrowTable<any>,
data: Record<string, unknown>[] | TableLike,
options?: Partial<CreateTableOptions>,
streaming = false,
) {
@@ -395,9 +427,9 @@ export abstract class Table {
let table: ArrowTable;
if (isArrowTable(data)) {
table = data;
table = sanitizeTable(data);
} else {
table = makeArrowTable(data, options);
table = makeArrowTable(data as Record<string, unknown>[], options);
}
if (streaming) {
const buf = await fromTableToStreamBuffer(
@@ -469,17 +501,63 @@ export class LocalTable extends Table {
}
async update(
updates: Map<string, string> | Record<string, string>,
optsOrUpdates:
| (Map<string, string> | Record<string, string>)
| ({
values: Map<string, IntoSql> | Record<string, IntoSql>;
} & Partial<UpdateOptions>)
| ({
valuesSql: Map<string, string> | Record<string, string>;
} & Partial<UpdateOptions>),
options?: Partial<UpdateOptions>,
) {
const onlyIf = options?.where;
const isValues =
"values" in optsOrUpdates && typeof optsOrUpdates.values !== "string";
const isValuesSql =
"valuesSql" in optsOrUpdates &&
typeof optsOrUpdates.valuesSql !== "string";
const isMap = (obj: unknown): obj is Map<string, string> => {
return obj instanceof Map;
};
let predicate;
let columns: [string, string][];
if (updates instanceof Map) {
columns = Array.from(updates.entries());
} else {
columns = Object.entries(updates);
switch (true) {
case isMap(optsOrUpdates):
columns = Array.from(optsOrUpdates.entries());
predicate = options?.where;
break;
case isValues && isMap(optsOrUpdates.values):
columns = Array.from(optsOrUpdates.values.entries()).map(([k, v]) => [
k,
toSQL(v),
]);
predicate = optsOrUpdates.where;
break;
case isValues && !isMap(optsOrUpdates.values):
columns = Object.entries(optsOrUpdates.values).map(([k, v]) => [
k,
toSQL(v),
]);
predicate = optsOrUpdates.where;
break;
case isValuesSql && isMap(optsOrUpdates.valuesSql):
columns = Array.from(optsOrUpdates.valuesSql.entries());
predicate = optsOrUpdates.where;
break;
case isValuesSql && !isMap(optsOrUpdates.valuesSql):
columns = Object.entries(optsOrUpdates.valuesSql).map(([k, v]) => [
k,
v,
]);
predicate = optsOrUpdates.where;
break;
default:
columns = Object.entries(optsOrUpdates as Record<string, string>);
predicate = options?.where;
}
await this.inner.update(onlyIf, columns);
await this.inner.update(predicate, columns);
}
async countRows(filter?: string): Promise<number> {
@@ -500,15 +578,12 @@ export class LocalTable extends Table {
query(): Query {
return new Query(this.inner);
}
search(query: string): Promise<VectorQuery>;
search(query: IntoVector): VectorQuery;
search(query: string | IntoVector): Promise<VectorQuery> | VectorQuery {
search(query: string | IntoVector): VectorQuery {
if (typeof query !== "string") {
return this.vectorSearch(query);
} else {
return this.getEmbeddingFunctions().then(async (functions) => {
const queryPromise = this.getEmbeddingFunctions().then(
async (functions) => {
// TODO: Support multiple embedding functions
const embeddingFunc: EmbeddingFunctionConfig | undefined = functions
.values()
@@ -518,10 +593,11 @@ export class LocalTable extends Table {
new Error("No embedding functions are defined in the table"),
);
}
const embeddings =
await embeddingFunc.function.computeQueryEmbeddings(query);
return this.query().nearestTo(embeddings);
});
return await embeddingFunc.function.computeQueryEmbeddings(query);
},
);
return this.query().nearestTo(queryPromise);
}
}

View File

@@ -1,3 +1,37 @@
export type IntoSql =
| string
| number
| boolean
| null
| Date
| ArrayBufferLike
| Buffer
| IntoSql[];
export function toSQL(value: IntoSql): string {
if (typeof value === "string") {
return `'${value.replace(/'/g, "''")}'`;
} else if (typeof value === "number") {
return value.toString();
} else if (typeof value === "boolean") {
return value ? "TRUE" : "FALSE";
} else if (value === null) {
return "NULL";
} else if (value instanceof Date) {
return `'${value.toISOString()}'`;
} else if (Array.isArray(value)) {
return `[${value.map(toSQL).join(", ")}]`;
} else if (Buffer.isBuffer(value)) {
return `X'${value.toString("hex")}'`;
} else if (value instanceof ArrayBuffer) {
return `X'${Buffer.from(value).toString("hex")}'`;
} else {
throw new Error(
`Unsupported value type: ${typeof value} value: (${value})`,
);
}
}
export class TTLCache {
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
private readonly cache: Map<string, { value: any; expires: number }>;

