Compare commits

...

57 Commits

Author SHA1 Message Date
Lance Release
1d5da1d069 Bump version: 0.10.2-beta.0 → 0.10.2 2024-07-23 13:48:48 +00:00
Lance Release
0c0ec1c404 Bump version: 0.10.1 → 0.10.2-beta.0 2024-07-23 13:48:47 +00:00
Weston Pace
d4aad82aec fix: don't use v2 by default on empty table (#1469) 2024-07-23 06:47:49 -07:00
Will Jones
4f601a2d4c fix: handle camelCase column names in select (#1460)
Fixes #1385
2024-07-22 12:53:17 -07:00
Cory Grinstead
391fa26175 feat(rust): huggingface sentence-transformers (#1447)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-07-22 13:47:57 -05:00
Lei Xu
c9c61eb060 docs: expose merge_insert doc for remote python SDK (#1464)
`merge_insert` API is not shown up on
[`RemoteTable`](https://lancedb.github.io/lancedb/python/saas-python/#lancedb.remote.table.RemoteTable)
today

* Also bump `ruff` version as well
2024-07-22 10:48:16 -07:00
Cory Grinstead
69295548cc docs: minor updates for js migration guides (#1451)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-07-22 10:26:49 -07:00
Cory Grinstead
2276b114c5 docs: add installation note about yarn (#1459)
I noticed that setting up a simple project with
[Yarn](https://yarnpkg.com/) failed because unlike others [npm, pnpm,
bun], yarn does not automatically resolve peer dependencies, so i added
a quick note about it in the installation guide.
2024-07-19 18:48:24 -05:00
Cory Grinstead
3b88f15774 fix(nodejs): lancedb arrow dependency (#1458)
previously if you tried to install both vectordb and @lancedb/lancedb,
you would get a peer dependency issue due to `vectordb` requiring
`14.0.2` and `@lancedb/lancedb` requiring `15.0.0`. now
`@lancedb/lancedb` should just work with any arrow version 13-17
2024-07-19 11:21:55 -05:00
Ayush Chaurasia
ed7bd45c17 chore: choose appropriate args for concat_table based on pyarrow version & refactor reranker tests (#1455) 2024-07-18 21:04:59 +05:30
Magnus
dc609a337d fix: added support for trust_remote_code (#1454)
Closes #1285 

Added trust_remote_code to the SentenceTransformerEmbeddings class.
Defaults to `False`
2024-07-18 19:37:52 +05:30
Will Jones
d564f6eacb ci: fix vectordb release process (#1450)
* Labelled jobs `vectordb` and `lancedb` so it's clear which package
they are for
* Fix permission issue in aarch64 Linux `vectordb` build that has been
blocking release for two months.
* Added Slack notifications for failure of these publish jobs.
2024-07-17 11:17:33 -07:00
Lance Release
ed5d1fb557 Updating package-lock.json 2024-07-17 14:04:56 +00:00
Lance Release
85046a1156 Bump version: 0.7.1-beta.0 → 0.7.1 2024-07-17 14:04:45 +00:00
Lance Release
b67689e1be Bump version: 0.7.0 → 0.7.1-beta.0 2024-07-17 14:04:45 +00:00
Lance Release
2c36767f20 Bump version: 0.10.1-beta.0 → 0.10.1 2024-07-17 14:04:40 +00:00
Lance Release
1fa7e96aa1 Bump version: 0.10.0 → 0.10.1-beta.0 2024-07-17 14:04:39 +00:00
Cory Grinstead
7ae327242b docs: update migration.md (#1445) 2024-07-15 18:20:23 -05:00
Bert
1f4a051070 feat: make timeout configurable for vectordb node SDK (#1443) 2024-07-15 13:23:13 -02:30
Lance Release
92c93b08bf Updating package-lock.json 2024-07-13 08:56:11 +00:00
Lance Release
a363b02ca7 Bump version: 0.7.0-beta.0 → 0.7.0 2024-07-13 08:55:44 +00:00
Lance Release
ff8eaab894 Bump version: 0.6.0 → 0.7.0-beta.0 2024-07-13 08:55:44 +00:00
Lance Release
11959cc5d6 Bump version: 0.10.0-beta.0 → 0.10.0 2024-07-13 08:55:22 +00:00
Lance Release
7c65cec8d7 Bump version: 0.9.0 → 0.10.0-beta.0 2024-07-13 08:55:22 +00:00
Adam Azzam
82621d5b13 chore: typing for lance.connect (#1441)
Feel free to close if this is a distraction, but untyped keywords in
lance.connect is throwing pylance errors in strict mode.

<img width="683" alt="Screenshot 2024-07-11 at 1 21 04 PM"
src="https://github.com/lancedb/lancedb/assets/33043305/fe6cd4d9-4e59-413d-87f2-aabb9ff84cc4">
2024-07-12 10:39:28 -07:00
Lei Xu
0708428357 feat: support update over binary field (#1440) 2024-07-12 09:22:00 -07:00
BubbleCal
137d86d3c5 chore: bump lance to 0.14.1 (#1442)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-07-12 21:41:59 +08:00
Ayush Chaurasia
bb2e624ff0 docs: add fine tuning section in retriever guide and minor fixes (#1438) 2024-07-11 17:34:29 +05:30
Cory Grinstead
fdc949bafb feat(nodejs): update({values | valuesSql}) (#1439) 2024-07-10 14:09:39 -05:00
Cory Grinstead
31be9212da docs(nodejs): add @lancedb/lancedb examples everywhere (#1411)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-07-10 13:29:03 -05:00
Joan Fontanals
cef24801f4 docs: add jina reranker to index (#1427)
PR to add JinaReranker documentation page to the rerankers index
2024-07-09 14:39:35 +05:30
forrestmckee
b4436e0804 refactor: update type hint and remove unused import (#1436)
change typehint on `_invert_score` from `List[float]` to `float`. remove
unnecessary typing import
2024-07-09 13:56:45 +05:30
Lei Xu
58c2cd01a5 docs: add fast search to openapi.yml (#1435) 2024-07-08 11:55:45 -07:00
Cory Grinstead
a1a1891c0c fix(nodejs): explain plan (#1434) 2024-07-08 13:07:24 -05:00
Lei Xu
3c6c21c137 feat(rust): enable fast search flag in rust (#1432) 2024-07-07 09:46:41 -07:00
Lei Xu
fd5ca20f34 chore: bump lance to 0.14 (#1430) 2024-07-06 14:10:42 -07:00
Lei Xu
ef30f87fd1 chore: propagate error for table index stats (#1426) 2024-07-04 14:53:49 -07:00
Joan Fontanals
08d25c5a80 feat: add Jina integration in Python for Embedding and Reranker (#1424)
Integration of Jina Embeddings and Rerankers through its API
2024-07-05 01:34:43 +05:30
Raghav Dixit
a5ff623443 docs: update lntegration docs & fixed links (#1423)
1. Updated langchain docs. 
2. Minor update to llamaindex doc.
3. Added notebook examples and linked them correctly
2024-07-03 21:50:33 +05:30
Cory Grinstead
b8ccea9f71 feat(nodejs): make tbl.search chainable (#1421)
so this was annoying me when writing the docs. 

for a `search` query, one needed to chain `async` calls.

```ts
const res = await (await tbl.search("greetings")).toArray()
```

now the promise will be deferred until the query is collected, leading
to a more functional API

```ts
const res = await tbl.search("greetings").toArray()
```
2024-07-02 14:31:57 -05:00
Nuvic
46c6ff889d feat: add the explain_plan function (#1328)
It's useful to see the underlying query plan for debugging purposes.
This exposes LanceScanner's `explain_plan` function. Addresses #1288

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-07-02 11:10:01 -07:00
BubbleCal
12b3c87964 feat: support to create more vector index types (#1407)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-07-02 10:53:03 -02:30
Lei Xu
020a437230 docs: add merge insert, create index and create scalar index to public rest api doc (#1420)
Added 3 APIs doc publicly:
- `merge_insert`
- `create_index`
- `create_scalar_index`

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-07-01 12:52:27 -07:00
Cory Grinstead
34f1aeb84c chore(nodejs): make opean optional, and apache-arrow a peer dep (#1417)
fyi, this should have no breaking changes as npm is opt-out instead of
opt-in when resolving dependencies

all peer and optional dependencies get installed by default, so users
need to manually opt out.

`npm i --omit optional --omit peer`
2024-07-01 12:50:01 -05:00
Cory Grinstead
5c3a88b6b2 feat(nodejs): add better typehints for registry (#1408)
previously the `registry` would return `undefined | EmbeddingFunction`
even for built in functions such as "openai"

now it'll return the correct type for `getRegistry().get("openai")

as well as pass in the correct options type to `create`

### before
```ts
const options: {model: 'not-a-real-model'}
// this'd compile just fine, but result in runtime error
const openai: EmbeddingFunction | undefined = getRegistry().get("openai").create(options)
// this'd also compile fine
const openai: EmbeddingFunction | undefined = getRegistry().get("openai").create({MODEL: ''})
```
### after
```ts
const options: {model: 'not-a-real-model'}

const openai: OpenAIEmbeddingFunction = getRegistry().get("openai").create(options)
// Type '"not-a-real-model"' is not assignable to type '"text-embedding-ada-002" | "text-embedding-3-large" | "text-embedding-3-small" | undefined'


```
2024-07-01 12:49:42 -05:00
Lei Xu
e780b2f51c ci: fix nodejs doc test (#1419)
Fixed nodejs doctest failures due to compiling JNI node.
2024-07-01 10:21:41 -07:00
Cory Grinstead
b8a1719174 feat(nodejs): catch unwinds in node bindings (#1414)
this bumps napi version to 2.16 which contains a few bug fixes.
Additionally, it adds `catch_unwind` to any method that may
unintentionally panic.

`catch_unwind` will unwind the panics and return a regular JS error
instead of panicking.
2024-07-01 09:28:10 -05:00
Ayush Chaurasia
ccded130ed docs: add reranking example (#1416) 2024-07-01 19:42:38 +05:30
Sidharth Rajaram
48f8d1b3b7 docs: addresses typos in HF embedding example docs (#1415)
* `table.add` requires `data` parameter on the docs page regarding use
of embedding models from HF
* also changed the name of example class from `TextModel` to `Words`
since that is what is used as parameter in the `db.create_table` call
* Per
https://lancedb.github.io/lancedb/python/python/#lancedb.table.Table.add
2024-07-01 12:14:17 +05:30
Will Jones
865ed99881 feat: dynamodb commit store support (#1410)
This allows users to specify URIs like:

```
s3+ddb://my_bucket/path?ddbTableName=myCommitTable
```

and it will support concurrent writes in S3.

* [x] Add dynamodb integration tests
* [x] Add modifications to get it working in Python sync API
* [x] Added section in documentation describing how to configure.

Closes #534

---------

Co-authored-by: universalmind303 <cory.grinstead@gmail.com>
2024-06-28 09:30:36 -07:00
Lei Xu
d6485f1215 docs: add openapi rest api page (#1413) 2024-06-27 21:32:34 -07:00
Cory Grinstead
79a1667753 feat(nodejs): feature parity [6/N] - make public interface work with multiple arrow versions (#1392)
previously we didnt have great compatibility with other versions of
apache arrow. This should bridge that gap a bit.


depends on https://github.com/lancedb/lancedb/pull/1391
see actual diff here
https://github.com/universalmind303/lancedb/compare/query-filter...universalmind303:arrow-compatibility
2024-06-25 11:10:08 -05:00
Thomas J. Fan
a866b78a31 docs: fixes polars formatting in docs (#1400)
Currently, the whole polars section is formatted as a code block:
https://lancedb.github.io/lancedb/guides/tables/#from-a-polars-dataframe

This PR fixes the formatting.
2024-06-25 08:46:16 -07:00
Will Jones
c7d37b3e6e docs: add tip about lzma linking (#1397)
Similar to https://github.com/lancedb/lance/pull/2505
2024-06-25 08:20:31 -07:00
Lance Release
4b71552b73 Updating package-lock.json 2024-06-25 00:26:08 +00:00
Lance Release
5ce5f64da3 Bump version: 0.6.0-beta.0 → 0.6.0 2024-06-25 00:25:45 +00:00
Lance Release
c582b0fc63 Bump version: 0.5.2 → 0.6.0-beta.0 2024-06-25 00:25:45 +00:00
165 changed files with 14040 additions and 3678 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion] [tool.bumpversion]
current_version = "0.5.2" current_version = "0.7.1"
parse = """(?x) parse = """(?x)
(?P<major>0|[1-9]\\d*)\\. (?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\. (?P<minor>0|[1-9]\\d*)\\.

View File

@@ -24,7 +24,7 @@ env:
jobs: jobs:
test-python: test-python:
name: Test doc python code name: Test doc python code
runs-on: "buildjet-8vcpu-ubuntu-2204" runs-on: "warp-ubuntu-latest-x64-4x"
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
@@ -56,7 +56,7 @@ jobs:
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node: test-node:
name: Test doc nodejs code name: Test doc nodejs code
runs-on: "buildjet-8vcpu-ubuntu-2204" runs-on: "warp-ubuntu-latest-x64-4x"
timeout-minutes: 60 timeout-minutes: 60
strategy: strategy:
fail-fast: false fail-fast: false

View File

@@ -7,6 +7,7 @@ on:
jobs: jobs:
node: node:
name: vectordb Typescript
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -39,6 +40,7 @@ jobs:
node/vectordb-*.tgz node/vectordb-*.tgz
node-macos: node-macos:
name: vectordb ${{ matrix.config.arch }}
strategy: strategy:
matrix: matrix:
config: config:
@@ -69,6 +71,7 @@ jobs:
node/dist/lancedb-vectordb-darwin*.tgz node/dist/lancedb-vectordb-darwin*.tgz
nodejs-macos: nodejs-macos:
name: lancedb ${{ matrix.config.arch }}
strategy: strategy:
matrix: matrix:
config: config:
@@ -99,7 +102,7 @@ jobs:
nodejs/dist/*.node nodejs/dist/*.node
node-linux: node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
runs-on: ${{ matrix.config.runner }} runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -139,7 +142,7 @@ jobs:
node/dist/lancedb-vectordb-linux*.tgz node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux: nodejs-linux:
name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }} runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -190,6 +193,7 @@ jobs:
!nodejs/dist/*.node !nodejs/dist/*.node
node-windows: node-windows:
name: vectordb ${{ matrix.target }}
runs-on: windows-2022 runs-on: windows-2022
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -223,6 +227,7 @@ jobs:
node/dist/lancedb-vectordb-win32*.tgz node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows: nodejs-windows:
name: lancedb ${{ matrix.target }}
runs-on: windows-2022 runs-on: windows-2022
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -256,6 +261,7 @@ jobs:
nodejs/dist/*.node nodejs/dist/*.node
release: release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux, node-windows] needs: [node, node-macos, node-linux, node-windows]
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
@@ -284,8 +290,18 @@ jobs:
for filename in *.tgz; do for filename in *.tgz; do
npm publish $PUBLISH_ARGS $filename npm publish $PUBLISH_ARGS $filename
done done
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
release-nodejs: release-nodejs:
name: lancedb NPM Publish
needs: [nodejs-macos, nodejs-linux, nodejs-windows] needs: [nodejs-macos, nodejs-linux, nodejs-windows]
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
@@ -333,6 +349,15 @@ jobs:
else else
npm publish --access public npm publish --access public
fi fi
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock: update-package-lock:
needs: [release] needs: [release]

View File

@@ -33,11 +33,11 @@ jobs:
python-version: "3.11" python-version: "3.11"
- name: Install ruff - name: Install ruff
run: | run: |
pip install ruff==0.2.2 pip install ruff==0.5.4
- name: Format check - name: Format check
run: ruff format --check . run: ruff format --check .
- name: Lint - name: Lint
run: ruff . run: ruff check .
doctest: doctest:
name: "Doctest" name: "Doctest"
timeout-minutes: 30 timeout-minutes: 30

View File

@@ -53,7 +53,10 @@ jobs:
run: cargo clippy --all --all-features -- -D warnings run: cargo clippy --all --all-features -- -D warnings
linux: linux:
timeout-minutes: 30 timeout-minutes: 30
runs-on: ubuntu-22.04 # To build all features, we need more disk space than is available
# on the GitHub-provided runner. This is mostly due to the the
# sentence-transformers feature.
runs-on: warp-ubuntu-latest-x64-4x
defaults: defaults:
run: run:
shell: bash shell: bash
@@ -131,4 +134,3 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT $env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build cargo build
cargo test cargo test

1
.gitignore vendored
View File

@@ -4,6 +4,7 @@
**/__pycache__ **/__pycache__
.DS_Store .DS_Store
venv venv
.venv
.vscode .vscode
.zed .zed

View File

@@ -14,8 +14,8 @@ repos:
hooks: hooks:
- id: local-biome-check - id: local-biome-check
name: biome check name: biome check
entry: npx @biomejs/biome@1.7.3 check --config-path nodejs/biome.json nodejs/ entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
language: system language: system
types: [text] types: [text]
files: "nodejs/.*" files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.* exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*

View File

@@ -20,11 +20,11 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"] categories = ["database-implementations"]
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.13.0", "features" = ["dynamodb"] } lance = { "version" = "=0.14.1", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.13.0" } lance-index = { "version" = "=0.14.1" }
lance-linalg = { "version" = "=0.13.0" } lance-linalg = { "version" = "=0.14.1" }
lance-testing = { "version" = "=0.13.0" } lance-testing = { "version" = "=0.14.1" }
lance-datafusion = { "version" = "=0.13.0" } lance-datafusion = { "version" = "=0.14.1" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "51.0", optional = false } arrow = { version = "51.0", optional = false }
arrow-array = "51.0" arrow-array = "51.0"

View File

@@ -18,8 +18,8 @@ COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH} RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER} ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user # Create a group and user, but only if it doesn't exist
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user RUN echo ${ARCH} && id -u ${DOCKER_USER} >/dev/null 2>&1 || adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be # We switch to the user to install Rust and Node, since those like to be
# installed at the user level. # installed at the user level.

View File

@@ -57,6 +57,8 @@ plugins:
- https://arrow.apache.org/docs/objects.inv - https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv - https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter - mkdocs-jupyter
- render_swagger:
allow_arbitrary_locations : true
markdown_extensions: markdown_extensions:
- admonition - admonition
@@ -100,15 +102,18 @@ nav:
- Linear Combination Reranker: reranking/linear_combination.md - Linear Combination Reranker: reranking/linear_combination.md
- Cross Encoder Reranker: reranking/cross_encoder.md - Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md - ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md - OpenAI Reranker: reranking/openai.md
- Building Custom Rerankers: reranking/custom_reranker.md - Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md - Migration Guide: migration.md
- Tuning retrieval performance: - Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md - Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md - Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- 🧬 Managing embeddings: - 🧬 Managing embeddings:
- Overview: embeddings/index.md - Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md - Embedding functions: embeddings/embedding_functions.md
@@ -123,10 +128,11 @@ nav:
- DuckDB: python/duckdb.md - DuckDB: python/duckdb.md
- LangChain: - LangChain:
- LangChain 🔗: integrations/langchain.md - LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb - LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙: - LlamaIndex 🦙:
- LlamaIndex docs: integrations/llamaIndex.md - LlamaIndex docs: integrations/llamaIndex.md
- LlamaIndex demo: https://docs.llamaindex.ai/en/stable/examples/vector_stores/LanceDBIndexDemo/ - LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
- Pydantic: python/pydantic.md - Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md - Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md - PromptTools: integrations/prompttools.md
@@ -151,13 +157,14 @@ nav:
- ⚙️ API reference: - ⚙️ API reference:
- 🐍 Python: python/python.md - 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md - 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): javascript/modules.md - 👾 JavaScript (lancedb): js/globals.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/ - 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud: - ☁️ LanceDB Cloud:
- Overview: cloud/index.md - Overview: cloud/index.md
- API reference: - API reference:
- 🐍 Python: python/saas-python.md - 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md - 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- Quick start: basic.md - Quick start: basic.md
- Concepts: - Concepts:
@@ -180,15 +187,18 @@ nav:
- Linear Combination Reranker: reranking/linear_combination.md - Linear Combination Reranker: reranking/linear_combination.md
- Cross Encoder Reranker: reranking/cross_encoder.md - Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md - ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md - OpenAI Reranker: reranking/openai.md
- Building Custom Rerankers: reranking/custom_reranker.md - Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md - Migration Guide: migration.md
- Tuning retrieval performance: - Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md - Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md - Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Managing Embeddings: - Managing Embeddings:
- Overview: embeddings/index.md - Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md - Embedding functions: embeddings/embedding_functions.md
@@ -201,9 +211,9 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md - Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md - Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md - DuckDB: python/duckdb.md
- LangChain 🦜️🔗↗: https://python.langchain.com/docs/integrations/vectorstores/lancedb - LangChain 🦜️🔗↗: integrations/langchain.md
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb - LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html - LlamaIndex 🦙↗: integrations/llamaIndex.md
- Pydantic: python/pydantic.md - Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md - Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md - PromptTools: integrations/prompttools.md
@@ -221,13 +231,14 @@ nav:
- Overview: api_reference.md - Overview: api_reference.md
- Python: python/python.md - Python: python/python.md
- Javascript (vectordb): javascript/modules.md - Javascript (vectordb): javascript/modules.md
- Javascript (lancedb): js/modules.md - Javascript (lancedb): js/globals.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html - Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud: - LanceDB Cloud:
- Overview: cloud/index.md - Overview: cloud/index.md
- API reference: - API reference:
- 🐍 Python: python/saas-python.md - 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md - 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
extra_css: extra_css:
- styles/global.css - styles/global.css

487
docs/openapi.yml Normal file
View File

@@ -0,0 +1,487 @@
openapi: 3.1.0
info:
version: 1.0.0
title: LanceDB Cloud API
description: |
LanceDB Cloud API is a RESTful API that allows users to access and modify data stored in LanceDB Cloud.
Table actions are considered temporary resource creations and all use POST method.
contact:
name: LanceDB support
url: https://lancedb.com
email: contact@lancedb.com
servers:
- url: https://{db}.{region}.api.lancedb.com
description: LanceDB Cloud REST endpoint.
variables:
db:
default: ""
description: the name of DB
region:
default: "us-east-1"
description: the service region of the DB
security:
- key_auth: []
components:
securitySchemes:
key_auth:
name: x-api-key
type: apiKey
in: header
parameters:
table_name:
name: name
in: path
description: name of the table
required: true
schema:
type: string
responses:
invalid_request:
description: Invalid request
content:
text/plain:
schema:
type: string
not_found:
description: Not found
content:
text/plain:
schema:
type: string
unauthorized:
description: Unauthorized
content:
text/plain:
schema:
type: string
requestBodies:
arrow_stream_buffer:
description: Arrow IPC stream buffer
required: true
content:
application/vnd.apache.arrow.stream:
schema:
type: string
format: binary
paths:
/v1/table/:
get:
description: List tables, optionally, with pagination.
tags:
- Tables
summary: List Tables
operationId: listTables
parameters:
- name: limit
in: query
description: Limits the number of items to return.
schema:
type: integer
- name: page_token
in: query
description: Specifies the starting position of the next query
schema:
type: string
responses:
"200":
description: Successfully returned a list of tables in the DB
content:
application/json:
schema:
type: object
properties:
tables:
type: array
items:
type: string
page_token:
type: string
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create/:
post:
description: Create a new table
summary: Create a new table
operationId: createTable
tags:
- Tables
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Table successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/query/:
post:
description: Vector Query
url: https://{db-uri}.{aws-region}.api.lancedb.com/v1/table/{name}/query/
tags:
- Data
summary: Vector Query
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
vector:
type: FixedSizeList
description: |
The targetted vector to search for. Required.
vector_column:
type: string
description: |
The column to query, it can be inferred from the schema if there is only one vector column.
prefilter:
type: boolean
description: |
Whether to prefilter the data. Optional.
k:
type: integer
description: |
The number of search results to return. Default is 10.
distance_type:
type: string
description: |
The distance metric to use for search. L2, Cosine, Dot and Hamming are supported. Default is L2.
bypass_vector_index:
type: boolean
description: |
Whether to bypass vector index. Optional.
filter:
type: string
description: |
A filter expression that specifies the rows to query. Optional.
columns:
type: array
items:
type: string
description: |
The columns to return. Optional.
nprobe:
type: integer
description: |
The number of probes to use for search. Optional.
refine_factor:
type: integer
description: |
The refine factor to use for search. Optional.
default: null
fast_search:
type: boolean
description: |
Whether to use fast search. Optional.
default: false
required:
- vector
responses:
"200":
description: top k results if query is successfully executed
content:
application/json:
schema:
type: object
properties:
results:
type: array
items:
type: object
properties:
id:
type: integer
selected_col_1_to_return:
type: col_1_type
selected_col_n_to_return:
type: col_n_type
_distance:
type: float
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/insert/:
post:
description: Insert new data to the Table.
tags:
- Data
operationId: insertData
summary: Insert new data.
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Insert successful
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/merge_insert/:
post:
description: Create a "merge insert" operation
This operation can add rows, update rows, and remove rows all in a single
transaction. See python method `lancedb.table.Table.merge_insert` for examples.
tags:
- Data
summary: Merge Insert
operationId: mergeInsert
parameters:
- $ref: "#/components/parameters/table_name"
- name: on
in: query
description: |
The column to use as the primary key for the merge operation.
required: true
schema:
type: string
- name: when_matched_update_all
in: query
description: |
Rows that exist in both the source table (new data) and
the target table (old data) will be updated, replacing
the old row with the corresponding matching row.
required: false
schema:
type: boolean
- name: when_matched_update_all_filt
in: query
description: |
If present then only rows that satisfy the filter expression will
be updated
required: false
schema:
type: string
- name: when_not_matched_insert_all
in: query
description: |
Rows that exist only in the source table (new data) will be
inserted into the target table (old data).
required: false
schema:
type: boolean
- name: when_not_matched_by_source_delete
in: query
description: |
Rows that exist only in the target table (old data) will be
deleted. An optional condition (`when_not_matched_by_source_delete_filt`)
can be provided to limit what data is deleted.
required: false
schema:
type: boolean
- name: when_not_matched_by_source_delete_filt
in: query
description: |
The filter expression that specifies the rows to delete.
required: false
schema:
type: string
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Merge Insert successful
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/delete/:
post:
description: Delete rows from a table.
tags:
- Data
summary: Delete rows from a table
operationId: deleteData
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
predicate:
type: string
description: |
A filter expression that specifies the rows to delete.
responses:
"200":
description: Delete successful
"401":
$ref: "#/components/responses/unauthorized"
/v1/table/{name}/drop/:
post:
description: Drop a table
tags:
- Tables
summary: Drop a table
operationId: dropTable
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Drop successful
"401":
$ref: "#/components/responses/unauthorized"
/v1/table/{name}/describe/:
post:
description: Describe a table and return Table Information.
tags:
- Tables
summary: Describe a table
operationId: describeTable
parameters:
- $ref: "#/components/parameters/table_name"
responses:
"200":
description: Table information
content:
application/json:
schema:
type: object
properties:
table:
type: string
version:
type: integer
schema:
type: string
stats:
type: object
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/index/list/:
post:
description: List indexes of a table
tags:
- Tables
summary: List indexes of a table
operationId: listIndexes
parameters:
- $ref: "#/components/parameters/table_name"
responses:
"200":
description: Available list of indexes on the table.
content:
application/json:
schema:
type: object
properties:
indexes:
type: array
items:
type: object
properties:
columns:
type: array
items:
type: string
index_name:
type: string
index_uuid:
type: string
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create_index/:
post:
description: Create vector index on a Table
tags:
- Tables
summary: Create vector index on a Table
operationId: createIndex
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
column:
type: string
metric_type:
type: string
nullable: false
description: |
The metric type to use for the index. L2, Cosine, Dot are supported.
index_type:
type: string
responses:
"200":
description: Index successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create_scalar_index/:
post:
description: Create a scalar index on a table
tags:
- Tables
summary: Create a scalar index on a table
operationId: createScalarIndex
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
column:
type: string
index_type:
type: string
required: false
responses:
"200":
description: Scalar Index successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"

View File

@@ -2,4 +2,5 @@ mkdocs==1.5.3
mkdocs-jupyter==0.24.1 mkdocs-jupyter==0.24.1
mkdocs-material==9.5.3 mkdocs-material==9.5.3
mkdocstrings[python]==0.20.0 mkdocstrings[python]==0.20.0
mkdocs-render-swagger-plugin
pydantic pydantic