208
nodejs/native.d.ts vendored Normal file
View File

@@ -0,0 +1,208 @@
/* tslint:disable */
/* eslint-disable */
/* auto-generated by NAPI-RS */
/** A description of an index currently configured on a column */
export interface IndexConfig {
/** The name of the index */
name: string
/** The type of the index */
indexType: string
/**
* The columns in the index
*
* Currently this is always an array of size 1. In the future there may
* be more columns to represent composite indices.
*/
columns: Array<string>
}
/** Statistics about a compaction operation. */
export interface CompactionStats {
/** The number of fragments removed */
fragmentsRemoved: number
/** The number of new, compacted fragments added */
fragmentsAdded: number
/** The number of data files removed */
filesRemoved: number
/** The number of new, compacted data files added */
filesAdded: number
}
/** Statistics about a cleanup operation */
export interface RemovalStats {
/** The number of bytes removed */
bytesRemoved: number
/** The number of old versions removed */
oldVersionsRemoved: number
}
/** Statistics about an optimize operation */
export interface OptimizeStats {
/** Statistics about the compaction operation */
compaction: CompactionStats
/** Statistics about the removal operation */
prune: RemovalStats
}
/**
* A definition of a column alteration. The alteration changes the column at
* `path` to have the new name `name`, to be nullable if `nullable` is true,
* and to have the data type `data_type`. At least one of `rename` or `nullable`
* must be provided.
*/
export interface ColumnAlteration {
/**
* The path to the column to alter. This is a dot-separated path to the column.
* If it is a top-level column then it is just the name of the column. If it is
* a nested column then it is the path to the column, e.g. "a.b.c" for a column
* `c` nested inside a column `b` nested inside a column `a`.
*/
path: string
/**
* The new name of the column. If not provided then the name will not be changed.
* This must be distinct from the names of all other columns in the table.
*/
rename?: string
/** Set the new nullability. Note that a nullable column cannot be made non-nullable. */
nullable?: boolean
}
/** A definition of a new column to add to a table. */
export interface AddColumnsSql {
/** The name of the new column. */
name: string
/**
* The values to populate the new column with, as a SQL expression.
* The expression can reference other columns in the table.
*/
valueSql: string
}
export interface IndexStatistics {
/** The number of rows indexed by the index */
numIndexedRows: number
/** The number of rows not indexed */
numUnindexedRows: number
/** The type of the index */
indexType?: string
/** The metadata for each index */
indices: Array<IndexMetadata>
}
export interface IndexMetadata {
metricType?: string
indexType?: string
}
export interface ConnectionOptions {
/**
* (For LanceDB OSS only): The interval, in seconds, at which to check for
* updates to the table from other processes. If None, then consistency is not
* checked. For performance reasons, this is the default. For strong
* consistency, set this to zero seconds. Then every read will check for
* updates from other processes. As a compromise, you can set this to a
* non-zero value for eventual consistency. If more than that interval
* has passed since the last check, then the table will be checked for updates.
* Note: this consistency only applies to read operations. Write operations are
* always consistent.
*/
readConsistencyInterval?: number
/**
* (For LanceDB OSS only): configuration for object storage.
*
* The available options are described at https://lancedb.github.io/lancedb/guides/storage/
*/
storageOptions?: Record<string, string>
}
/** Write mode for writing a table. */
export const enum WriteMode {
Create = 'Create',
Append = 'Append',
Overwrite = 'Overwrite'
}
/** Write options when creating a Table. */
export interface WriteOptions {
/** Write mode for writing to a table. */
mode?: WriteMode
}
export interface OpenTableOptions {
storageOptions?: Record<string, string>
}
export class Connection {
/** Create a new Connection instance from the given URI. */
static new(uri: string, options: ConnectionOptions): Promise<Connection>
display(): string
isOpen(): boolean
close(): void
/** List all tables in the dataset. */
tableNames(startAfter?: string | undefined | null, limit?: number | undefined | null): Promise<Array<string>>
/**
* Create table from a Apache Arrow IPC (file) buffer.
*
* Parameters:
* - name: The name of the table.
* - buf: The buffer containing the IPC file.
*
*/
createTable(name: string, buf: Buffer, mode: string, storageOptions?: Record<string, string> | undefined | null, useLegacyFormat?: boolean | undefined | null): Promise<Table>
createEmptyTable(name: string, schemaBuf: Buffer, mode: string, storageOptions?: Record<string, string> | undefined | null, useLegacyFormat?: boolean | undefined | null): Promise<Table>
openTable(name: string, storageOptions?: Record<string, string> | undefined | null, indexCacheSize?: number | undefined | null): Promise<Table>
/** Drop table with the name. Or raise an error if the table does not exist. */
dropTable(name: string): Promise<void>
}
export class Index {
static ivfPq(distanceType?: string | undefined | null, numPartitions?: number | undefined | null, numSubVectors?: number | undefined | null, maxIterations?: number | undefined | null, sampleRate?: number | undefined | null): Index
static btree(): Index
}
/** Typescript-style Async Iterator over RecordBatches */
export class RecordBatchIterator {
next(): Promise<Buffer | null>
}
/** A builder used to create and run a merge insert operation */
export class NativeMergeInsertBuilder {
whenMatchedUpdateAll(condition?: string | undefined | null): NativeMergeInsertBuilder
whenNotMatchedInsertAll(): NativeMergeInsertBuilder
whenNotMatchedBySourceDelete(filter?: string | undefined | null): NativeMergeInsertBuilder
execute(buf: Buffer): Promise<void>
}
export class Query {
onlyIf(predicate: string): void
select(columns: Array<[string, string]>): void
limit(limit: number): void
nearestTo(vector: Float32Array): VectorQuery
execute(maxBatchLength?: number | undefined | null): Promise<RecordBatchIterator>
explainPlan(verbose: boolean): Promise<string>
}
export class VectorQuery {
column(column: string): void
distanceType(distanceType: string): void
postfilter(): void
refineFactor(refineFactor: number): void
nprobes(nprobe: number): void
bypassVectorIndex(): void
onlyIf(predicate: string): void
select(columns: Array<[string, string]>): void
limit(limit: number): void
execute(maxBatchLength?: number | undefined | null): Promise<RecordBatchIterator>
explainPlan(verbose: boolean): Promise<string>
}
export class Table {
name: string
display(): string
isOpen(): boolean
close(): void
/** Return Schema as empty Arrow IPC file. */
schema(): Promise<Buffer>
add(buf: Buffer, mode: string): Promise<void>
countRows(filter?: string | undefined | null): Promise<number>
delete(predicate: string): Promise<void>
createIndex(index: Index | undefined | null, column: string, replace?: boolean | undefined | null): Promise<void>
update(onlyIf: string | undefined | null, columns: Array<[string, string]>): Promise<void>
query(): Query
vectorSearch(vector: Float32Array): VectorQuery
addColumns(transforms: Array<AddColumnsSql>): Promise<void>
alterColumns(alterations: Array<ColumnAlteration>): Promise<void>
dropColumns(columns: Array<string>): Promise<void>
version(): Promise<number>
checkout(version: number): Promise<void>
checkoutLatest(): Promise<void>
restore(): Promise<void>
optimize(olderThanMs?: number | undefined | null): Promise<OptimizeStats>
listIndices(): Promise<Array<IndexConfig>>
indexStats(indexName: string): Promise<IndexStatistics | null>
mergeInsert(on: Array<string>): NativeMergeInsertBuilder
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.5.2",
"version": "0.6.0",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.5.2",
"version": "0.6.0",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.5.2",
"version": "0.6.0",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.5.2",
"version": "0.6.0",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.5.2",
"version": "0.6.0",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

1403
nodejs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -10,7 +10,7 @@
"vector database",
"ann"
],
"version": "0.5.2",
"version": "0.6.0",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",
@@ -34,9 +34,10 @@
"devDependencies": {
"@aws-sdk/client-kms": "^3.33.0",
"@aws-sdk/client-s3": "^3.33.0",
"@aws-sdk/client-dynamodb": "^3.33.0",
"@biomejs/biome": "^1.7.3",
"@jest/globals": "^29.7.0",
"@napi-rs/cli": "^2.18.0",
"@napi-rs/cli": "^2.18.3",
"@types/jest": "^29.1.2",
"@types/tmp": "^0.2.6",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
@@ -68,7 +69,7 @@
"lint-ci": "biome ci .",
"docs": "typedoc --plugin typedoc-plugin-markdown --out ../docs/src/js lancedb/index.ts",
"lint": "biome check . && biome format .",
"lint-fix": "biome check --apply-unsafe . && biome format --write .",
"lint-fix": "biome check --write . && biome format --write .",
"prepublishOnly": "napi prepublish -t npm",
"test": "jest --verbose",
"integration": "S3_TEST=1 npm run test",
@@ -76,9 +77,13 @@
"version": "napi version"
},
"dependencies": {
"apache-arrow": "^15.0.0",
"axios": "^1.7.2",
"openai": "^4.29.2",
"reflect-metadata": "^0.2.2"
},
"optionalDependencies": {
"openai": "^4.29.2"
},
"peerDependencies": {
"apache-arrow": "^15.0.0"
}
}

View File

@@ -89,7 +89,7 @@ impl Connection {
}
/// List all tables in the dataset.
#[napi]
#[napi(catch_unwind)]
pub async fn table_names(
&self,
start_after: Option<String>,
@@ -113,7 +113,7 @@ impl Connection {
/// - name: The name of the table.
/// - buf: The buffer containing the IPC file.
///
#[napi]
#[napi(catch_unwind)]
pub async fn create_table(
&self,
name: String,
@@ -141,7 +141,7 @@ impl Connection {
Ok(Table::new(tbl))
}
#[napi]
#[napi(catch_unwind)]
pub async fn create_empty_table(
&self,
name: String,
@@ -173,7 +173,7 @@ impl Connection {
Ok(Table::new(tbl))
}
#[napi]
#[napi(catch_unwind)]
pub async fn open_table(
&self,
name: String,
@@ -197,7 +197,7 @@ impl Connection {
}
/// Drop table with the name. Or raise an error if the table does not exist.
#[napi]
#[napi(catch_unwind)]
pub async fn drop_table(&self, name: String) -> napi::Result<()> {
self.get_inner()?
.drop_table(&name)

View File

@@ -30,7 +30,7 @@ impl RecordBatchIterator {
Self { inner }
}
#[napi]
#[napi(catch_unwind)]
pub async unsafe fn next(&mut self) -> napi::Result<Option<Buffer>> {
if let Some(rst) = self.inner.next().await {
let batch = rst.map_err(|e| {