View File

@@ -38,13 +38,27 @@ Lance supports `IVF_PQ` index type by default.
tbl.create_index(num_partitions=256, num_sub_vectors=96) tbl.create_index(num_partitions=256, num_sub_vectors=96)
``` ```
=== "Typescript" === "TypeScript"
```typescript === "@lancedb/lancedb"
--8<--- "docs/src/ann_indexes.ts:import"
--8<-- "docs/src/ann_indexes.ts:ingest" Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```
```typescript
--8<--- "nodejs/examples/ann_indexes.ts:import"
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
```
=== "vectordb (deprecated)"
Creating indexes is done via the [lancedb.Table.createIndex](../javascript/interfaces/Table.md/#createIndex) method.
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
--8<-- "docs/src/ann_indexes.ts:ingest"
```
=== "Rust" === "Rust"
@@ -91,27 +105,27 @@ You can specify the GPU device to train IVF partitions via
=== "Linux" === "Linux"
<!-- skip-test --> <!-- skip-test -->
``` { .python .copy } ``` { .python .copy }
# Create index using CUDA on Nvidia GPUs. # Create index using CUDA on Nvidia GPUs.
tbl.create_index( tbl.create_index(
num_partitions=256, num_partitions=256,
num_sub_vectors=96, num_sub_vectors=96,
accelerator="cuda" accelerator="cuda"
) )
``` ```
=== "MacOS" === "MacOS"
<!-- skip-test --> <!-- skip-test -->
```python ```python
# Create index using MPS on Apple Silicon. # Create index using MPS on Apple Silicon.
tbl.create_index( tbl.create_index(
num_partitions=256, num_partitions=256,
num_sub_vectors=96, num_sub_vectors=96,
accelerator="mps" accelerator="mps"
) )
``` ```
Troubleshooting: Troubleshooting:
@@ -150,11 +164,19 @@ There are a couple of parameters that can be used to fine-tune the search:
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867 1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
``` ```
=== "Typescript" === "TypeScript"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/ann_indexes.ts:search1"
``` ```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search1"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
```
=== "Rust" === "Rust"
@@ -172,15 +194,23 @@ You can further filter the elements returned by a search using a where clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas() tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
``` ```
=== "Typescript" === "TypeScript"
```javascript === "@lancedb/lancedb"
--8<-- "docs/src/ann_indexes.ts:search2"
``` ```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search2"
```
=== "vectordb (deprecated)"
```javascript
--8<-- "docs/src/ann_indexes.ts:search2"
```
### Projections (select clause) ### Projections (select clause)
@@ -188,23 +218,31 @@ You can select the columns returned by the query using a select clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas() tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
``` ```
```text ```text
vector _distance vector _distance
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092 0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485 1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
... ...
``` ```
=== "Typescript" === "TypeScript"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/ann_indexes.ts:search3"
``` ```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search3"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/ann_indexes.ts:search3"
```
## FAQ ## FAQ

View File

@@ -4,5 +4,5 @@ The API reference for the LanceDB client SDKs are available at the following loc
- [Python](python/python.md) - [Python](python/python.md)
- [JavaScript (legacy vectordb package)](javascript/modules.md) - [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/modules.md) - [JavaScript (newer @lancedb/lancedb package)](js/globals.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html) - [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

View File

@@ -16,11 +16,60 @@
pip install lancedb pip install lancedb
``` ```
=== "Typescript" === "Typescript[^1]"
=== "@lancedb/lancedb"
```shell ```shell
npm install vectordb npm install @lancedb/lancedb
``` ```
!!! note "Bundling `@lancedb/lancedb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ '@lancedb/lancedb': '@lancedb/lancedb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "vectordb (deprecated)"
```shell
npm install vectordb
```
!!! note "Bundling `vectordb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "Rust" === "Rust"
@@ -58,11 +107,18 @@ recommend switching to stable releases.
pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb
``` ```
=== "Typescript" === "Typescript[^1]"
```shell === "@lancedb/lancedb"
npm install vectordb@preview
``` ```shell
npm install @lancedb/lancedb@preview
```
=== "vectordb (deprecated)"
```shell
npm install vectordb@preview
```
=== "Rust" === "Rust"
@@ -93,23 +149,22 @@ recommend switching to stable releases.
use the same syntax as the asynchronous API. To help with this migration we use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences. have created a [migration guide](migration.md) detailing the differences.
=== "Typescript" === "Typescript[^1]"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/basic_legacy.ts:import"
--8<-- "docs/src/basic_legacy.ts:open_db" ```typescript
``` import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
!!! note "`@lancedb/lancedb` vs. `vectordb`" --8<-- "nodejs/examples/basic.ts:connect"
```
The Javascript SDK was originally released as `vectordb`. In an effort to === "vectordb (deprecated)"
reduce maintenance we are aligning our SDKs. The new, aligned, Javascript
API is being released as `lancedb`. If you are starting new work we encourage ```typescript
you to try out `lancedb`. Once the new API is feature complete we will begin --8<-- "docs/src/basic_legacy.ts:open_db"
slowly deprecating `vectordb` in favor of `lancedb`. There is a ```
[migration guide](migration.md) detailing the differences which will assist
you in this process.
=== "Rust" === "Rust"
@@ -152,15 +207,23 @@ table.
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas" --8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
``` ```
=== "Typescript" === "Typescript[^1]"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/basic_legacy.ts:create_table"
```
If the table already exists, LanceDB will raise an error by default. ```typescript
If you want to overwrite the table, you can pass in `mode="overwrite"` --8<-- "nodejs/examples/basic.ts:create_table"
to the `createTable` function. ```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_table"
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode:"overwrite"`
to the `createTable` function.
=== "Rust" === "Rust"
@@ -200,11 +263,19 @@ similar to a `CREATE TABLE` statement in SQL.
!!! note "You can define schema in Pydantic" !!! note "You can define schema in Pydantic"
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md). LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
=== "Typescript" === "Typescript[^1]"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
``` ```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
=== "Rust" === "Rust"
@@ -223,11 +294,19 @@ Once created, you can open a table as follows:
--8<-- "python/python/tests/docs/test_basic.py:open_table_async" --8<-- "python/python/tests/docs/test_basic.py:open_table_async"
``` ```
=== "Typescript" === "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:open_table"
```
=== "vectordb (deprecated)"
```typescript
const tbl = await db.openTable("myTable");
```
```typescript
const tbl = await db.openTable("myTable");
```
=== "Rust" === "Rust"
@@ -244,11 +323,18 @@ If you forget the name of your table, you can always get a listing of all table
--8<-- "python/python/tests/docs/test_basic.py:table_names_async" --8<-- "python/python/tests/docs/test_basic.py:table_names_async"
``` ```
=== "Javascript" === "Typescript[^1]"
=== "@lancedb/lancedb"
```javascript ```typescript
console.log(await db.tableNames()); --8<-- "nodejs/examples/basic.ts:table_names"
``` ```
=== "vectordb (deprecated)"
```typescript
console.log(await db.tableNames());
```
=== "Rust" === "Rust"
@@ -267,11 +353,18 @@ After a table has been created, you can always add more data to it as follows:
--8<-- "python/python/tests/docs/test_basic.py:add_data_async" --8<-- "python/python/tests/docs/test_basic.py:add_data_async"
``` ```
=== "Typescript" === "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:add" --8<-- "nodejs/examples/basic.ts:add_data"
``` ```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:add"
```
=== "Rust" === "Rust"
@@ -292,11 +385,18 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
This returns a pandas DataFrame with the results. This returns a pandas DataFrame with the results.
=== "Typescript" === "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:search" --8<-- "nodejs/examples/basic.ts:vector_search"
``` ```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:search"
```
=== "Rust" === "Rust"
@@ -325,11 +425,18 @@ LanceDB allows you to create an ANN index on a table as follows:
--8<-- "python/python/tests/docs/test_basic.py:create_index_async" --8<-- "python/python/tests/docs/test_basic.py:create_index_async"
``` ```
=== "Typescript" === "Typescript[^1]"
=== "@lancedb/lancedb"
```{.typescript .ignore} ```typescript
--8<-- "docs/src/basic_legacy.ts:create_index" --8<-- "nodejs/examples/basic.ts:create_index"
``` ```
=== "vectordb (deprecated)"
```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index"
```
=== "Rust" === "Rust"
@@ -357,11 +464,19 @@ This can delete any number of rows that match the filter.
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async" --8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
``` ```
=== "Typescript" === "Typescript[^1]"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/basic_legacy.ts:delete"
``` ```typescript
--8<-- "nodejs/examples/basic.ts:delete_rows"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:delete"
```
=== "Rust" === "Rust"
@@ -378,9 +493,15 @@ simple or complex as needed. To see what expressions are supported, see the
Read more: [lancedb.table.Table.delete][] Read more: [lancedb.table.Table.delete][]
=== "Javascript" === "Typescript[^1]"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete) === "@lancedb/lancedb"
Read more: [lancedb.Table.delete](javascript/interfaces/Table.md#delete)
=== "vectordb (deprecated)"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
=== "Rust" === "Rust"
@@ -392,23 +513,31 @@ Use the `drop_table()` method on the database to remove a table.
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table" --8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async" --8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
``` ```
This permanently removes the table and is not recoverable, unlike deleting rows. This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this, By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`. you can pass in `ignore_missing=True`.
=== "Typescript" === "Typescript[^1]"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
This permanently removes the table and is not recoverable, unlike deleting rows. ```typescript
If the table does not exist an exception is raised. --8<-- "nodejs/examples/basic.ts:drop_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
=== "Rust" === "Rust"
@@ -416,19 +545,6 @@ Use the `drop_table()` method on the database to remove a table.
--8<-- "rust/lancedb/examples/simple.rs:drop_table" --8<-- "rust/lancedb/examples/simple.rs:drop_table"
``` ```
!!! note "Bundling `vectordb` apps with Webpack"
If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
## Using the Embedding API ## Using the Embedding API
You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more. You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more.
@@ -440,6 +556,22 @@ You can use the embedding API when working with embedding models. It automatical
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings" --8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
``` ```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/). Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/).
@@ -448,3 +580,5 @@ Learn about using the existing integrations and creating custom embedding functi
This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts. This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts.
If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail. If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

View File

@@ -1,6 +1,14 @@
// --8<-- [start:import] // --8<-- [start:import]
import * as lancedb from "vectordb"; import * as lancedb from "vectordb";
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow"; import {
Schema,
Field,
Float32,
FixedSizeList,
Int32,
Float16,
} from "apache-arrow";
import * as arrow from "apache-arrow";
// --8<-- [end:import] // --8<-- [end:import]
import * as fs from "fs"; import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow"; import { Table as ArrowTable, Utf8 } from "apache-arrow";
@@ -20,9 +28,33 @@ const example = async () => {
{ vector: [3.1, 4.1], item: "foo", price: 10.0 }, { vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 }, { vector: [5.9, 26.5], item: "bar", price: 20.0 },
], ],
{ writeMode: lancedb.WriteMode.Overwrite } { writeMode: lancedb.WriteMode.Overwrite },
); );
// --8<-- [end:create_table] // --8<-- [end:create_table]
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const tbl = await db.createTable({
name: "myTableWithSchema",
data,
schema,
});
// --8<-- [end:create_table_with_schema]
}
// --8<-- [start:add] // --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({ const newData = Array.from({ length: 500 }, (_, i) => ({
@@ -42,33 +74,35 @@ const example = async () => {
// --8<-- [end:create_index] // --8<-- [end:create_index]
// --8<-- [start:create_empty_table] // --8<-- [start:create_empty_table]
const schema = new Schema([ const schema = new arrow.Schema([
new Field("id", new Int32()), new arrow.Field("id", new arrow.Int32()),
new Field("name", new Utf8()), new arrow.Field("name", new arrow.Utf8()),
]); ]);
const empty_tbl = await db.createTable({ name: "empty_table", schema }); const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table] // --8<-- [end:create_empty_table]
{
// --8<-- [start:create_f16_table] // --8<-- [start:create_f16_table]
const dim = 16 const dim = 16;
const total = 10 const total = 10;
const f16_schema = new Schema([ const schema = new Schema([
new Field('id', new Int32()), new Field("id", new Int32()),
new Field( new Field(
'vector', "vector",
new FixedSizeList(dim, new Field('item', new Float16(), true)), new FixedSizeList(dim, new Field("item", new Float16(), true)),
false false,
) ),
]) ]);
const data = lancedb.makeArrowTable( const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({ Array.from(Array(total), (_, i) => ({
id: i, id: i,
vector: Array.from(Array(dim), Math.random) vector: Array.from(Array(dim), Math.random),
})), })),
{ f16_schema } { schema },
) );
const table = await db.createTable('f16_tbl', data) const table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table] // --8<-- [end:create_f16_table]
}
// --8<-- [start:search] // --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute(); const query = await tbl.search([100, 100]).limit(2).execute();

1
docs/src/cloud/rest.md Normal file
View File

@@ -0,0 +1 @@
!!swagger ../../openapi.yml!!

View File

@@ -17,6 +17,7 @@ Allows you to set parameters when registering a `sentence-transformers` object.
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model | | `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) | | `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model | | `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
??? "Check out available sentence-transformer models here!" ??? "Check out available sentence-transformer models here!"
@@ -193,13 +194,13 @@ from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("huggingface").create(name='facebook/bart-base') model = get_registry().get("huggingface").create(name='facebook/bart-base')
class TextModel(LanceModel): class Words(LanceModel):
text: str = model.SourceField() text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField() vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]}) df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
table = db.create_table("greets", schema=Words) table = db.create_table("greets", schema=Words)
table.add() table.add(df)
query = "old greeting" query = "old greeting"
actual = table.search(query).limit(1).to_pydantic(Words)[0] actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text) print(actual.text)
@@ -427,6 +428,45 @@ Usage Example:
tbl.add(data) tbl.add(data)
``` ```
### Jina Embeddings
Jina embeddings are used to generate embeddings for text and image data.
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
os.environ['JINA_API_KEY'] = 'jina_*'
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
class TextModel(LanceModel):
text: str = jina_embed.SourceField()
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
data = [{"text": "hello world"},
{"text": "goodbye world"}]
db = lancedb.connect("~/.lancedb-2")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```
### AWS Bedrock Text Embedding Functions ### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token: You can do so by using `awscli` and also add your session_token:
@@ -524,7 +564,7 @@ uris = [
# get each uri as bytes # get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris] image_bytes = [requests.get(uri).content for uri in uris]
table.add( table.add(
[{"label": labels, "image_uri": uris, "image_bytes": image_bytes}] pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
) )
``` ```
Now we can search using text from both the default vector column and the custom vector column Now we can search using text from both the default vector column and the custom vector column
@@ -630,3 +670,54 @@ print(actual.text == "bird")
``` ```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues). If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).
### Jina Embeddings
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import requests
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
os.environ['JINA_API_KEY'] = 'jina_*'
db = lancedb.connect("~/.lancedb")
func = get_registry().get("jina").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```

View File

@@ -29,17 +29,32 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
You can also define your own embedding function by implementing the `EmbeddingFunction` You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next! abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "JavaScript"" === "TypeScript"
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available. embedding function is available.
```javascript ```javascript
const lancedb = require("vectordb"); import * as lancedb from '@lancedb/lancedb'
import { getRegistry } from '@lancedb/lancedb/embeddings'
// You need to provide an OpenAI API key // You need to provide an OpenAI API key
const apiKey = "sk-..." const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column // The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey) const func = getRegistry().get("openai").create({apiKey})
```
=== "Rust"
In the Rust SDK, the choices are more limited. For now, only the OpenAI
embedding function is available. But unlike the Python and TypeScript SDKs, you need manually register the OpenAI embedding function.
```toml
// Make sure to include the `openai` feature
[dependencies]
lancedb = {version = "*", features = ["openai"]}
```
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
``` ```
## 2. Define the data model or schema ## 2. Define the data model or schema
@@ -55,7 +70,7 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`. `VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
=== "JavaScript" === "TypeScript"
For the TypeScript SDK, a schema can be inferred from input data, or an explicit For the TypeScript SDK, a schema can be inferred from input data, or an explicit
Arrow schema can be provided. Arrow schema can be provided.
@@ -74,17 +89,26 @@ the embeddings at all:
table.add([{"image_uri": u} for u in uris]) table.add([{"image_uri": u} for u in uris])
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding) ```ts
``` --8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:embedding_function"
```
=== "vectordb (deprecated)"
```ts
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding)
```
## 4. Querying your table ## 4. Querying your table
Not only can you forget about the embeddings during ingestion, you also don't Not only can you forget about the embeddings during ingestion, you also don't
@@ -97,8 +121,8 @@ need to worry about it when you query the table:
```python ```python
results = ( results = (
table.search("dog") table.search("dog")
.limit(10) .limit(10)
.to_pandas() .to_pandas()
) )
``` ```
@@ -109,21 +133,31 @@ need to worry about it when you query the table:
query_image = Image.open(p) query_image = Image.open(p)
results = ( results = (
table.search(query_image) table.search(query_image)
.limit(10) .limit(10)
.to_pandas() .to_pandas()
) )
``` ```
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query. Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const results = await table
.search("What's the best pizza topping?") ```ts
.limit(10) const results = await table.search("What's the best pizza topping?")
.execute() .limit(10)
``` .toArray()
```
=== "vectordb (deprecated)
```ts
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query. The above snippet returns an array of records with the top 10 nearest neighbors to the query.