View File

@@ -31,7 +31,7 @@ impl NativeMergeInsertBuilder {
this
}
#[napi]
#[napi(catch_unwind)]
pub async fn execute(&self, buf: Buffer) -> napi::Result<()> {
let data = ipc_file_to_batches(buf.to_vec())
.and_then(IntoArrow::into_arrow)

View File

@@ -62,7 +62,7 @@ impl Query {
Ok(VectorQuery { inner })
}
#[napi]
#[napi(catch_unwind)]
pub async fn execute(
&self,
max_batch_length: Option<u32>,
@@ -80,6 +80,13 @@ impl Query {
})?;
Ok(RecordBatchIterator::new(inner_stream))
}
#[napi]
pub async fn explain_plan(&self, verbose: bool) -> napi::Result<String> {
self.inner.explain_plan(verbose).await.map_err(|e| {
napi::Error::from_reason(format!("Failed to retrieve the query plan: {}", e))
})
}
}
#[napi]
@@ -136,7 +143,7 @@ impl VectorQuery {
self.inner = self.inner.clone().limit(limit as usize);
}
#[napi]
#[napi(catch_unwind)]
pub async fn execute(
&self,
max_batch_length: Option<u32>,
@@ -154,4 +161,11 @@ impl VectorQuery {
})?;
Ok(RecordBatchIterator::new(inner_stream))
}
#[napi]
pub async fn explain_plan(&self, verbose: bool) -> napi::Result<String> {
self.inner.explain_plan(verbose).await.map_err(|e| {
napi::Error::from_reason(format!("Failed to retrieve the query plan: {}", e))
})
}
}

View File

@@ -70,7 +70,7 @@ impl Table {
}
/// Return Schema as empty Arrow IPC file.
#[napi]
#[napi(catch_unwind)]
pub async fn schema(&self) -> napi::Result<Buffer> {
let schema =
self.inner_ref()?.schema().await.map_err(|e| {
@@ -86,7 +86,7 @@ impl Table {
})?))
}
#[napi]
#[napi(catch_unwind)]
pub async fn add(&self, buf: Buffer, mode: String) -> napi::Result<()> {
let batches = ipc_file_to_batches(buf.to_vec())
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
@@ -108,7 +108,7 @@ impl Table {
})
}
#[napi]
#[napi(catch_unwind)]
pub async fn count_rows(&self, filter: Option<String>) -> napi::Result<i64> {
self.inner_ref()?
.count_rows(filter)
@@ -122,7 +122,7 @@ impl Table {
})
}
#[napi]
#[napi(catch_unwind)]
pub async fn delete(&self, predicate: String) -> napi::Result<()> {
self.inner_ref()?.delete(&predicate).await.map_err(|e| {
napi::Error::from_reason(format!(
@@ -132,7 +132,7 @@ impl Table {
})
}
#[napi]
#[napi(catch_unwind)]
pub async fn create_index(
&self,
index: Option<&Index>,
@@ -151,7 +151,7 @@ impl Table {
builder.execute().await.default_error()
}
#[napi]
#[napi(catch_unwind)]
pub async fn update(
&self,
only_if: Option<String>,
@@ -167,17 +167,17 @@ impl Table {
op.execute().await.default_error()
}
#[napi]
#[napi(catch_unwind)]
pub fn query(&self) -> napi::Result<Query> {
Ok(Query::new(self.inner_ref()?.query()))
}
#[napi]
#[napi(catch_unwind)]
pub fn vector_search(&self, vector: Float32Array) -> napi::Result<VectorQuery> {
self.query()?.nearest_to(vector)
}
#[napi]
#[napi(catch_unwind)]
pub async fn add_columns(&self, transforms: Vec<AddColumnsSql>) -> napi::Result<()> {
let transforms = transforms
.into_iter()
@@ -196,7 +196,7 @@ impl Table {
Ok(())
}
#[napi]
#[napi(catch_unwind)]
pub async fn alter_columns(&self, alterations: Vec<ColumnAlteration>) -> napi::Result<()> {
for alteration in &alterations {
if alteration.rename.is_none() && alteration.nullable.is_none() {
@@ -222,7 +222,7 @@ impl Table {
Ok(())
}
#[napi]
#[napi(catch_unwind)]
pub async fn drop_columns(&self, columns: Vec<String>) -> napi::Result<()> {
let col_refs = columns.iter().map(String::as_str).collect::<Vec<_>>();
self.inner_ref()?
@@ -237,7 +237,7 @@ impl Table {
Ok(())
}
#[napi]
#[napi(catch_unwind)]
pub async fn version(&self) -> napi::Result<i64> {
self.inner_ref()?
.version()
@@ -246,7 +246,7 @@ impl Table {
.default_error()
}
#[napi]
#[napi(catch_unwind)]
pub async fn checkout(&self, version: i64) -> napi::Result<()> {
self.inner_ref()?
.checkout(version as u64)
@@ -254,17 +254,17 @@ impl Table {
.default_error()
}
#[napi]
#[napi(catch_unwind)]
pub async fn checkout_latest(&self) -> napi::Result<()> {
self.inner_ref()?.checkout_latest().await.default_error()
}
#[napi]
#[napi(catch_unwind)]
pub async fn restore(&self) -> napi::Result<()> {
self.inner_ref()?.restore().await.default_error()
}
#[napi]
#[napi(catch_unwind)]
pub async fn optimize(&self, older_than_ms: Option<i64>) -> napi::Result<OptimizeStats> {
let inner = self.inner_ref()?;
@@ -318,7 +318,7 @@ impl Table {
})
}
#[napi]
#[napi(catch_unwind)]
pub async fn list_indices(&self) -> napi::Result<Vec<IndexConfig>> {
Ok(self
.inner_ref()?
@@ -330,14 +330,14 @@ impl Table {
.collect::<Vec<_>>())
}
#[napi]
#[napi(catch_unwind)]
pub async fn index_stats(&self, index_name: String) -> napi::Result<Option<IndexStatistics>> {
let tbl = self.inner_ref()?.as_native().unwrap();
let stats = tbl.index_stats(&index_name).await.default_error()?;
Ok(stats.map(IndexStatistics::from))
}
#[napi]
#[napi(catch_unwind)]
pub fn merge_insert(&self, on: Vec<String>) -> napi::Result<NativeMergeInsertBuilder> {
let on: Vec<_> = on.iter().map(String::as_str).collect();
Ok(self.inner_ref()?.merge_insert(on.as_slice()).into())

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.9.0"
current_version = "0.10.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.9.0"
version = "0.10.0"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true

View File

@@ -3,7 +3,7 @@ name = "lancedb"
# version in Cargo.toml
dependencies = [
"deprecation",
"pylance==0.13.0",
"pylance==0.14.1",
"ratelimiter~=1.0",
"requests>=2.31.0",
"retry>=0.9.2",

View File

@@ -15,7 +15,7 @@ import importlib.metadata
import os
from concurrent.futures import ThreadPoolExecutor
from datetime import timedelta
from typing import Dict, Optional, Union
from typing import Dict, Optional, Union, Any
__version__ = importlib.metadata.version("lancedb")
@@ -35,7 +35,7 @@ def connect(
host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None,
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
**kwargs,
**kwargs: Any,
) -> DBConnection:
"""Connect to a LanceDB database.