View File

@@ -7,7 +7,7 @@ LanceDB supports 3 methods of working with embeddings.
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB. 1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background. 2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md) 3. You can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions. that extends the default embedding functions.
For python users, there is also a legacy [with_embeddings API](./legacy.md). For python users, there is also a legacy [with_embeddings API](./legacy.md).
@@ -18,15 +18,103 @@ It is retained for compatibility and will be removed in a future version.
To get started with embeddings, you can use the built-in embedding functions. To get started with embeddings, you can use the built-in embedding functions.
### OpenAI Embedding function ### OpenAI Embedding function
LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`. LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`.
=== "Python"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
=== "TypeScript"
```typescript
--8<--- "nodejs/examples/embedding.ts:imports"
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<--- "rust/lancedb/examples/openai.rs:imports"
--8<--- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
### Sentence Transformers Embedding function
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
=== "Python"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
=== "TypeScript"
Coming Soon!
=== "Rust"
Coming Soon!
### Jina Embeddings
LanceDB registers the JinaAI embeddings function in the registry as `jina`. You can pass any supported model name to the `create`. By default it uses `"jina-clip-v1"`.
`jina-clip-v1` can handle both text and images and other models only support `text`.
You need to pass `JINA_API_KEY` in the environment variable or pass it as `api_key` to `create` method.
```python ```python
import os
import lancedb import lancedb
from lancedb.pydantic import LanceModel, Vector from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry from lancedb.embeddings import get_registry
os.environ['JINA_API_KEY'] = "jina_*"
db = lancedb.connect("/tmp/db") db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002") func = get_registry().get("jina").create(name="jina-clip-v1")
class Words(LanceModel): class Words(LanceModel):
text: str = func.SourceField() text: str = func.SourceField()
@@ -44,31 +132,3 @@ query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0] actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text) print(actual.text)
``` ```
### Sentence Transformers Embedding function
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -32,28 +32,54 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
db = lancedb.connect("az://bucket/path") db = lancedb.connect("az://bucket/path")
``` ```
=== "JavaScript" === "TypeScript"
AWS S3: === "@lancedb/lancedb"
```javascript AWS S3:
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage: ```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path");
```
```javascript Google Cloud Storage:
const lancedb = require("lancedb");
const db = await lancedb.connect("gs://bucket/path");
```
Azure Blob Storage: ```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("gs://bucket/path");
```
```javascript Azure Blob Storage:
const lancedb = require("lancedb");
const db = await lancedb.connect("az://bucket/path"); ```ts
``` import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("az://bucket/path");
```
=== "vectordb (deprecated)"
AWS S3:
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage:
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("gs://bucket/path");
```
Azure Blob Storage:
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("az://bucket/path");
```
In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided. Credentials and other configuration options can be set in two ways: first, by setting environment variables. And second, by passing a `storage_options` object to the `connect` function. For example, to increase the request timeout to 60 seconds, you can set the `TIMEOUT` environment variable to `60s`: In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided. Credentials and other configuration options can be set in two ways: first, by setting environment variables. And second, by passing a `storage_options` object to the `connect` function. For example, to increase the request timeout to 60 seconds, you can set the `TIMEOUT` environment variable to `60s`:
@@ -78,13 +104,26 @@ If you only want this to apply to one particular connection, you can pass the `s
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path", ```ts
{storageOptions: {timeout: "60s"}}); import * as lancedb from "@lancedb/lancedb";
```
const db = await lancedb.connect("s3://bucket/path", {
storageOptions: {timeout: "60s"}
});
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path", {
storageOptions: {timeout: "60s"}
});
```
Getting even more specific, you can set the `timeout` for only a particular table: Getting even more specific, you can set the `timeout` for only a particular table:
@@ -101,18 +140,33 @@ Getting even more specific, you can set the `timeout` for only a particular tabl
) )
``` ```
=== "JavaScript" === "TypeScript"
<!-- skip-test --> === "@lancedb/lancedb"
```javascript
const lancedb = require("lancedb"); <!-- skip-test -->
const db = await lancedb.connect("s3://bucket/path"); ```ts
const table = db.createTable( import * as lancedb from "@lancedb/lancedb";
"table", const db = await lancedb.connect("s3://bucket/path");
[{ a: 1, b: 2}], const table = db.createTable(
{storageOptions: {timeout: "60s"}} "table",
); [{ a: 1, b: 2}],
``` {storageOptions: {timeout: "60s"}}
);
```
=== "vectordb (deprecated)"
<!-- skip-test -->
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable(
"table",
[{ a: 1, b: 2}],
{storageOptions: {timeout: "60s"}}
);
```
!!! info "Storage option casing" !!! info "Storage option casing"
@@ -135,7 +189,6 @@ There are several options that can be set for all object stores, mostly related
| `proxy_ca_certificate` | PEM-formatted CA certificate for proxy connections. | | `proxy_ca_certificate` | PEM-formatted CA certificate for proxy connections. |
| `proxy_excludes` | List of hosts that bypass the proxy. This is a comma-separated list of domains and IP masks. Any subdomain of the provided domain will be bypassed. For example, `example.com, 192.168.1.0/24` would bypass `https://api.example.com`, `https://www.example.com`, and any IP in the range `192.168.1.0/24`. | | `proxy_excludes` | List of hosts that bypass the proxy. This is a comma-separated list of domains and IP masks. Any subdomain of the provided domain will be bypassed. For example, `example.com, 192.168.1.0/24` would bypass `https://api.example.com`, `https://www.example.com`, and any IP in the range `192.168.1.0/24`. |
### AWS S3 ### AWS S3
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` keys. Region can also be set, but it is not mandatory when using AWS. To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` keys. Region can also be set, but it is not mandatory when using AWS.
@@ -155,21 +208,39 @@ These can be set as environment variables or passed in the `storage_options` par
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect( ```ts
"s3://bucket/path", import * as lancedb from "@lancedb/lancedb";
{ const db = await lancedb.connect(
storageOptions: { "s3://bucket/path",
awsAccessKeyId: "my-access-key", {
awsSecretAccessKey: "my-secret-key", storageOptions: {
awsSessionToken: "my-session-token", awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
} }
} );
); ```
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
}
);
```
Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables. Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables.
@@ -188,7 +259,6 @@ The following keys can be used as both environment variables or keys in the `sto
| `aws_sse_kms_key_id` | The KMS key ID to use for server-side encryption. If set, `aws_server_side_encryption` must be `"aws:kms"` or `"aws:kms:dsse"`. | | `aws_sse_kms_key_id` | The KMS key ID to use for server-side encryption. If set, `aws_server_side_encryption` must be `"aws:kms"` or `"aws:kms:dsse"`. |
| `aws_sse_bucket_key_enabled` | Whether to use bucket keys for server-side encryption. | | `aws_sse_bucket_key_enabled` | Whether to use bucket keys for server-side encryption. |
!!! tip "Automatic cleanup for failed writes" !!! tip "Automatic cleanup for failed writes"
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide: LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
@@ -265,6 +335,108 @@ For **read-only access**, LanceDB will need a policy such as:
} }
``` ```
#### DynamoDB Commit Store for concurrent writes
By default, S3 does not support concurrent writes. Having two or more processes
writing to the same table at the same time can lead to data corruption. This is
because S3, unlike other object stores, does not have any atomic put or copy
operation.
To enable concurrent writes, you can configure LanceDB to use a DynamoDB table
as a commit store. This table will be used to coordinate writes between
different processes. To enable this feature, you must modify your connection
URI to use the `s3+ddb` scheme and add a query parameter `ddbTableName` with the
name of the table to use.
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
);
```
The DynamoDB table must be created with the following schema:
- Hash key: `base_uri` (string)
- Range key: `version` (number)
You can create this programmatically with:
=== "Python"
<!-- skip-test -->
```python
import boto3
dynamodb = boto3.client("dynamodb")
table = dynamodb.create_table(
TableName=table_name,
KeySchema=[
{"AttributeName": "base_uri", "KeyType": "HASH"},
{"AttributeName": "version", "KeyType": "RANGE"},
],
AttributeDefinitions=[
{"AttributeName": "base_uri", "AttributeType": "S"},
{"AttributeName": "version", "AttributeType": "N"},
],
ProvisionedThroughput={"ReadCapacityUnits": 1, "WriteCapacityUnits": 1},
)
```
=== "JavaScript"
<!-- skip-test -->
```javascript
import {
CreateTableCommand,
DynamoDBClient,
} from "@aws-sdk/client-dynamodb";
const dynamodb = new DynamoDBClient({
region: CONFIG.awsRegion,
credentials: {
accessKeyId: CONFIG.awsAccessKeyId,
secretAccessKey: CONFIG.awsSecretAccessKey,
},
endpoint: CONFIG.awsEndpoint,
});
const command = new CreateTableCommand({
TableName: table_name,
AttributeDefinitions: [
{
AttributeName: "base_uri",
AttributeType: "S",
},
{
AttributeName: "version",
AttributeType: "N",
},
],
KeySchema: [
{ AttributeName: "base_uri", KeyType: "HASH" },
{ AttributeName: "version", KeyType: "RANGE" },
],
ProvisionedThroughput: {
ReadCapacityUnits: 1,
WriteCapacityUnits: 1,
},
});
await client.send(command);
```
#### S3-compatible stores #### S3-compatible stores
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify both region and endpoint: LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify both region and endpoint:
@@ -282,20 +454,37 @@ LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you m
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect( ```ts
"s3://bucket/path", import * as lancedb from "@lancedb/lancedb";
{ const db = await lancedb.connect(
storageOptions: { "s3://bucket/path",
region: "us-east-1", {
endpoint: "http://minio:9000", storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
} }
} );
); ```
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
}
);
```
This can also be done with the ``AWS_ENDPOINT`` and ``AWS_DEFAULT_REGION`` environment variables. This can also be done with the ``AWS_ENDPOINT`` and ``AWS_DEFAULT_REGION`` environment variables.
@@ -326,21 +515,37 @@ To configure LanceDB to use an S3 Express endpoint, you must set the storage opt
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect( ```ts
"s3://my-bucket--use1-az4--x-s3/path", import * as lancedb from "@lancedb/lancedb";
{ const db = await lancedb.connect(
storageOptions: { "s3://my-bucket--use1-az4--x-s3/path",
region: "us-east-1", {
s3Express: "true", storageOptions: {
region: "us-east-1",
s3Express: "true",
}
} }
} );
); ```
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
{
storageOptions: {
region: "us-east-1",
s3Express: "true",
}
}
);
```
### Google Cloud Storage ### Google Cloud Storage
@@ -359,26 +564,40 @@ GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environme
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect( ```ts
"gs://my-bucket/my-database", import * as lancedb from "@lancedb/lancedb";
{ const db = await lancedb.connect(
storageOptions: { "gs://my-bucket/my-database",
serviceAccount: "path/to/service-account.json", {
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
} }
} );
); ```
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"gs://my-bucket/my-database",
{
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
}
);
```
!!! info "HTTP/2 support" !!! info "HTTP/2 support"
By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`. By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`.
The following keys can be used as both environment variables or keys in the `storage_options` parameter: The following keys can be used as both environment variables or keys in the `storage_options` parameter:
<!-- source: https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html --> <!-- source: https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html -->
@@ -388,7 +607,6 @@ The following keys can be used as both environment variables or keys in the `sto
| ``google_service_account_key`` | The serialized service account key. | | ``google_service_account_key`` | The serialized service account key. |
| ``google_application_credentials`` | Path to the application credentials. | | ``google_application_credentials`` | Path to the application credentials. |
### Azure Blob Storage ### Azure Blob Storage
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME`and `AZURE_STORAGE_ACCOUNT_KEY` environment variables. Alternatively, you can pass the account name and key in the `storage_options` parameter: Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME`and `AZURE_STORAGE_ACCOUNT_KEY` environment variables. Alternatively, you can pass the account name and key in the `storage_options` parameter:
@@ -407,20 +625,37 @@ Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_A
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect( ```ts
"az://my-container/my-database", import * as lancedb from "@lancedb/lancedb";
{ const db = await lancedb.connect(
storageOptions: { "az://my-container/my-database",
accountName: "some-account", {
accountKey: "some-key", storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
} }
} );
); ```
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"az://my-container/my-database",
{
storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
}
);
```
These keys can be used as both environment variables or keys in the `storage_options` parameter: These keys can be used as both environment variables or keys in the `storage_options` parameter:

View File

@@ -8,27 +8,41 @@ This guide will show how to create tables, insert data into them, and update the
## Creating a LanceDB Table ## Creating a LanceDB Table
Initialize a LanceDB connection and create a table
=== "Python" === "Python"
Initialize a LanceDB connection and create a table using one of the many methods listed below.
```python ```python
import lancedb import lancedb
db = lancedb.connect("./.lancedb") db = lancedb.connect("./.lancedb")
``` ```
=== "Javascript"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these. LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
=== "vectordb (deprecated)"
```typescript
const lancedb = require("vectordb");
const arrow = require("apache-arrow");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
### From list of tuples or dictionaries ### From list of tuples or dictionaries
=== "Python" === "Python"
@@ -45,6 +59,7 @@ This guide will show how to create tables, insert data into them, and update the
db["my_table"].head() db["my_table"].head()
``` ```
!!! info "Note" !!! info "Note"
If the table already exists, LanceDB will raise an error by default. If the table already exists, LanceDB will raise an error by default.
@@ -52,90 +67,137 @@ This guide will show how to create tables, insert data into them, and update the
and the table exists, then it simply opens the existing table. The data you and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case. passed in will NOT be appended to the table in that case.
```python ```python
db.create_table("name", data, exist_ok=True) db.create_table("name", data, exist_ok=True)
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode="overwrite" to the createTable function.
```python
db.create_table("name", data, mode="overwrite")
```
=== "Typescript[^1]"
You can create a LanceDB table in JavaScript using an array of records as follows.
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/basic.ts:create_table"
```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
```ts
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
```
!!! info "Note"
`createTable` supports an optional `existsOk` parameter. When set to true
and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case.
```ts
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
``` ```
Sometimes you want to make sure that you start fresh. If you want to Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode="overwrite" to the createTable function. overwrite the table, you can pass in mode: "overwrite" to the createTable function.
```python ```ts
db.create_table("name", data, mode="overwrite") --8<-- "nodejs/examples/basic.ts:create_table_overwrite"
``` ```
=== "Javascript" === "vectordb (deprecated)"
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
```javascript ```ts
const tb = await db.createTable("my_table", [{ --8<-- "docs/src/basic_legacy.ts:create_table"
"vector": [3.1, 4.1], ```
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use apache-arrow to declare a schema
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
### From a Pandas DataFrame
```python
import pandas as pd
data = pd.DataFrame({ ```ts
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]], --8<-- "docs/src/basic_legacy.ts:create_table_with_schema"
"lat": [45.5, 40.1], ```
"long": [-122.7, -74.1]
})
db.create_table("my_table", data) !!! warning
`existsOk` is not available in `vectordb`
db["my_table"].head()
```
!!! info "Note" If the table already exists, vectordb will raise an error by default.
You can use `writeMode: WriteMode.Overwrite` to overwrite the table.
But this will delete the existing table and create a new one with the same name.
Sometimes you want to make sure that you start fresh.
If you want to overwrite the table, you can pass in `writeMode: lancedb.WriteMode.Overwrite` to the createTable function.
```ts
const table = await con.createTable(tableName, data, {
writeMode: WriteMode.Overwrite
})
```
### From a Pandas DataFrame
```python
import pandas as pd
data = pd.DataFrame({
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
db.create_table("my_table", data)
db["my_table"].head()
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly. Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type. The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
```python ```python
custom_schema = pa.schema([ custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)), pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()), pa.field("lat", pa.float32()),
pa.field("long", pa.float32()) pa.field("long", pa.float32())
]) ])
table = db.create_table("my_table", data, schema=custom_schema) table = db.create_table("my_table", data, schema=custom_schema)
``` ```
### From a Polars DataFrame ### From a Polars DataFrame
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
is on the way. is on the way.
```python ```python
import polars as pl import polars as pl
data = pl.DataFrame({ data = pl.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]], "vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"], "item": ["foo", "bar"],
"price": [10.0, 20.0] "price": [10.0, 20.0]
}) })
table = db.create_table("pl_table", data=data) table = db.create_table("pl_table", data=data)
``` ```
### From an Arrow Table ### From an Arrow Table
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
=== "Python" === "Python"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
```python ```python
import pyarrows as pa import pyarrows as pa
@@ -160,13 +222,19 @@ This guide will show how to create tables, insert data into them, and update the
tbl = db.create_table("f16_tbl", data, schema=schema) tbl = db.create_table("f16_tbl", data, schema=schema)
``` ```
=== "Javascript" === "Typescript[^1]"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports Float16 data type!
```javascript === "@lancedb/lancedb"
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
``` ```typescript
--8<-- "nodejs/examples/basic.ts:create_f16_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
```
### From Pydantic Models ### From Pydantic Models
@@ -329,23 +397,24 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
tbl = db.open_table("my_table") tbl = db.open_table("my_table")
``` ```
=== "JavaScript" === "Typescript[^1]"
If you forget the name of your table, you can always get a listing of all table names. If you forget the name of your table, you can always get a listing of all table names.
```javascript ```typescript
console.log(await db.tableNames()); console.log(await db.tableNames());
``` ```
Then, you can open any existing tables. Then, you can open any existing tables.
```javascript ```typescript
const tbl = await db.openTable("my_table"); const tbl = await db.openTable("my_table");
``` ```
## Creating empty table ## Creating empty table
You can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
=== "Python" === "Python"
In Python, you can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
```python ```python
@@ -382,9 +451,23 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section. Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
## Adding to a table ## Adding to a table
After a table has been created, you can always add more data to it using the various methods available. After a table has been created, you can always add more data to it usind the `add` method
=== "Python" === "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples. You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
@@ -472,9 +555,7 @@ After a table has been created, you can always add more data to it using the var
tbl.add(models) tbl.add(models)
``` ```
=== "Typescript[^1]"
=== "JavaScript"
```javascript ```javascript
await tbl.add( await tbl.add(
@@ -530,15 +611,15 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
# 0 3 [5.0, 6.0] # 0 3 [5.0, 6.0]
``` ```
=== "JavaScript" === "Typescript[^1]"
```javascript ```ts
await tbl.delete('item = "fizz"') await tbl.delete('item = "fizz"')
``` ```
### Deleting row with specific column value ### Deleting row with specific column value
```javascript ```ts
const con = await lancedb.connect("./.lancedb") const con = await lancedb.connect("./.lancedb")
const data = [ const data = [
{id: 1, vector: [1, 2]}, {id: 1, vector: [1, 2]},
@@ -552,7 +633,7 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
### Delete from a list of values ### Delete from a list of values
```javascript ```ts
const to_remove = [1, 5]; const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`) await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1 await tbl.countRows() // Returns 1
@@ -609,26 +690,49 @@ This can be used to update zero to all rows depending on how many rows match the
2 2 [10.0, 10.0] 2 2 [10.0, 10.0]
``` ```
=== "JavaScript/Typescript" === "Typescript[^1]"
API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update) === "@lancedb/lancedb"
```javascript API Reference: [lancedb.Table.update](../js/classes/Table.md/#update)
const lancedb = require("vectordb");
const db = await lancedb.connect("./.lancedb"); ```ts
import * as lancedb from "@lancedb/lancedb";
const data = [ const db = await lancedb.connect("./.lancedb");
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} }) const data = [
``` {x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1. await tbl.update({vector: [10, 10]}, { where: "x = 2"})
```
=== "vectordb (deprecated)"
API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update)
```ts
const lancedb = require("vectordb");
const db = await lancedb.connect("./.lancedb");
const data = [
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
```
#### Updating using a sql query
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python" === "Python"
@@ -647,11 +751,17 @@ The `values` parameter is used to provide the new values for the columns as lite
2 3 [10.0, 10.0] 2 3 [10.0, 10.0]
``` ```
=== "JavaScript/Typescript" === "Typescript[^1]"
```javascript === "@lancedb/lancedb"
await tbl.update({ valuesSql: { x: "x + 1" } })
``` Coming Soon!
=== "vectordb (deprecated)"
```ts
await tbl.update({ valuesSql: { x: "x + 1" } })
```
!!! info "Note" !!! info "Note"
@@ -672,7 +782,7 @@ Use the `drop_table()` method on the database to remove a table.
By default, if the table does not exist an exception is raised. To suppress this, By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`. you can pass in `ignore_missing=True`.
=== "Javascript/Typescript" === "TypeScript"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table" --8<-- "docs/src/basic_legacy.ts:drop_table"
@@ -726,18 +836,18 @@ There are three possible settings for `read_consistency_interval`:
table.checkout_latest() table.checkout_latest()
``` ```
=== "JavaScript/Typescript" === "Typescript[^1]"
To set strong consistency, use `0`: To set strong consistency, use `0`:
```javascript ```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 }); const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table"); const table = await db.openTable("my_table");
``` ```
For eventual consistency, specify the update interval as seconds: For eventual consistency, specify the update interval as seconds:
```javascript ```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 }); const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table"); const table = await db.openTable("my_table");
``` ```
@@ -749,3 +859,5 @@ There are three possible settings for `read_consistency_interval`:
## What's next? ## What's next?
Learn the best practices on creating an ANN index and getting the most out of it. Learn the best practices on creating an ANN index and getting the most out of it.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

View File

@@ -1,4 +1,7 @@
## Improving retriever performance ## Improving retriever performance
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers. VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
There are serveral ways to improve the performance of retrievers. Some of the common techniques are: There are serveral ways to improve the performance of retrievers. Some of the common techniques are:

View File

@@ -1,4 +1,6 @@
Continuing from the previous example, we can now rerank the results using more complex rerankers. Continuing from the previous section, we can now rerank the results using more complex rerankers.
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
## Reranking search results ## Reranking search results
You can rerank any search results using a reranker. The syntax for reranking is as follows: You can rerank any search results using a reranker. The syntax for reranking is as follows:

View File

@@ -0,0 +1,82 @@
## Finetuning the Embedding Model
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model.
We'll use the same dataset as in the previous sections. Start off by splitting the dataset into training and validation sets:
```python
from sklearn.model_selection import train_test_split
train_df, validation_df = train_test_split("data_qa.csv", test_size=0.2, random_state=42)
train_df.to_csv("data_train.csv", index=False)
validation_df.to_csv("data_val.csv", index=False)
```
You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model.
Then parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node.
```python
from llama_index.core.node_parser import SentenceSplitter
from llama_index.readers.file import PagedCSVReader
from llama_index.finetuning import generate_qa_embedding_pairs
from llama_index.core.evaluation import EmbeddingQAFinetuneDataset
def load_corpus(file):
loader = PagedCSVReader(encoding="utf-8")
docs = loader.load_data(file=Path(file))
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(docs)
return nodes
from llama_index.llms.openai import OpenAI
train_dataset = generate_qa_embedding_pairs(
llm=OpenAI(model="gpt-3.5-turbo"), nodes=train_nodes, verbose=False
)
val_dataset = generate_qa_embedding_pairs(
llm=OpenAI(model="gpt-3.5-turbo"), nodes=val_nodes, verbose=False
)
```
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model.
```python
from llama_index.finetuning import SentenceTransformersFinetuneEngine
finetune_engine = SentenceTransformersFinetuneEngine(
train_dataset,
model_id="BAAI/bge-small-en-v1.5",
model_output_path="tuned_model",
val_dataset=val_dataset,
)
finetune_engine.finetune()
embed_model = finetune_engine.get_finetuned_model()
```
This saves the fine tuned embedding model in `tuned_model` folder. This al
# Evaluation results
In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever.
On performing the same hit-rate evaluation as before, we see a significant improvement in the hit-rate across all query types.
### Baseline
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.640 |
| Full-text Search | 0.595 |
| Reranked Vector Search | 0.677 |
| Reranked Full-text Search | 0.672 |
| Hybrid Search (w/ CohereReranker) | 0.759|
### Fine-tuned model ( 2 iterations )
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.672 |
| Full-text Search | 0.595 |
| Reranked Vector Search | 0.754 |
| Reranked Full-text Search | 0.672|
| Hybrid Search (w/ CohereReranker) | 0.768 |

View File

@@ -2,7 +2,7 @@
![Illustration](../assets/langchain.png) ![Illustration](../assets/langchain.png)
## Quick Start ## Quick Start
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model. You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model. Checkout Complete example here - [LangChain demo](../notebooks/langchain_example.ipynb)
```python ```python
import os import os
from langchain.document_loaders import TextLoader from langchain.document_loaders import TextLoader
@@ -38,6 +38,8 @@ The exhaustive list of parameters for `LanceDB` vector store are :
- `api_key`: (Optional) API key to use for LanceDB cloud database. Defaults to `None`. - `api_key`: (Optional) API key to use for LanceDB cloud database. Defaults to `None`.
- `region`: (Optional) Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`. - `region`: (Optional) Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`.
- `mode`: (Optional) Mode to use for adding data to the table. Defaults to `'overwrite'`. - `mode`: (Optional) Mode to use for adding data to the table. Defaults to `'overwrite'`.
- `reranker`: (Optional) The reranker to use for LanceDB.
- `relevance_score_fn`: (Optional[Callable[[float], float]]) Langchain relevance score function to be used. Defaults to `None`.
```python ```python
db_url = "db://lang_test" # url of db you created db_url = "db://lang_test" # url of db you created
@@ -54,12 +56,14 @@ vector_store = LanceDB(
``` ```
### Methods ### Methods
To add texts and store respective embeddings automatically:
##### add_texts() ##### add_texts()
- `texts`: `Iterable` of strings to add to the vectorstore. - `texts`: `Iterable` of strings to add to the vectorstore.
- `metadatas`: Optional `list[dict()]` of metadatas associated with the texts. - `metadatas`: Optional `list[dict()]` of metadatas associated with the texts.
- `ids`: Optional `list` of ids to associate with the texts. - `ids`: Optional `list` of ids to associate with the texts.
- `kwargs`: `Any`
This method adds texts and stores respective embeddings automatically.
```python ```python
vector_store.add_texts(texts = ['test_123'], metadatas =[{'source' :'wiki'}]) vector_store.add_texts(texts = ['test_123'], metadatas =[{'source' :'wiki'}])
@@ -74,7 +78,6 @@ pd_df.to_csv("docsearch.csv", index=False)
# you can also create a new vector store object using an older connection object: # you can also create a new vector store object using an older connection object:
vector_store = LanceDB(connection=tbl, embedding=embeddings) vector_store = LanceDB(connection=tbl, embedding=embeddings)
``` ```
For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
##### create_index() ##### create_index()
- `col_name`: `Optional[str] = None` - `col_name`: `Optional[str] = None`
- `vector_col`: `Optional[str] = None` - `vector_col`: `Optional[str] = None`
@@ -82,6 +85,8 @@ For index creation make sure your table has enough data in it. An ANN index is u
- `num_sub_vectors`: `Optional[int] = 96` - `num_sub_vectors`: `Optional[int] = 96`
- `index_cache_size`: `Optional[int] = None` - `index_cache_size`: `Optional[int] = None`
This method creates an index for the vector store. For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
```python ```python
# for creating vector index # for creating vector index
vector_store.create_index(vector_col='vector', metric = 'cosine') vector_store.create_index(vector_col='vector', metric = 'cosine')
@@ -90,3 +95,107 @@ vector_store.create_index(vector_col='vector', metric = 'cosine')
vector_store.create_index(col_name='text') vector_store.create_index(col_name='text')
``` ```
##### similarity_search()
- `query`: `str`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `fts`: `Optional[bool] = False`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
Return documents most similar to the query without relevance scores
```python
docs = docsearch.similarity_search(query)
print(docs[0].page_content)
```
##### similarity_search_by_vector()
- `embedding`: `List[float]`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
Returns documents most similar to the query vector.
```python
docs = docsearch.similarity_search_by_vector(query)
print(docs[0].page_content)
```
##### similarity_search_with_score()
- `query`: `str`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `kwargs`: `Any`
Returns documents most similar to the query string with relevance scores, gets called by base class's `similarity_search_with_relevance_scores` which selects relevance score based on our `_select_relevance_score_fn`.
```python
docs = docsearch.similarity_search_with_relevance_scores(query)
print("relevance score - ", docs[0][1])
print("text- ", docs[0][0].page_content[:1000])
```
##### similarity_search_by_vector_with_relevance_scores()
- `embedding`: `List[float]`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
Return documents most similar to the query vector with relevance scores.
Relevance score
```python
docs = docsearch.similarity_search_by_vector_with_relevance_scores(query_embedding)
print("relevance score - ", docs[0][1])
print("text- ", docs[0][0].page_content[:1000])
```
##### max_marginal_relevance_search()
- `query`: `str`
- `k`: `Optional[int] = None`
- `fetch_k` : Number of Documents to fetch to pass to MMR algorithm, `Optional[int] = None`
- `lambda_mult`: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5. `float = 0.5`
- `filter`: `Optional[Dict[str, str]] = None`
- `kwargs`: `Any`
Returns docs selected using the maximal marginal relevance(MMR).
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
Similarly, `max_marginal_relevance_search_by_vector()` function returns docs most similar to the embedding passed to the function using MMR. instead of a string query you need to pass the embedding to be searched for.
```python
result = docsearch.max_marginal_relevance_search(
query="text"
)
result_texts = [doc.page_content for doc in result]
print(result_texts)
## search by vector :
result = docsearch.max_marginal_relevance_search_by_vector(
embeddings.embed_query("text")
)
result_texts = [doc.page_content for doc in result]
print(result_texts)
```
##### add_images()
- `uris` : File path to the image. `List[str]`.
- `metadatas` : Optional list of metadatas. `(Optional[List[dict]], optional)`
- `ids` : Optional list of IDs. `(Optional[List[str]], optional)`
Adds images by automatically creating their embeddings and adds them to the vectorstore.
```python
vec_store.add_images(uris=image_uris)
# here image_uris are local fs paths to the images.
```

View File

@@ -2,7 +2,8 @@
![Illustration](../assets/llama-index.jpg) ![Illustration](../assets/llama-index.jpg)
## Quick start ## Quick start
You would need to install the integration via `pip install llama-index-vector-stores-lancedb` in order to use it. You can run the below script to try it out : You would need to install the integration via `pip install llama-index-vector-stores-lancedb` in order to use it.
You can run the below script to try it out :
```python ```python
import logging import logging
import sys import sys
@@ -43,6 +44,8 @@ retriever = index.as_retriever(vector_store_kwargs={"where": lance_filter})
response = retriever.retrieve("What did the author do growing up?") response = retriever.retrieve("What did the author do growing up?")
``` ```
Checkout Complete example here - [LlamaIndex demo](../notebooks/LlamaIndex_example.ipynb)
### Filtering ### Filtering
For metadata filtering, you can use a Lance SQL-like string filter as demonstrated in the example above. Additionally, you can also filter using the `MetadataFilters` class from LlamaIndex: For metadata filtering, you can use a Lance SQL-like string filter as demonstrated in the example above. Additionally, you can also filter using the `MetadataFilters` class from LlamaIndex:
```python ```python