View File

@@ -28,12 +28,11 @@ from lancedb.common import data_to_reader, validate_schema
from ._lancedb import connect as lancedb_connect
from .pydantic import LanceModel
from .table import AsyncTable, LanceTable, Table, _sanitize_data
from .table import AsyncTable, LanceTable, Table, _sanitize_data, _table_path
from .util import (
fs_from_uri,
get_uri_location,
get_uri_scheme,
join_uri,
validate_table_name,
)
@@ -457,16 +456,18 @@ class LanceDBConnection(DBConnection):
If True, ignore if the table does not exist.
"""
try:
filesystem, path = fs_from_uri(self.uri)
table_path = join_uri(path, name + ".lance")
filesystem.delete_dir(table_path)
table_uri = _table_path(self.uri, name)
filesystem, path = fs_from_uri(table_uri)
filesystem.delete_dir(path)
except FileNotFoundError:
if not ignore_missing:
raise
@override
def drop_database(self):
filesystem, path = fs_from_uri(self.uri)
dummy_table_uri = _table_path(self.uri, "dummy")
uri = dummy_table_uri.removesuffix("dummy.lance")
filesystem, path = fs_from_uri(uri)
filesystem.delete_dir(path)

View File

@@ -25,3 +25,4 @@ from .gte import GteEmbeddings
from .transformers import TransformersEmbeddingFunction, ColbertEmbeddings
from .imagebind import ImageBindEmbeddings
from .utils import with_embeddings
from .jinaai import JinaEmbeddings

View File

@@ -0,0 +1,236 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import io
import requests
import base64
from urllib.parse import urlparse
from pathlib import Path
from typing import TYPE_CHECKING, ClassVar, List, Union, Optional, Any, Dict
import numpy as np
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import EmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help, TEXT, IMAGES, url_retrieve
if TYPE_CHECKING:
import PIL
API_URL = "https://api.jina.ai/v1/embeddings"
def is_valid_url(text):
try:
parsed = urlparse(text)
return bool(parsed.scheme) and bool(parsed.netloc)
except Exception:
return False
@register("jina")
class JinaEmbeddings(EmbeddingFunction):
"""
An embedding function that uses the Jina API
https://jina.ai/embeddings/
Parameters
----------
name: str, default "jina-clip-v1". Note that some models support both image
and text embeddings and some just text embedding
api_key: str, default None
The api key to access Jina API. If you pass None, you can set JINA_API_KEY
environment variable
"""
name: str = "jina-clip-v1"
api_key: Optional[str] = None
_session: ClassVar = None
def ndims(self):
# TODO: fix hardcoding
return 768
def sanitize_input(
self, inputs: Union[TEXT, IMAGES]
) -> Union[List[Any], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(inputs, (str, bytes, Path)):
inputs = [inputs]
elif isinstance(inputs, pa.Array):
inputs = inputs.to_pylist()
elif isinstance(inputs, pa.ChunkedArray):
inputs = inputs.combine_chunks().to_pylist()
else:
if isinstance(inputs, list):
inputs = inputs
else:
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(inputs, PIL.Image.Image):
inputs = [inputs]
return inputs
@staticmethod
def _generate_image_input_dict(image: Union[str, bytes, "PIL.Image.Image"]) -> Dict:
if isinstance(image, bytes):
image_dict = {"image": base64.b64encode(image).decode("utf-8")}
elif isinstance(image, (str, Path)):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
PIL = attempt_import_or_raise("PIL", "pillow")
if parsed.scheme == "file":
pil_image = PIL.Image.open(parsed.path)
elif parsed.scheme == "":
pil_image = PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
pil_image = PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
image_bytes = buffered.getvalue()
image_dict = {"image": base64.b64encode(image_bytes).decode("utf-8")}
else:
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, PIL.Image.Image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
image_bytes = buffered.getvalue()
image_dict = {"image": base64.b64encode(image_bytes).decode("utf-8")}
else:
raise TypeError(
f"JinaEmbeddingFunction supports str, Path, bytes or PIL Image"
f" as query, but {type(image)} is given"
)
return image_dict
def compute_query_embeddings(
self, query: Union[str, bytes, "Path", "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
if not is_valid_url(query):
return self.generate_text_embeddings([query])
else:
return [self.generate_image_embedding(query)]
elif isinstance(query, (Path, bytes)):
return [self.generate_image_embedding(query)]
else:
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError(
f"JinaEmbeddingFunction supports str, Path, bytes or PIL Image"
f" as query, but {type(query)} is given"
)
def compute_source_embeddings(
self, inputs: Union[TEXT, IMAGES], *args, **kwargs
) -> List[np.array]:
inputs = self.sanitize_input(inputs)
model_inputs = []
image_inputs = 0
def process_input(input, model_inputs, image_inputs):
if isinstance(input, str):
if not is_valid_url(input):
model_inputs.append({"text": input})
else:
image_inputs += 1
model_inputs.append(self._generate_image_input_dict(input))
elif isinstance(input, list):
for _input in input:
image_inputs = process_input(_input, model_inputs, image_inputs)
else:
image_inputs += 1
model_inputs.append(self._generate_image_input_dict(input))
return image_inputs
for input in inputs:
image_inputs = process_input(input, model_inputs, image_inputs)
if image_inputs > 0:
return self._generate_embeddings(model_inputs)
else:
return self.generate_text_embeddings(inputs)
def generate_image_embedding(
self, image: Union[str, bytes, Path, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
image_dict = self._generate_image_input_dict(image)
return self._generate_embeddings(input=[image_dict])[0]
def generate_text_embeddings(
self, texts: Union[List[str], np.ndarray], *args, **kwargs
) -> List[np.array]:
return self._generate_embeddings(input=texts)
def _generate_embeddings(self, input: List, *args, **kwargs) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
self._init_client()
resp = JinaEmbeddings._session.post( # type: ignore
API_URL, json={"input": input, "model": self.name}
).json()
if "data" not in resp:
raise RuntimeError(resp["detail"])
embeddings = resp["data"]
# Sort resulting embeddings by index
sorted_embeddings = sorted(embeddings, key=lambda e: e["index"]) # type: ignore
return [result["embedding"] for result in sorted_embeddings]
def _init_client(self):
if JinaEmbeddings._session is None:
if self.api_key is None and os.environ.get("JINA_API_KEY") is None:
api_key_not_found_help("jina")
api_key = self.api_key or os.environ.get("JINA_API_KEY")
JinaEmbeddings._session = requests.Session()
JinaEmbeddings._session.headers.update(
{"Authorization": f"Bearer {api_key}", "Accept-Encoding": "identity"}
)

View File

@@ -417,6 +417,40 @@ class LanceQueryBuilder(ABC):
self._with_row_id = with_row_id
return self
def explain_plan(self, verbose: Optional[bool] = False) -> str:
"""Return the execution plan for this query.
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [99, 99]}])
>>> query = [100, 100]
>>> plan = table.search(query).explain_plan(True)
>>> print(plan) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Projection: fields=[vector, _distance]
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
Parameters
----------
verbose : bool, default False
Use a verbose output format.
Returns
-------
plan : str
""" # noqa: E501
ds = self._table.to_lance()
return ds.scanner(
nearest={
"column": self._vector_column,
"q": self._query,
},
).explain_plan(verbose)
class LanceVectorQueryBuilder(LanceQueryBuilder):
"""
@@ -1166,6 +1200,37 @@ class AsyncQueryBase(object):
"""
return (await self.to_arrow()).to_pandas()
async def explain_plan(self, verbose: Optional[bool] = False):
"""Return the execution plan for this query.
Examples
--------
>>> import asyncio
>>> from lancedb import connect_async
>>> async def doctest_example():
... conn = await connect_async("./.lancedb")
... table = await conn.create_table("my_table", [{"vector": [99, 99]}])
... query = [100, 100]
... plan = await table.query().nearest_to([1, 2]).explain_plan(True)
... print(plan)
>>> asyncio.run(doctest_example()) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Projection: fields=[vector, _distance]
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
Parameters
----------
verbose : bool, default False
Use a verbose output format.
Returns
-------
plan : str
""" # noqa: E501
return await self._inner.explain_plan(verbose)
class AsyncQuery(AsyncQueryBase):
def __init__(self, inner: LanceQuery):

View File

@@ -111,6 +111,7 @@ class RemoteTable(Table):
num_sub_vectors: Optional[int] = None,
replace: Optional[bool] = None,
accelerator: Optional[str] = None,
index_type="vector",
):
"""Create an index on the table.
Currently, the only parameters that matter are
@@ -166,7 +167,6 @@ class RemoteTable(Table):
"replace is not supported on LanceDB cloud."
"Existing indexes will always be replaced."
)
index_type = "vector"
data = {
"column": vector_column_name,

View File

@@ -4,6 +4,7 @@ from .colbert import ColbertReranker
from .cross_encoder import CrossEncoderReranker
from .linear_combination import LinearCombinationReranker
from .openai import OpenaiReranker
from .jinaai import JinaReranker
__all__ = [
"Reranker",
@@ -12,4 +13,5 @@ __all__ = [
"LinearCombinationReranker",
"OpenaiReranker",
"ColbertReranker",
"JinaReranker",
]

View File

@@ -0,0 +1,122 @@
import os
import requests
from functools import cached_property
from typing import Union
import pyarrow as pa
from .base import Reranker
API_URL = "https://api.jina.ai/v1/rerank"
class JinaReranker(Reranker):
"""
Reranks the results using the Jina Rerank API.
https://jina.ai/rerank
Parameters
----------
model_name : str, default "jina-reranker-v2-base-multilingual"
The name of the cross reanker model to use
column : str, default "text"
The name of the column to use as input to the cross encoder model.
top_n : str, default None
The number of results to return. If None, will return all results.
api_key : str, default None
The api key to access Jina API. If you pass None, you can set JINA_API_KEY
environment variable
"""
def __init__(
self,
model_name: str = "jina-reranker-v2-base-multilingual",
column: str = "text",
top_n: Union[int, None] = None,
return_score="relevance",
api_key: Union[str, None] = None,
):
super().__init__(return_score)
self.model_name = model_name
self.column = column
self.top_n = top_n
self.api_key = api_key
@cached_property
def _client(self):
if os.environ.get("JINA_API_KEY") is None and self.api_key is None:
raise ValueError(
"JINA_API_KEY not set. Either set it in your environment or \
pass it as `api_key` argument to the JinaReranker."
)
self.api_key = self.api_key or os.environ.get("JINA_API_KEY")
self._session = requests.Session()
self._session.headers.update(
{"Authorization": f"Bearer {self.api_key}", "Accept-Encoding": "identity"}
)
return self._session
def _rerank(self, result_set: pa.Table, query: str):
docs = result_set[self.column].to_pylist()
response = self._client.post( # type: ignore
API_URL,
json={
"query": query,
"documents": docs,
"model": self.model_name,
"top_n": self.top_n,
},
).json()
if "results" not in response:
raise RuntimeError(response["detail"])
results = response["results"]
indices, scores = list(
zip(*[(result["index"], result["relevance_score"]) for result in results])
) # tuples
result_set = result_set.take(list(indices))
# add the scores
result_set = result_set.append_column(
"_relevance_score", pa.array(scores, type=pa.float32())
)
return result_set
def rerank_hybrid(
self,
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for JinaReranker"
)
return combined_results
def rerank_vector(
self,
query: str,
vector_results: pa.Table,
):
result_set = self._rerank(vector_results, query)
if self.score == "relevance":
result_set = result_set.drop_columns(["_distance"])
return result_set
def rerank_fts(
self,
query: str,
fts_results: pa.Table,
):
result_set = self._rerank(fts_results, query)
if self.score == "relevance":
result_set = result_set.drop_columns(["score"])
return result_set

View File

@@ -1,5 +1,3 @@
from typing import List
import pyarrow as pa
from .base import Reranker
@@ -112,6 +110,6 @@ class LinearCombinationReranker(Reranker):
# these scores represent distance
return 1 - (self.weight * score1 + (1 - self.weight) * score2)
def _invert_score(self, scores: List[float]):
# Invert the scores between relevance and distance
return 1 - scores
def _invert_score(self, score: float):
# Invert the score between relevance and distance
return 1 - score

View File

@@ -30,6 +30,7 @@ from typing import (
Tuple,
Union,
)
from urllib.parse import urlparse
import lance
import numpy as np
@@ -47,6 +48,7 @@ from .pydantic import LanceModel, model_to_dict
from .query import AsyncQuery, AsyncVectorQuery, LanceQueryBuilder, Query
from .util import (
fs_from_uri,
get_uri_scheme,
inf_vector_column_query,
join_uri,
safe_import_pandas,
@@ -208,6 +210,26 @@ def _to_record_batch_generator(
yield b
def _table_path(base: str, table_name: str) -> str:
"""
Get a table path that can be used in PyArrow FS.
Removes any weird schemes (such as "s3+ddb") and drops any query params.
"""
uri = _table_uri(base, table_name)
# Parse as URL
parsed = urlparse(uri)
# If scheme is s3+ddb, convert to s3
if parsed.scheme == "s3+ddb":
parsed = parsed._replace(scheme="s3")
# Remove query parameters
return parsed._replace(query=None).geturl()
def _table_uri(base: str, table_name: str) -> str:
return join_uri(base, f"{table_name}.lance")
class Table(ABC):
"""
A Table is a collection of Records in a LanceDB Database.
@@ -908,7 +930,7 @@ class LanceTable(Table):
@classmethod
def open(cls, db, name, **kwargs):
tbl = cls(db, name, **kwargs)
fs, path = fs_from_uri(tbl._dataset_uri)
fs, path = fs_from_uri(tbl._dataset_path)
file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory:
raise FileNotFoundError(
@@ -918,9 +940,14 @@ class LanceTable(Table):
return tbl
@property
@cached_property
def _dataset_path(self) -> str:
# Cacheable since it's deterministic
return _table_path(self._conn.uri, self.name)
@cached_property
def _dataset_uri(self) -> str:
return join_uri(self._conn.uri, f"{self.name}.lance")
return _table_uri(self._conn.uri, self.name)
@property
def _dataset(self) -> LanceDataset:
@@ -1146,11 +1173,12 @@ class LanceTable(Table):
replace: bool = True,
accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
index_type="IVF_PQ",
):
"""Create an index on the table."""
self._dataset_mut.create_index(
column=vector_column_name,
index_type="IVF_PQ",
index_type=index_type,
metric=metric,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
@@ -1230,6 +1258,10 @@ class LanceTable(Table):
)
def _get_fts_index_path(self):
if get_uri_scheme(self._dataset_uri) != "file":
raise NotImplementedError(
"Full-text search is not supported on object stores."
)
return join_uri(self._dataset_uri, "_indices", "tantivy")
def add(

View File

@@ -1,16 +1,7 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The Lance Authors
import binascii
import functools
import importlib
import os
@@ -139,8 +130,11 @@ def join_uri(base: Union[str, pathlib.Path], *parts: str) -> str:
# using pathlib for local paths make this windows compatible
# `get_uri_scheme` returns `file` for windows drive names (e.g. `c:\path`)
return str(pathlib.Path(base, *parts))
# for remote paths, just use os.path.join
return "/".join([p.rstrip("/") for p in [base, *parts]])
else:
# there might be query parameters in the base URI
url = urlparse(base)
new_path = "/".join([p.rstrip("/") for p in [url.path, *parts]])
return url._replace(path=new_path).geturl()
def attempt_import_or_raise(module: str, mitigation=None):
@@ -228,6 +222,15 @@ def _(value: str):
return f"'{value}'"
@value_to_sql.register(bytes)
def _(value: bytes):
"""Convert bytes to a hex string literal.
See https://datafusion.apache.org/user-guide/sql/data_types.html#binary-types
"""
return f"X'{binascii.hexlify(value).decode()}'"
@value_to_sql.register(int)
def _(value: int):
return str(value)