View File

@@ -1,4 +1,6 @@
@lancedb/lancedb / [Exports](modules.md) **@lancedb/lancedb** • [**Docs**](globals.md)
***
# LanceDB JavaScript SDK # LanceDB JavaScript SDK
@@ -45,29 +47,20 @@ npm run test
### Running lint / format ### Running lint / format
LanceDb uses eslint for linting. VSCode does not need any plugins to use eslint. However, it LanceDb uses [biome](https://biomejs.dev/) for linting and formatting. if you are using VSCode you will need to install the official [Biome](https://marketplace.visualstudio.com/items?itemName=biomejs.biome) extension.
may need some additional configuration. Make sure that eslint.experimental.useFlatConfig is To manually lint your code you can run:
set to true. Also, if your vscode root folder is the repo root then you will need to set
the eslint.workingDirectories to ["nodejs"]. To manually lint your code you can run:
```sh ```sh
npm run lint npm run lint
``` ```
LanceDb uses prettier for formatting. If you are using VSCode you will need to install the to automatically fix all fixable issues:
"Prettier - Code formatter" extension. You should then configure it to be the default formatter
for typescript and you should enable format on save. To manually check your code's format you
can run:
```sh ```sh
npm run chkformat npm run lint-fix
``` ```
If you need to manually format your code you can run: If you do not have your workspace root set to the `nodejs` directory, unfortunately the extension will not work. You can still run the linting and formatting commands manually.
```sh
npx prettier --write .
```
### Generating docs ### Generating docs

View File

@@ -1,6 +1,10 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Connection [**@lancedb/lancedb**](../README.md) **Docs**
# Class: Connection ***
[@lancedb/lancedb](../globals.md) / Connection
# Class: `abstract` Connection
A LanceDB Connection that allows you to open tables and create new ones. A LanceDB Connection that allows you to open tables and create new ones.
@@ -19,62 +23,21 @@ be closed when they are garbage collected.
Any created tables are independent and will continue to work even if Any created tables are independent and will continue to work even if
the underlying connection has been closed. the underlying connection has been closed.
## Table of contents
### Constructors
- [constructor](Connection.md#constructor)
### Properties
- [inner](Connection.md#inner)
### Methods
- [close](Connection.md#close)
- [createEmptyTable](Connection.md#createemptytable)
- [createTable](Connection.md#createtable)
- [display](Connection.md#display)
- [dropTable](Connection.md#droptable)
- [isOpen](Connection.md#isopen)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Constructors ## Constructors
### constructor ### new Connection()
**new Connection**(`inner`): [`Connection`](Connection.md) > **new Connection**(): [`Connection`](Connection.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Connection` |
#### Returns #### Returns
[`Connection`](Connection.md) [`Connection`](Connection.md)
#### Defined in
[connection.ts:72](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L72)
## Properties
### inner
`Readonly` **inner**: `Connection`
#### Defined in
[connection.ts:70](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L70)
## Methods ## Methods
### close ### close()
**close**(): `void` > `abstract` **close**(): `void`
Close the connection, releasing any underlying resources. Close the connection, releasing any underlying resources.
@@ -86,63 +49,78 @@ Any attempt to use the connection after it is closed will result in an error.
`void` `void`
#### Defined in ***
[connection.ts:88](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L88) ### createEmptyTable()
___ > `abstract` **createEmptyTable**(`name`, `schema`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
### createEmptyTable
**createEmptyTable**(`name`, `schema`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new empty Table Creates a new empty Table
#### Parameters #### Parameters
| Name | Type | Description | **name**: `string`
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. | The name of the table.
| `schema` | `Schema`\<`any`\> | The schema of the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - | **schema**: `SchemaLike`
The schema of the table
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
#### Returns #### Returns
`Promise`\<[`Table`](Table.md)\> `Promise`&lt;[`Table`](Table.md)&gt;
#### Defined in ***
[connection.ts:151](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L151) ### createTable()
___ #### createTable(options)
### createTable > `abstract` **createTable**(`options`): `Promise`&lt;[`Table`](Table.md)&gt;
**createTable**(`name`, `data`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new Table and initialize it with new data. Creates a new Table and initialize it with new data.
#### Parameters ##### Parameters
| Name | Type | Description | **options**: `object` & `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
#### Returns The options object.
`Promise`\<[`Table`](Table.md)\> ##### Returns
#### Defined in `Promise`&lt;[`Table`](Table.md)&gt;
[connection.ts:123](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L123) #### createTable(name, data, options)
___ > `abstract` **createTable**(`name`, `data`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
### display Creates a new Table and initialize it with new data.
**display**(): `string` ##### Parameters
**name**: `string`
The name of the table.
**data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
Non-empty Array of Records
to be inserted into the table
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
##### Returns
`Promise`&lt;[`Table`](Table.md)&gt;
***
### display()
> `abstract` **display**(): `string`
Return a brief description of the connection Return a brief description of the connection
@@ -150,37 +128,29 @@ Return a brief description of the connection
`string` `string`
#### Defined in ***
[connection.ts:93](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L93) ### dropTable()
___ > `abstract` **dropTable**(`name`): `Promise`&lt;`void`&gt;
### dropTable
**dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table. Drop an existing table.
#### Parameters #### Parameters
| Name | Type | Description | **name**: `string`
| :------ | :------ | :------ |
| `name` | `string` | The name of the table to drop. | The name of the table to drop.
#### Returns #### Returns
`Promise`\<`void`\> `Promise`&lt;`void`&gt;
#### Defined in ***
[connection.ts:173](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L173) ### isOpen()
___ > `abstract` **isOpen**(): `boolean`
### isOpen
**isOpen**(): `boolean`
Return true if the connection has not been closed Return true if the connection has not been closed
@@ -188,37 +158,31 @@ Return true if the connection has not been closed
`boolean` `boolean`
#### Defined in ***
[connection.ts:77](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L77) ### openTable()
___ > `abstract` **openTable**(`name`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
### openTable
**openTable**(`name`): `Promise`\<[`Table`](Table.md)\>
Open a table in the database. Open a table in the database.
#### Parameters #### Parameters
| Name | Type | Description | **name**: `string`
| :------ | :------ | :------ |
| `name` | `string` | The name of the table | The name of the table
**options?**: `Partial`&lt;`OpenTableOptions`&gt;
#### Returns #### Returns
`Promise`\<[`Table`](Table.md)\> `Promise`&lt;[`Table`](Table.md)&gt;
#### Defined in ***
[connection.ts:112](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L112) ### tableNames()
___ > `abstract` **tableNames**(`options`?): `Promise`&lt;`string`[]&gt;
### tableNames
**tableNames**(`options?`): `Promise`\<`string`[]\>
List all the table names in this database. List all the table names in this database.
@@ -226,14 +190,11 @@ Tables will be returned in lexicographical order.
#### Parameters #### Parameters
| Name | Type | Description | **options?**: `Partial`&lt;[`TableNamesOptions`](../interfaces/TableNamesOptions.md)&gt;
| :------ | :------ | :------ |
| `options?` | `Partial`\<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)\> | options to control the paging / start point | options to control the
paging / start point
#### Returns #### Returns
`Promise`\<`string`[]\> `Promise`&lt;`string`[]&gt;
#### Defined in
[connection.ts:104](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L104)

View File

@@ -1,57 +1,16 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Index [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / Index
# Class: Index # Class: Index
## Table of contents
### Constructors
- [constructor](Index.md#constructor)
### Properties
- [inner](Index.md#inner)
### Methods
- [btree](Index.md#btree)
- [ivfPq](Index.md#ivfpq)
## Constructors
### constructor
**new Index**(`inner`): [`Index`](Index.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Index` |
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:118](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L118)
## Properties
### inner
`Private` `Readonly` **inner**: `Index`
#### Defined in
[indices.ts:117](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L117)
## Methods ## Methods
### btree ### btree()
**btree**(): [`Index`](Index.md) > `static` **btree**(): [`Index`](Index.md)
Create a btree index Create a btree index
@@ -75,15 +34,11 @@ block size may be added in the future.
[`Index`](Index.md) [`Index`](Index.md)
#### Defined in ***
[indices.ts:175](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L175) ### ivfPq()
___ > `static` **ivfPq**(`options`?): [`Index`](Index.md)
### ivfPq
**ivfPq**(`options?`): [`Index`](Index.md)
Create an IvfPq index Create an IvfPq index
@@ -108,14 +63,8 @@ currently is also a memory intensive operation.
#### Parameters #### Parameters
| Name | Type | **options?**: `Partial`&lt;[`IvfPqOptions`](../interfaces/IvfPqOptions.md)&gt;
| :------ | :------ |
| `options?` | `Partial`\<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)\> |
#### Returns #### Returns
[`Index`](Index.md) [`Index`](Index.md)
#### Defined in
[indices.ts:144](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L144)

View File

@@ -1,46 +1,32 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / MakeArrowTableOptions
# Class: MakeArrowTableOptions # Class: MakeArrowTableOptions
Options to control the makeArrowTable call. Options to control the makeArrowTable call.
## Table of contents
### Constructors
- [constructor](MakeArrowTableOptions.md#constructor)
### Properties
- [dictionaryEncodeStrings](MakeArrowTableOptions.md#dictionaryencodestrings)
- [schema](MakeArrowTableOptions.md#schema)
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
## Constructors ## Constructors
### constructor ### new MakeArrowTableOptions()
**new MakeArrowTableOptions**(`values?`): [`MakeArrowTableOptions`](MakeArrowTableOptions.md) > **new MakeArrowTableOptions**(`values`?): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Parameters #### Parameters
| Name | Type | **values?**: `Partial`&lt;[`MakeArrowTableOptions`](MakeArrowTableOptions.md)&gt;
| :------ | :------ |
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
#### Returns #### Returns
[`MakeArrowTableOptions`](MakeArrowTableOptions.md) [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Defined in
[arrow.ts:100](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L100)
## Properties ## Properties
### dictionaryEncodeStrings ### dictionaryEncodeStrings
**dictionaryEncodeStrings**: `boolean` = `false` > **dictionaryEncodeStrings**: `boolean` = `false`
If true then string columns will be encoded with dictionary encoding If true then string columns will be encoded with dictionary encoding
@@ -50,26 +36,26 @@ data type for individual columns.
If `schema` is provided then this property is ignored. If `schema` is provided then this property is ignored.
#### Defined in ***
[arrow.ts:98](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L98) ### embeddingFunction?
___ > `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
### schema ***
`Optional` **schema**: `Schema`\<`any`\> ### embeddings?
#### Defined in > `optional` **embeddings**: [`EmbeddingFunction`](../namespaces/embedding/classes/EmbeddingFunction.md)&lt;`unknown`, `FunctionOptions`&gt;
[arrow.ts:67](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L67) ***
___ ### schema?
> `optional` **schema**: `SchemaLike`
***
### vectorColumns ### vectorColumns
**vectorColumns**: `Record`\<`string`, [`VectorColumnOptions`](VectorColumnOptions.md)\> > **vectorColumns**: `Record`&lt;`string`, [`VectorColumnOptions`](VectorColumnOptions.md)&gt;
#### Defined in
[arrow.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L85)

View File

@@ -1,48 +1,26 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Query [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / Query
# Class: Query # Class: Query
A builder for LanceDB queries. A builder for LanceDB queries.
## Hierarchy ## Extends
- [`QueryBase`](QueryBase.md)\<`NativeQuery`, [`Query`](Query.md)\> - [`QueryBase`](QueryBase.md)&lt;`NativeQuery`&gt;
**`Query`**
## Table of contents
### Constructors
- [constructor](Query.md#constructor)
### Properties
- [inner](Query.md#inner)
### Methods
- [[asyncIterator]](Query.md#[asynciterator])
- [execute](Query.md#execute)
- [limit](Query.md#limit)
- [nativeExecute](Query.md#nativeexecute)
- [nearestTo](Query.md#nearestto)
- [select](Query.md#select)
- [toArray](Query.md#toarray)
- [toArrow](Query.md#toarrow)
- [where](Query.md#where)
## Constructors ## Constructors
### constructor ### new Query()
**new Query**(`tbl`): [`Query`](Query.md) > **new Query**(`tbl`): [`Query`](Query.md)
#### Parameters #### Parameters
| Name | Type | **tbl**: `Table`
| :------ | :------ |
| `tbl` | `Table` |
#### Returns #### Returns
@@ -50,57 +28,67 @@ A builder for LanceDB queries.
#### Overrides #### Overrides
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor) [`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors)
#### Defined in
[query.ts:329](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L329)
## Properties ## Properties
### inner ### inner
`Protected` **inner**: `Query` > `protected` **inner**: `Query` \| `Promise`&lt;`Query`&gt;
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner) [`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods ## Methods
### [asyncIterator] ### \[asyncIterator\]()
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\> > **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
#### Returns #### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\> `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator]) [`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D)
#### Defined in ***
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154) ### doCall()
___ > `protected` **doCall**(`fn`): `void`
### execute #### Parameters
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md) **fn**
#### Returns
`void`
#### Inherited from
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
***
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
[`RecordBatchIterator`](RecordBatchIterator.md) [`RecordBatchIterator`](RecordBatchIterator.md)
**`See`** #### See
- AsyncIterator - AsyncIterator
of of
@@ -114,17 +102,76 @@ single query)
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute) [`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute)
#### Defined in ***
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149) ### explainPlan()
___ > **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
### limit Generates an explanation of the query execution plan.
**limit**(`limit`): [`Query`](Query.md) #### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
`Promise`&lt;`string`&gt;
A Promise that resolves to a string containing the query execution plan explanation.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
***
### ~~filter()~~
> **filter**(`predicate`): `this`
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
#### Returns
`this`
#### Alias
where
#### Deprecated
Use `where` instead
#### Inherited from
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
***
### limit()
> **limit**(`limit`): `this`
Set the maximum number of results to return. Set the maximum number of results to return.
@@ -133,45 +180,39 @@ called then every valid row from the table will be returned.
#### Parameters #### Parameters
| Name | Type | **limit**: `number`
| :------ | :------ |
| `limit` | `number` |
#### Returns #### Returns
[`Query`](Query.md) `this`
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit) [`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit)
#### Defined in ***
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129) ### nativeExecute()
___ > `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
### nativeExecute #### Parameters
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\> **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`\<`RecordBatchIterator`\> `Promise`&lt;`RecordBatchIterator`&gt;
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute) [`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute)
#### Defined in ***
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134) ### nearestTo()
___ > **nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
### nearestTo
**nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
Find the nearest vectors to the given query vector. Find the nearest vectors to the given query vector.
@@ -191,15 +232,13 @@ If there is more than one vector column you must use
#### Parameters #### Parameters
| Name | Type | **vector**: `IntoVector`
| :------ | :------ |
| `vector` | `unknown` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
**`See`** #### See
- [VectorQuery#column](VectorQuery.md#column) to specify which column you would like - [VectorQuery#column](VectorQuery.md#column) to specify which column you would like
to compare with. to compare with.
@@ -223,15 +262,11 @@ Vector searches always have a `limit`. If `limit` has not been called then
a default `limit` of 10 will be used. a default `limit` of 10 will be used.
- [Query#limit](Query.md#limit) - [Query#limit](Query.md#limit)
#### Defined in ***
[query.ts:370](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L370) ### select()
___ > **select**(`columns`): `this`
### select
**select**(`columns`): [`Query`](Query.md)
Return only the specified columns. Return only the specified columns.
@@ -255,15 +290,13 @@ input to this method would be:
#### Parameters #### Parameters
| Name | Type | **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns #### Returns
[`Query`](Query.md) `this`
**`Example`** #### Example
```ts ```ts
new Map([["combined", "a + b"], ["c", "c"]]) new Map([["combined", "a + b"], ["c", "c"]])
@@ -278,61 +311,57 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[select](QueryBase.md#select) [`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select)
#### Defined in ***
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108) ### toArray()
___ > **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects. Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`\<`unknown`[]\> `Promise`&lt;`any`[]&gt;
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray) [`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray)
#### Defined in ***
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169) ### toArrow()
___ > **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`\<`Table`\<`any`\>\> `Promise`&lt;`Table`&lt;`any`&gt;&gt;
**`See`** #### See
ArrowTable. ArrowTable.
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow) [`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow)
#### Defined in ***
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160) ### where()
___ > **where**(`predicate`): `this`
### where
**where**(`predicate`): [`Query`](Query.md)
A filter statement to be applied to this query. A filter statement to be applied to this query.
@@ -340,15 +369,13 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters #### Parameters
| Name | Type | **predicate**: `string`
| :------ | :------ |
| `predicate` | `string` |
#### Returns #### Returns
[`Query`](Query.md) `this`
**`Example`** #### Example
```ts ```ts
x > 10 x > 10
@@ -361,8 +388,4 @@ on the filter column(s).
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[where](QueryBase.md#where) [`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -1,117 +1,91 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / QueryBase [**@lancedb/lancedb**](../README.md) **Docs**
# Class: QueryBase\<NativeQueryType, QueryType\> ***
[@lancedb/lancedb](../globals.md) / QueryBase
# Class: QueryBase&lt;NativeQueryType&gt;
Common methods supported by all query types Common methods supported by all query types
## Type parameters ## Extended by
| Name | Type | - [`Query`](Query.md)
| :------ | :------ | - [`VectorQuery`](VectorQuery.md)
| `NativeQueryType` | extends `NativeQuery` \| `NativeVectorQuery` |
| `QueryType` | `QueryType` |
## Hierarchy ## Type Parameters
- **`QueryBase`** **NativeQueryType** *extends* `NativeQuery` \| `NativeVectorQuery`
↳ [`Query`](Query.md)
↳ [`VectorQuery`](VectorQuery.md)
## Implements ## Implements
- `AsyncIterable`\<`RecordBatch`\> - `AsyncIterable`&lt;`RecordBatch`&gt;
## Table of contents
### Constructors
- [constructor](QueryBase.md#constructor)
### Properties
- [inner](QueryBase.md#inner)
### Methods
- [[asyncIterator]](QueryBase.md#[asynciterator])
- [execute](QueryBase.md#execute)
- [limit](QueryBase.md#limit)
- [nativeExecute](QueryBase.md#nativeexecute)
- [select](QueryBase.md#select)
- [toArray](QueryBase.md#toarray)
- [toArrow](QueryBase.md#toarrow)
- [where](QueryBase.md#where)
## Constructors ## Constructors
### constructor ### new QueryBase()
**new QueryBase**\<`NativeQueryType`, `QueryType`\>(`inner`): [`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\> > `protected` **new QueryBase**&lt;`NativeQueryType`&gt;(`inner`): [`QueryBase`](QueryBase.md)&lt;`NativeQueryType`&gt;
#### Type parameters
| Name | Type |
| :------ | :------ |
| `NativeQueryType` | extends `Query` \| `VectorQuery` |
| `QueryType` | `QueryType` |
#### Parameters #### Parameters
| Name | Type | **inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
| :------ | :------ |
| `inner` | `NativeQueryType` |
#### Returns #### Returns
[`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\> [`QueryBase`](QueryBase.md)&lt;`NativeQueryType`&gt;
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Properties ## Properties
### inner ### inner
`Protected` **inner**: `NativeQueryType` > `protected` **inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods ## Methods
### [asyncIterator] ### \[asyncIterator\]()
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\> > **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
#### Returns #### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\> `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
#### Implementation of #### Implementation of
AsyncIterable.[asyncIterator] `AsyncIterable.[asyncIterator]`
#### Defined in ***
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154) ### doCall()
___ > `protected` **doCall**(`fn`): `void`
### execute #### Parameters
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md) **fn**
#### Returns
`void`
***
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
[`RecordBatchIterator`](RecordBatchIterator.md) [`RecordBatchIterator`](RecordBatchIterator.md)
**`See`** #### See
- AsyncIterator - AsyncIterator
of of
@@ -123,15 +97,66 @@ This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a stream is consumed slowly (this constrains the maximum memory used by a
single query) single query)
#### Defined in ***
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149) ### explainPlan()
___ > **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
### limit Generates an explanation of the query execution plan.
**limit**(`limit`): `QueryType` #### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
`Promise`&lt;`string`&gt;
A Promise that resolves to a string containing the query execution plan explanation.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
```
***
### ~~filter()~~
> **filter**(`predicate`): `this`
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
#### Returns
`this`
#### Alias
where
#### Deprecated
Use `where` instead
***
### limit()
> **limit**(`limit`): `this`
Set the maximum number of results to return. Set the maximum number of results to return.
@@ -140,37 +165,31 @@ called then every valid row from the table will be returned.
#### Parameters #### Parameters
| Name | Type | **limit**: `number`
| :------ | :------ |
| `limit` | `number` |
#### Returns #### Returns
`QueryType` `this`
#### Defined in ***
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129) ### nativeExecute()
___ > `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
### nativeExecute #### Parameters
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\> **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`\<`RecordBatchIterator`\> `Promise`&lt;`RecordBatchIterator`&gt;
#### Defined in ***
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134) ### select()
___ > **select**(`columns`): `this`
### select
**select**(`columns`): `QueryType`
Return only the specified columns. Return only the specified columns.
@@ -194,15 +213,13 @@ input to this method would be:
#### Parameters #### Parameters
| Name | Type | **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns #### Returns
`QueryType` `this`
**`Example`** #### Example
```ts ```ts
new Map([["combined", "a + b"], ["c", "c"]]) new Map([["combined", "a + b"], ["c", "c"]])
@@ -215,51 +232,47 @@ uses `Object.entries` which should preserve the insertion order of the object.
object insertion order is easy to get wrong and `Map` is more foolproof. object insertion order is easy to get wrong and `Map` is more foolproof.
``` ```
#### Defined in ***
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108) ### toArray()
___ > **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects. Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`\<`unknown`[]\> `Promise`&lt;`any`[]&gt;
#### Defined in ***
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169) ### toArrow()
___ > **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`\<`Table`\<`any`\>\> `Promise`&lt;`Table`&lt;`any`&gt;&gt;
**`See`** #### See
ArrowTable. ArrowTable.
#### Defined in ***
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160) ### where()
___ > **where**(`predicate`): `this`
### where
**where**(`predicate`): `QueryType`
A filter statement to be applied to this query. A filter statement to be applied to this query.
@@ -267,15 +280,13 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters #### Parameters
| Name | Type | **predicate**: `string`
| :------ | :------ |
| `predicate` | `string` |
#### Returns #### Returns
`QueryType` `this`
**`Example`** #### Example
```ts ```ts
x > 10 x > 10
@@ -285,7 +296,3 @@ x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index Filtering performance can often be improved by creating a scalar index
on the filter column(s). on the filter column(s).
``` ```
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -1,80 +1,39 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / RecordBatchIterator [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / RecordBatchIterator
# Class: RecordBatchIterator # Class: RecordBatchIterator
## Implements ## Implements
- `AsyncIterator`\<`RecordBatch`\> - `AsyncIterator`&lt;`RecordBatch`&gt;
## Table of contents
### Constructors
- [constructor](RecordBatchIterator.md#constructor)
### Properties
- [inner](RecordBatchIterator.md#inner)
- [promisedInner](RecordBatchIterator.md#promisedinner)
### Methods
- [next](RecordBatchIterator.md#next)
## Constructors ## Constructors
### constructor ### new RecordBatchIterator()
**new RecordBatchIterator**(`promise?`): [`RecordBatchIterator`](RecordBatchIterator.md) > **new RecordBatchIterator**(`promise`?): [`RecordBatchIterator`](RecordBatchIterator.md)
#### Parameters #### Parameters
| Name | Type | **promise?**: `Promise`&lt;`RecordBatchIterator`&gt;
| :------ | :------ |
| `promise?` | `Promise`\<`RecordBatchIterator`\> |
#### Returns #### Returns
[`RecordBatchIterator`](RecordBatchIterator.md) [`RecordBatchIterator`](RecordBatchIterator.md)
#### Defined in
[query.ts:27](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L27)
## Properties
### inner
`Private` `Optional` **inner**: `RecordBatchIterator`
#### Defined in
[query.ts:25](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L25)
___
### promisedInner
`Private` `Optional` **promisedInner**: `Promise`\<`RecordBatchIterator`\>
#### Defined in
[query.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L24)
## Methods ## Methods
### next ### next()
**next**(): `Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\> > **next**(): `Promise`&lt;`IteratorResult`&lt;`RecordBatch`&lt;`any`&gt;, `any`&gt;&gt;
#### Returns #### Returns
`Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\> `Promise`&lt;`IteratorResult`&lt;`RecordBatch`&lt;`any`&gt;, `any`&gt;&gt;
#### Implementation of #### Implementation of
AsyncIterator.next `AsyncIterator.next`
#### Defined in
[query.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L33)

View File

@@ -1,6 +1,10 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Table [**@lancedb/lancedb**](../README.md) **Docs**
# Class: Table ***
[@lancedb/lancedb](../globals.md) / Table
# Class: `abstract` Table
A Table is a collection of Records in a LanceDB Database. A Table is a collection of Records in a LanceDB Database.
@@ -13,196 +17,149 @@ further operations.
Closing a table is optional. It not closed, it will be closed when it is garbage Closing a table is optional. It not closed, it will be closed when it is garbage
collected. collected.
## Table of contents
### Constructors
- [constructor](Table.md#constructor)
### Properties
- [inner](Table.md#inner)
### Methods
- [add](Table.md#add)
- [addColumns](Table.md#addcolumns)
- [alterColumns](Table.md#altercolumns)
- [checkout](Table.md#checkout)
- [checkoutLatest](Table.md#checkoutlatest)
- [close](Table.md#close)
- [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex)
- [delete](Table.md#delete)
- [display](Table.md#display)
- [dropColumns](Table.md#dropcolumns)
- [isOpen](Table.md#isopen)
- [listIndices](Table.md#listindices)
- [query](Table.md#query)
- [restore](Table.md#restore)
- [schema](Table.md#schema)
- [update](Table.md#update)
- [vectorSearch](Table.md#vectorsearch)
- [version](Table.md#version)
## Constructors ## Constructors
### constructor ### new Table()
**new Table**(`inner`): [`Table`](Table.md) > **new Table**(): [`Table`](Table.md)
Construct a Table. Internal use only.
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Table` |
#### Returns #### Returns
[`Table`](Table.md) [`Table`](Table.md)