View File

@@ -333,3 +333,15 @@ async def test_query_to_pandas_async(table_async: AsyncTable):
df = await table_async.query().where("id < 0").to_pandas()
assert df.shape == (0, 4)
def test_explain_plan(table):
q = LanceVectorQueryBuilder(table, [0, 0], "vector")
plan = q.explain_plan(verbose=True)
assert "KNN" in plan
@pytest.mark.asyncio
async def test_explain_plan_async(table_async: AsyncTable):
plan = await table_async.query().nearest_to(pa.array([1, 2])).explain_plan(True)
assert "KNN" in plan

View File

@@ -13,6 +13,8 @@
import asyncio
import copy
from datetime import timedelta
import threading
import pytest
import pyarrow as pa
@@ -25,6 +27,7 @@ CONFIG = {
"aws_access_key_id": "ACCESSKEY",
"aws_secret_access_key": "SECRETKEY",
"aws_endpoint": "http://localhost:4566",
"dynamodb_endpoint": "http://localhost:4566",
"aws_region": "us-east-1",
}
@@ -156,3 +159,104 @@ def test_s3_sse(s3_bucket: str, kms_key: str):
validate_objects_encrypted(s3_bucket, path, kms_key)
asyncio.run(test())
@pytest.fixture(scope="module")
def commit_table():
ddb = get_boto3_client("dynamodb", endpoint_url=CONFIG["dynamodb_endpoint"])
table_name = "lance-integtest"
try:
ddb.delete_table(TableName=table_name)
except ddb.exceptions.ResourceNotFoundException:
pass
ddb.create_table(
TableName=table_name,
KeySchema=[
{"AttributeName": "base_uri", "KeyType": "HASH"},
{"AttributeName": "version", "KeyType": "RANGE"},
],
AttributeDefinitions=[
{"AttributeName": "base_uri", "AttributeType": "S"},
{"AttributeName": "version", "AttributeType": "N"},
],
ProvisionedThroughput={"ReadCapacityUnits": 1, "WriteCapacityUnits": 1},
)
yield table_name
ddb.delete_table(TableName=table_name)
@pytest.mark.s3_test
def test_s3_dynamodb(s3_bucket: str, commit_table: str):
storage_options = copy.copy(CONFIG)
uri = f"s3+ddb://{s3_bucket}/test?ddbTableName={commit_table}"
data = pa.table({"x": [1, 2, 3]})
async def test():
db = await lancedb.connect_async(
uri,
storage_options=storage_options,
read_consistency_interval=timedelta(0),
)
table = await db.create_table("test", data)
# Five concurrent writers
async def insert():
# independent table refs for true concurrent writes.
table = await db.open_table("test")
await table.add(data, mode="append")
tasks = [insert() for _ in range(5)]
await asyncio.gather(*tasks)
row_count = await table.count_rows()
assert row_count == 3 * 6
asyncio.run(test())
@pytest.mark.s3_test
def test_s3_dynamodb_sync(s3_bucket: str, commit_table: str, monkeypatch):
# Sync API doesn't support storage_options, so we have to provide as env vars
for key, value in CONFIG.items():
monkeypatch.setenv(key.upper(), value)
uri = f"s3+ddb://{s3_bucket}/test2?ddbTableName={commit_table}"
data = pa.table({"x": ["a", "b", "c"]})
db = lancedb.connect(
uri,
read_consistency_interval=timedelta(0),
)
table = db.create_table("test_ddb_sync", data)
# Five concurrent writers
def insert():
table = db.open_table("test_ddb_sync")
table.add(data, mode="append")
threads = []
for _ in range(5):
thread = threading.Thread(target=insert)
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
row_count = table.count_rows()
assert row_count == 3 * 6
# FTS indices should error since they are not supported yet.
with pytest.raises(
NotImplementedError, match="Full-text search is not supported on object stores."
):
table.create_fts_index("x")
# make sure list tables still works
assert db.table_names() == ["test_ddb_sync"]
db.drop_table("test_ddb_sync")
assert db.table_names() == []
db.drop_database()

View File

@@ -1,15 +1,5 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The Lance Authors
import functools
from copy import copy
@@ -499,6 +489,7 @@ def test_update_types(db):
"date": date(2021, 1, 1),
"vector1": [1.0, 0.0],
"vector2": [1.0, 1.0],
"binary": b"abc",
}
],
)
@@ -512,6 +503,7 @@ def test_update_types(db):
date="DATE '2021-01-02'",
vector1="[2.0, 2.0]",
vector2="[3.0, 3.0]",
binary="X'646566'",
)
)
actual = table.to_arrow().to_pylist()[0]
@@ -523,6 +515,7 @@ def test_update_types(db):
date=date(2021, 1, 2),
vector1=[2.0, 2.0],
vector2=[3.0, 3.0],
binary=b"def",
)
assert actual == expected
@@ -536,6 +529,7 @@ def test_update_types(db):
date=date(2021, 1, 3),
vector1=[3.0, 3.0],
vector2=np.array([4.0, 4.0]),
binary=b"def",
)
)
actual = table.to_arrow().to_pylist()[0]
@@ -547,6 +541,7 @@ def test_update_types(db):
date=date(2021, 1, 3),
vector1=[3.0, 3.0],
vector2=[4.0, 4.0],
binary=b"def",
)
assert actual == expected

View File

@@ -19,6 +19,7 @@ use lancedb::query::QueryExecutionOptions;
use lancedb::query::{
ExecutableQuery, Query as LanceDbQuery, QueryBase, Select, VectorQuery as LanceDbVectorQuery,
};
use pyo3::exceptions::PyRuntimeError;
use pyo3::pyclass;
use pyo3::pymethods;
use pyo3::PyAny;
@@ -73,6 +74,16 @@ impl Query {
Ok(RecordBatchStream::new(inner_stream))
})
}
fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<&PyAny> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
inner
.explain_plan(verbose)
.await
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
})
}
}
#[pyclass]
@@ -131,4 +142,14 @@ impl VectorQuery {
Ok(RecordBatchStream::new(inner_stream))
})
}
fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<&PyAny> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
inner
.explain_plan(verbose)
.await
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
})
}
}

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.5.2"
version = "0.6.0"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.5.2"
version = "0.6.0"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true
@@ -55,10 +55,11 @@ walkdir = "2"
# For s3 integration tests (dev deps aren't allowed to be optional atm)
# We pin these because the content-length check breaks with localstack
# https://github.com/smithy-lang/smithy-rs/releases/tag/release-2024-05-21
aws-sdk-dynamodb = { version = "=1.23.0" }
aws-sdk-s3 = { version = "=1.23.0" }
aws-sdk-kms = { version = "=1.21.0" }
aws-config = { version = "1.0" }
aws-smithy-runtime = { version = "=1.3.0" }
aws-smithy-runtime = { version = "=1.3.1" }
[features]
default = []

View File

@@ -6,3 +6,12 @@
LanceDB Rust SDK, a serverless vector database.
Read more at: https://lancedb.com/
> [!TIP]
> A transitive dependency of `lancedb` is `lzma-sys`, which uses dynamic linking
> by default. If you want to statically link `lzma-sys`, you should activate it's
> `static` feature by adding the following to your dependencies:
>
> ```toml
> lzma-sys = { version = "*", features = ["static"] }
> ```

View File

@@ -1,3 +1,5 @@
// --8<-- [start:imports]
use std::{iter::once, sync::Arc};
use arrow_array::{Float64Array, Int32Array, RecordBatch, RecordBatchIterator, StringArray};
@@ -11,6 +13,9 @@ use lancedb::{
Result,
};
// --8<-- [end:imports]
// --8<-- [start:openai_embeddings]
#[tokio::main]
async fn main() -> Result<()> {
let tempdir = tempfile::tempdir().unwrap();
@@ -35,7 +40,6 @@ async fn main() -> Result<()> {
.execute()
.await?;
// there is no equivalent to '.search(<query>)' yet
let query = Arc::new(StringArray::from_iter_values(once("something warm")));
let query_vector = embedding.compute_query_embeddings(query)?;
let mut results = table
@@ -53,9 +57,9 @@ async fn main() -> Result<()> {
.unwrap();
let text = out.iter().next().unwrap().unwrap();
println!("Closest match: {}", text);
Ok(())
}
// --8<-- [end:openai_embeddings]
fn make_data() -> impl IntoArrow {
let schema = Schema::new(vec![

View File

@@ -1191,6 +1191,7 @@ mod tests {
.query()
.execute_with_options(QueryExecutionOptions {
max_batch_length: 50000,
..Default::default()
})
.await
.unwrap()
@@ -1211,6 +1212,7 @@ mod tests {
.query()
.execute_with_options(QueryExecutionOptions {
max_batch_length: 50000,
..Default::default()
})
.await
.unwrap()

View File

@@ -374,6 +374,16 @@ pub trait QueryBase {
/// Columns will always be returned in the order given, even if that order is different than
/// the order used when adding the data.
fn select(self, selection: Select) -> Self;
/// Only execute the query over indexed data.
///
/// This allows weak-consistent fast path for queries that only need to access the indexed data.
///
/// Users can use [`crate::Table::optimize`] to merge new data into the index, and make the
/// new data available for fast search.
///
/// By default, it is false.
fn fast_search(self) -> Self;
}
pub trait HasQuery {
@@ -395,6 +405,11 @@ impl<T: HasQuery> QueryBase for T {
self.mut_query().select = select;
self
}
fn fast_search(mut self) -> Self {
self.mut_query().fast_search = true;
self
}
}
/// Options for controlling the execution of a query
@@ -465,6 +480,8 @@ pub trait ExecutableQuery {
&self,
options: QueryExecutionOptions,
) -> impl Future<Output = Result<SendableRecordBatchStream>> + Send;
fn explain_plan(&self, verbose: bool) -> impl Future<Output = Result<String>> + Send;
}
/// A builder for LanceDB queries.
@@ -489,6 +506,12 @@ pub struct Query {
pub(crate) filter: Option<String>,
/// Select column projection.
pub(crate) select: Select,
/// If set to true, the query is executed only on the indexed data,
/// and yields faster results.
///
/// By default, this is false.
pub(crate) fast_search: bool,
}
impl Query {
@@ -498,6 +521,7 @@ impl Query {
limit: None,
filter: None,
select: Select::All,
fast_search: false,
}
}
@@ -572,6 +596,12 @@ impl ExecutableQuery for Query {
self.parent.clone().plain_query(self, options).await?,
))
}
async fn explain_plan(&self, verbose: bool) -> Result<String> {
self.parent
.explain_plan(&self.clone().into_vector(), verbose)
.await
}
}
/// A builder for vector searches
@@ -752,6 +782,10 @@ impl ExecutableQuery for VectorQuery {
)?),
))
}
async fn explain_plan(&self, verbose: bool) -> Result<String> {
self.base.parent.explain_plan(self, verbose).await
}
}
impl HasQuery for VectorQuery {
@@ -989,6 +1023,7 @@ mod tests {
.query()
.execute_with_options(QueryExecutionOptions {
max_batch_length: 10,
..Default::default()
})
.await
.unwrap();
@@ -1053,4 +1088,20 @@ mod tests {
.to_string()
.contains("No vector column found to match with the query vector dimension: 3"));
}
#[tokio::test]
async fn test_fast_search_plan() {
let tmp_dir = tempdir().unwrap();
let table = make_test_table(&tmp_dir).await;
let plan = table
.query()
.select(Select::columns(&["_distance"]))
.nearest_to(vec![0.1, 0.2, 0.3, 0.4])
.unwrap()
.fast_search()
.explain_plan(true)
.await
.unwrap();
assert!(!plan.contains("Take"));
}
}

View File

@@ -1,10 +1,12 @@
use std::sync::Arc;
use crate::table::dataset::DatasetReadGuard;
use arrow_array::RecordBatchReader;
use arrow_schema::SchemaRef;
use async_trait::async_trait;
use datafusion_physical_plan::ExecutionPlan;
use lance::dataset::{scanner::DatasetRecordBatchStream, ColumnAlteration, NewColumnTransform};
use lance::dataset::scanner::{DatasetRecordBatchStream, Scanner};
use lance::dataset::{ColumnAlteration, NewColumnTransform};
use crate::{
connection::NoData,
@@ -74,6 +76,14 @@ impl TableInternal for RemoteTable {
) -> Result<()> {
todo!()
}
async fn build_plan(
&self,
_ds_ref: &DatasetReadGuard,
_query: &VectorQuery,
_options: Option<QueryExecutionOptions>,
) -> Result<Scanner> {
todo!()
}
async fn create_plan(
&self,
_query: &VectorQuery,
@@ -81,6 +91,9 @@ impl TableInternal for RemoteTable {
) -> Result<Arc<dyn ExecutionPlan>> {
unimplemented!()
}
async fn explain_plan(&self, _query: &VectorQuery, _verbose: bool) -> Result<String> {
todo!()
}
async fn plain_query(
&self,
_query: &Query,

View File

@@ -65,7 +65,7 @@ use crate::query::{
};
use crate::utils::{default_vector_column, PatchReadParam, PatchWriteParam};
use self::dataset::DatasetConsistencyWrapper;
use self::dataset::{DatasetConsistencyWrapper, DatasetReadGuard};
use self::merge::MergeInsertBuilder;
pub(crate) mod dataset;
@@ -369,6 +369,12 @@ pub(crate) trait TableInternal: std::fmt::Display + std::fmt::Debug + Send + Syn
async fn schema(&self) -> Result<SchemaRef>;
/// Count the number of rows in this table.
async fn count_rows(&self, filter: Option<String>) -> Result<usize>;
async fn build_plan(
&self,
ds_ref: &DatasetReadGuard,
query: &VectorQuery,
options: Option<QueryExecutionOptions>,
) -> Result<Scanner>;
async fn create_plan(
&self,
query: &VectorQuery,
@@ -379,6 +385,7 @@ pub(crate) trait TableInternal: std::fmt::Display + std::fmt::Debug + Send + Syn
query: &Query,
options: QueryExecutionOptions,
) -> Result<DatasetRecordBatchStream>;
async fn explain_plan(&self, query: &VectorQuery, verbose: bool) -> Result<String>;
async fn add(
&self,
add: AddDataBuilder<NoData>,
@@ -1270,22 +1277,25 @@ impl NativeTable {
/// Get statistics about an index.
/// Returns an error if the index does not exist.
pub async fn index_stats<S: AsRef<str>>(
pub async fn index_stats(
&self,
index_name: S,
index_name: impl AsRef<str>,
) -> Result<Option<IndexStatistics>> {
self.dataset
let stats = match self
.dataset
.get()
.await?
.index_statistics(index_name.as_ref())
.await
.ok()
.map(|stats| {
{
Ok(stats) => stats,
Err(lance::error::Error::IndexNotFound { .. }) => return Ok(None),
Err(e) => return Err(Error::from(e)),
};
serde_json::from_str(&stats).map_err(|e| Error::InvalidInput {
message: format!("error deserializing index statistics: {}", e),
})
})
.transpose()
}
pub async fn load_indices(&self) -> Result<Vec<VectorIndex>> {
@@ -1493,7 +1503,9 @@ impl NativeTable {
}
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance::index::scalar::ScalarIndexParams {};
let lance_idx_params = lance::index::scalar::ScalarIndexParams {
force_index_type: Some(lance::index::scalar::ScalarIndexType::BTree),
};
dataset
.create_index(
&[field.name()],
@@ -1667,12 +1679,12 @@ impl TableInternal for NativeTable {
Ok(())
}
async fn create_plan(
async fn build_plan(
&self,
ds_ref: &DatasetReadGuard,
query: &VectorQuery,
options: QueryExecutionOptions,
) -> Result<Arc<dyn ExecutionPlan>> {
let ds_ref = self.dataset.get().await?;
options: Option<QueryExecutionOptions>,
) -> Result<Scanner> {
let mut scanner: Scanner = ds_ref.scan();
if let Some(query_vector) = query.query_vector.as_ref() {
@@ -1684,9 +1696,11 @@ impl TableInternal for NativeTable {
let arrow_schema = Schema::from(ds_ref.schema());
default_vector_column(&arrow_schema, Some(query_vector.len() as i32))?
};
let field = ds_ref.schema().field(&column).ok_or(Error::Schema {
message: format!("Column {} not found in dataset schema", column),
})?;
if let arrow_schema::DataType::FixedSizeList(f, dim) = field.data_type() {
if !f.data_type().is_floating() {
return Err(Error::InvalidInput {
@@ -1708,6 +1722,7 @@ impl TableInternal for NativeTable {
});
}
}
let query_vector = query_vector.as_primitive::<Float32Type>();
scanner.nearest(
&column,
@@ -1718,10 +1733,38 @@ impl TableInternal for NativeTable {
// If there is no vector query, it's ok to not have a limit
scanner.limit(query.base.limit.map(|limit| limit as i64), None)?;
}
scanner.nprobs(query.nprobes);
scanner.use_index(query.use_index);
scanner.prefilter(query.prefilter);
scanner.batch_size(options.max_batch_length as usize);
match query.base.select {
Select::Columns(ref columns) => {
scanner.project(columns.as_slice())?;
}
Select::Dynamic(ref select_with_transform) => {
scanner.project_with_transform(select_with_transform.as_slice())?;
}
Select::All => {}
}
if let Some(opts) = options {
scanner.batch_size(opts.max_batch_length as usize);
}
if query.base.fast_search {
scanner.fast_search();
}
Ok(scanner)
}
async fn create_plan(
&self,
query: &VectorQuery,
options: QueryExecutionOptions,
) -> Result<Arc<dyn ExecutionPlan>> {
let ds_ref = self.dataset.get().await?;
let mut scanner = self.build_plan(&ds_ref, query, Some(options)).await?;
match &query.base.select {
Select::Columns(select) => {
@@ -1744,6 +1787,7 @@ impl TableInternal for NativeTable {
if let Some(distance_type) = query.distance_type {
scanner.distance_metric(distance_type.into());
}
Ok(scanner.create_plan().await?)
}
@@ -1756,6 +1800,16 @@ impl TableInternal for NativeTable {
.await
}
async fn explain_plan(&self, query: &VectorQuery, verbose: bool) -> Result<String> {
let ds_ref = self.dataset.get().await?;
let scanner = self.build_plan(&ds_ref, query, None).await?;
let plan = scanner.explain_plan(verbose).await?;
Ok(plan)
}
async fn merge_insert(
&self,
params: MergeInsertBuilder,
@@ -1889,6 +1943,7 @@ impl TableInternal for NativeTable {
}
columns.push(field.name.clone());
}
let index_type = if is_vector {
crate::index::IndexType::IvfPq
} else {

View File

@@ -25,7 +25,9 @@ const CONFIG: &[(&str, &str)] = &[
("access_key_id", "ACCESS_KEY"),
("secret_access_key", "SECRET_KEY"),
("endpoint", "http://127.0.0.1:4566"),
("dynamodb_endpoint", "http://127.0.0.1:4566"),
("allow_http", "true"),
("region", "us-east-1"),
];
async fn aws_config() -> SdkConfig {
@@ -288,3 +290,126 @@ async fn test_encryption() -> Result<()> {
Ok(())
}
struct DynamoDBCommitTable(String);
impl DynamoDBCommitTable {
async fn new(name: &str) -> Self {
let config = aws_config().await;
let client = aws_sdk_dynamodb::Client::new(&config);
// In case it wasn't deleted earlier
Self::delete_table(client.clone(), name).await;
tokio::time::sleep(std::time::Duration::from_millis(200)).await;
use aws_sdk_dynamodb::types::*;
client
.create_table()
.table_name(name)
.attribute_definitions(
AttributeDefinition::builder()
.attribute_name("base_uri")
.attribute_type(ScalarAttributeType::S)
.build()
.unwrap(),
)
.attribute_definitions(
AttributeDefinition::builder()
.attribute_name("version")
.attribute_type(ScalarAttributeType::N)
.build()
.unwrap(),
)
.key_schema(
KeySchemaElement::builder()
.attribute_name("base_uri")
.key_type(KeyType::Hash)
.build()
.unwrap(),
)
.key_schema(
KeySchemaElement::builder()
.attribute_name("version")
.key_type(KeyType::Range)
.build()
.unwrap(),
)
.provisioned_throughput(
ProvisionedThroughput::builder()
.read_capacity_units(1)
.write_capacity_units(1)
.build()
.unwrap(),
)
.send()
.await
.unwrap();
Self(name.to_string())
}
async fn delete_table(client: aws_sdk_dynamodb::Client, name: &str) {
match client
.delete_table()
.table_name(name)
.send()
.await
.map_err(|err| err.into_service_error())
{
Ok(_) => {}
Err(e) if e.is_resource_not_found_exception() => {}
Err(e) => panic!("Failed to delete table: {}", e),
};
}
}
impl Drop for DynamoDBCommitTable {
fn drop(&mut self) {
let table_name = self.0.clone();
tokio::task::spawn(async move {
let config = aws_config().await;
let client = aws_sdk_dynamodb::Client::new(&config);
Self::delete_table(client, &table_name).await;
});
}
}
#[tokio::test]
async fn test_concurrent_dynamodb_commit() {
// test concurrent commit on dynamodb
let bucket = S3Bucket::new("test-dynamodb").await;
let table = DynamoDBCommitTable::new("test_table").await;
let uri = format!("s3+ddb://{}?ddbTableName={}", bucket.0, table.0);
let db = lancedb::connect(&uri)
.storage_options(CONFIG.iter().cloned())
.execute()
.await
.unwrap();
let data = test_data();
let data = RecordBatchIterator::new(vec![Ok(data.clone())], data.schema());
let table = db.create_table("test_table", data).execute().await.unwrap();
let data = test_data();
let mut tasks = vec![];
for _ in 0..5 {
let table = db.open_table("test_table").execute().await.unwrap();
let data = data.clone();
tasks.push(tokio::spawn(async move {
let data = RecordBatchIterator::new(vec![Ok(data.clone())], data.schema());
table.add(data).execute().await.unwrap();
}));
}
for task in tasks {
task.await.unwrap();
}
table.checkout_latest().await.unwrap();
let row_count = table.count_rows(None).await.unwrap();
assert_eq!(row_count, 18);
}