#### Defined in ## Accessors
[table.ts:69](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L69) ### name
## Properties > `get` `abstract` **name**(): `string`
### inner Returns the name of the table
`Private` `Readonly` **inner**: `Table` #### Returns
#### Defined in `string`
[table.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L66)
## Methods ## Methods
### add ### add()
**add**(`data`, `options?`): `Promise`\<`void`\> > `abstract` **add**(`data`, `options`?): `Promise`&lt;`void`&gt;
Insert records into this Table. Insert records into this Table.
#### Parameters #### Parameters
| Name | Type | Description | **data**: [`Data`](../type-aliases/Data.md)
| :------ | :------ | :------ |
| `data` | [`Data`](../modules.md#data) | Records to be inserted into the Table | Records to be inserted into the Table
| `options?` | `Partial`\<[`AddDataOptions`](../interfaces/AddDataOptions.md)\> | - |
**options?**: `Partial`&lt;[`AddDataOptions`](../interfaces/AddDataOptions.md)&gt;
#### Returns #### Returns
`Promise`\<`void`\> `Promise`&lt;`void`&gt;
#### Defined in ***
[table.ts:105](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L105) ### addColumns()
___ > `abstract` **addColumns**(`newColumnTransforms`): `Promise`&lt;`void`&gt;
### addColumns
**addColumns**(`newColumnTransforms`): `Promise`\<`void`\>
Add new columns with defined values. Add new columns with defined values.
#### Parameters #### Parameters
| Name | Type | Description | **newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[]
| :------ | :------ | :------ |
| `newColumnTransforms` | [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[] | pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table. | pairs of column names and
the SQL expression to use to calculate the value of the new column. These
expressions will be evaluated for each row in the table, and can
reference existing columns in the table.
#### Returns #### Returns
`Promise`\<`void`\> `Promise`&lt;`void`&gt;
#### Defined in ***
[table.ts:261](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L261) ### alterColumns()
___ > `abstract` **alterColumns**(`columnAlterations`): `Promise`&lt;`void`&gt;
### alterColumns
**alterColumns**(`columnAlterations`): `Promise`\<`void`\>
Alter the name or nullability of columns. Alter the name or nullability of columns.
#### Parameters #### Parameters
| Name | Type | Description | **columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[]
| :------ | :------ | :------ |
| `columnAlterations` | [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[] | One or more alterations to apply to columns. | One or more alterations to
apply to columns.
#### Returns #### Returns
`Promise`\<`void`\> `Promise`&lt;`void`&gt;
#### Defined in ***
[table.ts:270](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L270) ### checkout()
___ > `abstract` **checkout**(`version`): `Promise`&lt;`void`&gt;
### checkout Checks out a specific version of the table _This is an in-place operation._
**checkout**(`version`): `Promise`\<`void`\> This allows viewing previous versions of the table. If you wish to
keep writing to the dataset starting from an old version, then use
the `restore` function.
Checks out a specific version of the Table Calling this method will set the table into time-travel mode. If you
wish to return to standard mode, call `checkoutLatest`.
Any read operation on the table will now access the data at the checked out version.
As a consequence, calling this method will disable any read consistency interval
that was previously set.
This is a read-only operation that turns the table into a sort of "view"
or "detached head". Other table instances will not be affected. To make the change
permanent you can use the `[Self::restore]` method.
Any operation that modifies the table will fail while the table is in a checked
out state.
To return the table to a normal state use `[Self::checkout_latest]`
#### Parameters #### Parameters
| Name | Type | **version**: `number`
| :------ | :------ |
| `version` | `number` | The version to checkout
#### Returns #### Returns
`Promise`\<`void`\> `Promise`&lt;`void`&gt;
#### Defined in #### Example
[table.ts:317](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L317) ```typescript
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], type: "vector" },
]);
___ console.log(await table.version()); // 1
console.log(table.display());
await table.add([{ vector: [0.5, 0.2], type: "vector" }]);
await table.checkout(1);
console.log(await table.version()); // 2
```
### checkoutLatest ***
**checkoutLatest**(): `Promise`\<`void`\> ### checkoutLatest()
Ensures the table is pointing at the latest version > `abstract` **checkoutLatest**(): `Promise`&lt;`void`&gt;
This can be used to manually update a table when the read_consistency_interval is None Checkout the latest version of the table. _This is an in-place operation._
It can also be used to undo a `[Self::checkout]` operation
The table will be set back into standard mode, and will track the latest
version of the table.
#### Returns #### Returns
`Promise`\<`void`\> `Promise`&lt;`void`&gt;
#### Defined in ***
[table.ts:327](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L327) ### close()
___ > `abstract` **close**(): `void`
### close
**close**(): `void`
Close the table, releasing any underlying resources. Close the table, releasing any underlying resources.
@@ -214,37 +171,27 @@ Any attempt to use the table after it is closed will result in an error.
`void` `void`
#### Defined in ***
[table.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L85) ### countRows()
___ > `abstract` **countRows**(`filter`?): `Promise`&lt;`number`&gt;
### countRows
**countRows**(`filter?`): `Promise`\<`number`\>
Count the total number of rows in the dataset. Count the total number of rows in the dataset.
#### Parameters #### Parameters
| Name | Type | **filter?**: `string`
| :------ | :------ |
| `filter?` | `string` |
#### Returns #### Returns
`Promise`\<`number`\> `Promise`&lt;`number`&gt;
#### Defined in ***
[table.ts:152](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L152) ### createIndex()
___ > `abstract` **createIndex**(`column`, `options`?): `Promise`&lt;`void`&gt;
### createIndex
**createIndex**(`column`, `options?`): `Promise`\<`void`\>
Create an index to speed up queries. Create an index to speed up queries.
@@ -255,73 +202,66 @@ vector and non-vector searches)
#### Parameters #### Parameters
| Name | Type | **column**: `string`
| :------ | :------ |
| `column` | `string` | **options?**: `Partial`&lt;[`IndexOptions`](../interfaces/IndexOptions.md)&gt;
| `options?` | `Partial`\<[`IndexOptions`](../interfaces/IndexOptions.md)\> |
#### Returns #### Returns
`Promise`\<`void`\> `Promise`&lt;`void`&gt;
**`Example`** #### Note
We currently don't support custom named indexes,
The index name will always be `${column}_idx`
#### Examples
```ts ```ts
// If the column has a vector (fixed size list) data type then // If the column has a vector (fixed size list) data type then
// an IvfPq vector index will be created. // an IvfPq vector index will be created.
const table = await conn.openTable("my_table"); const table = await conn.openTable("my_table");
await table.createIndex(["vector"]); await table.createIndex("vector");
``` ```
**`Example`**
```ts ```ts
// For advanced control over vector index creation you can specify // For advanced control over vector index creation you can specify
// the index type and options. // the index type and options.
const table = await conn.openTable("my_table"); const table = await conn.openTable("my_table");
await table.createIndex(["vector"], I) await table.createIndex("vector", {
.ivf_pq({ num_partitions: 128, num_sub_vectors: 16 }) config: lancedb.Index.ivfPq({
.build(); numPartitions: 128,
numSubVectors: 16,
}),
});
``` ```
**`Example`**
```ts ```ts
// Or create a Scalar index // Or create a Scalar index
await table.createIndex("my_float_col").build(); await table.createIndex("my_float_col");
``` ```
#### Defined in ***
[table.ts:184](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L184) ### delete()
___ > `abstract` **delete**(`predicate`): `Promise`&lt;`void`&gt;
### delete
**delete**(`predicate`): `Promise`\<`void`\>
Delete the rows that satisfy the predicate. Delete the rows that satisfy the predicate.
#### Parameters #### Parameters
| Name | Type | **predicate**: `string`
| :------ | :------ |
| `predicate` | `string` |
#### Returns #### Returns
`Promise`\<`void`\> `Promise`&lt;`void`&gt;
#### Defined in ***
[table.ts:157](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L157) ### display()
___ > `abstract` **display**(): `string`
### display
**display**(): `string`
Return a brief description of the table Return a brief description of the table
@@ -329,15 +269,11 @@ Return a brief description of the table
`string` `string`
#### Defined in ***
[table.ts:90](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L90) ### dropColumns()
___ > `abstract` **dropColumns**(`columnNames`): `Promise`&lt;`void`&gt;
### dropColumns
**dropColumns**(`columnNames`): `Promise`\<`void`\>
Drop one or more columns from the dataset Drop one or more columns from the dataset
@@ -348,23 +284,41 @@ then call ``cleanup_files`` to remove the old files.
#### Parameters #### Parameters
| Name | Type | Description | • **columnNames**: `string`[]
| :------ | :------ | :------ |
| `columnNames` | `string`[] | The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a"). | The names of the columns to drop. These can
be nested column references (e.g. "a.b.c") or top-level column names
(e.g. "a").
#### Returns #### Returns
`Promise`\<`void`\> `Promise`&lt;`void`&gt;
#### Defined in ***
[table.ts:285](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L285) ### indexStats()
___ > `abstract` **indexStats**(`name`): `Promise`&lt;`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)&gt;
### isOpen List all the stats of a specified index
▸ **isOpen**(): `boolean` #### Parameters
• **name**: `string`
The name of the index.
#### Returns
`Promise`&lt;`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)&gt;
The stats of the index. If the index does not exist, it will return undefined
***
### isOpen()
> `abstract` **isOpen**(): `boolean`
Return true if the table has not been closed Return true if the table has not been closed
@@ -372,31 +326,79 @@ Return true if the table has not been closed
`boolean` `boolean`
#### Defined in ***
[table.ts:74](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L74) ### listIndices()
___ > `abstract` **listIndices**(): `Promise`&lt;[`IndexConfig`](../interfaces/IndexConfig.md)[]&gt;
### listIndices List all indices that have been created with [Table.createIndex](Table.md#createindex)
▸ **listIndices**(): `Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
List all indices that have been created with Self::create_index
#### Returns #### Returns
`Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\> `Promise`&lt;[`IndexConfig`](../interfaces/IndexConfig.md)[]&gt;
#### Defined in ***
[table.ts:350](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L350) ### mergeInsert()
___ > `abstract` **mergeInsert**(`on`): `MergeInsertBuilder`
### query #### Parameters
**query**(): [`Query`](Query.md) **on**: `string` \| `string`[]
#### Returns
`MergeInsertBuilder`
***
### optimize()
> `abstract` **optimize**(`options`?): `Promise`&lt;`OptimizeStats`&gt;
Optimize the on-disk data and indices for better performance.
Modeled after ``VACUUM`` in PostgreSQL.
Optimization covers three operations:
- Compaction: Merges small files into larger ones
- Prune: Removes old versions of the dataset
- Index: Optimizes the indices, adding new data to existing indices
Experimental API
----------------
The optimization process is undergoing active development and may change.
Our goal with these changes is to improve the performance of optimization and
reduce the complexity.
That being said, it is essential today to run optimize if you want the best
performance. It should be stable and safe to use in production, but it our
hope that the API may be simplified (or not even need to be called) in the
future.
The frequency an application shoudl call optimize is based on the frequency of
data modifications. If data is frequently added, deleted, or updated then
optimize should be run frequently. A good rule of thumb is to run optimize if
you have added or modified 100,000 or more records or run more than 20 data
modification operations.
#### Parameters
• **options?**: `Partial`&lt;`OptimizeOptions`&gt;
#### Returns
`Promise`&lt;`OptimizeStats`&gt;
***
### query()
> `abstract` **query**(): [`Query`](Query.md)
Create a [Query](Query.md) Builder. Create a [Query](Query.md) Builder.
@@ -406,8 +408,7 @@ returned by this method can be used to control the query using filtering,
vector similarity, sorting, and more. vector similarity, sorting, and more.
Note: By default, all columns are returned. For best performance, you should Note: By default, all columns are returned. For best performance, you should
only fetch the columns you need. See [`Query::select_with_projection`] for only fetch the columns you need.
more details.
When appropriate, various indices and statistics based pruning will be used to When appropriate, various indices and statistics based pruning will be used to
accelerate the query. accelerate the query.
@@ -418,21 +419,22 @@ accelerate the query.
A builder that can be used to parameterize the query A builder that can be used to parameterize the query
**`Example`** #### Examples
```ts ```ts
// SQL-style filtering // SQL-style filtering
// //
// This query will return up to 1000 rows whose value in the `id` column // This query will return up to 1000 rows whose value in the `id` column
// is greater than 5. LanceDb supports a broad set of filtering functions. // is greater than 5. LanceDb supports a broad set of filtering functions.
for await (const batch of table.query() for await (const batch of table
.filter("id > 1").select(["id"]).limit(20)) { .query()
console.log(batch); .where("id > 1")
.select(["id"])
.limit(20)) {
console.log(batch);
} }
``` ```
**`Example`**
```ts ```ts
// Vector Similarity Search // Vector Similarity Search
// //
@@ -440,18 +442,17 @@ for await (const batch of table.query()
// closest to the query vector [1.0, 2.0, 3.0]. If an index has been created // closest to the query vector [1.0, 2.0, 3.0]. If an index has been created
// on the "vector" column then this will perform an ANN search. // on the "vector" column then this will perform an ANN search.
// //
// The `refine_factor` and `nprobes` methods are used to control the recall / // The `refineFactor` and `nprobes` methods are used to control the recall /
// latency tradeoff of the search. // latency tradeoff of the search.
for await (const batch of table.query() for await (const batch of table
.nearestTo([1, 2, 3]) .query()
.refineFactor(5).nprobe(10) .where("id > 1")
.limit(10)) { .select(["id"])
console.log(batch); .limit(20)) {
console.log(batch);
} }
``` ```
**`Example`**
```ts ```ts
// Scan the full dataset // Scan the full dataset
// //
@@ -461,15 +462,11 @@ for await (const batch of table.query()) {
} }
``` ```
#### Defined in ***
[table.ts:238](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L238) ### restore()
___ > `abstract` **restore**(): `Promise`&lt;`void`&gt;
### restore
▸ **restore**(): `Promise`\<`void`\>
Restore the table to the currently checked out version Restore the table to the currently checked out version
@@ -484,33 +481,121 @@ out state and the read_consistency_interval, if any, will apply.
#### Returns #### Returns
`Promise`\<`void`\> `Promise`&lt;`void`&gt;
#### Defined in ***
[table.ts:343](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L343) ### schema()
___ > `abstract` **schema**(): `Promise`&lt;`Schema`&lt;`any`&gt;&gt;
### schema
▸ **schema**(): `Promise`\<`Schema`\<`any`\>\>
Get the schema of the table. Get the schema of the table.
#### Returns #### Returns
`Promise`\<`Schema`\<`any`\>\> `Promise`&lt;`Schema`&lt;`any`&gt;&gt;
#### Defined in ***
[table.ts:95](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L95) ### search()
___ #### search(query)
### update > `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md)
▸ **update**(`updates`, `options?`): `Promise`\<`void`\> Create a search query to find the nearest neighbors
of the given query vector
##### Parameters
• **query**: `string`
the query. This will be converted to a vector using the table's provided embedding function
##### Returns
[`VectorQuery`](VectorQuery.md)
##### Note
If no embedding functions are defined in the table, this will error when collecting the results.
#### search(query)
> `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md)
Create a search query to find the nearest neighbors
of the given query vector
##### Parameters
• **query**: `IntoVector`
the query vector
##### Returns
[`VectorQuery`](VectorQuery.md)
***
### toArrow()
> `abstract` **toArrow**(): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
Return the table as an arrow table
#### Returns
`Promise`&lt;`Table`&lt;`any`&gt;&gt;
***
### update()
#### update(opts)
> `abstract` **update**(`opts`): `Promise`&lt;`void`&gt;
Update existing records in the Table
##### Parameters
• **opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
##### Returns
`Promise`&lt;`void`&gt;
##### Example
```ts
table.update({where:"x = 2", values:{"vector": [10, 10]}})
```
#### update(opts)
> `abstract` **update**(`opts`): `Promise`&lt;`void`&gt;
Update existing records in the Table
##### Parameters
• **opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
##### Returns
`Promise`&lt;`void`&gt;
##### Example
```ts
table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
```
#### update(updates, options)
> `abstract` **update**(`updates`, `options`?): `Promise`&lt;`void`&gt;
Update existing records in the Table Update existing records in the Table
@@ -527,26 +612,32 @@ you are updating many rows (with different ids) then you will get
better performance with a single [`merge_insert`] call instead of better performance with a single [`merge_insert`] call instead of
repeatedly calilng this method. repeatedly calilng this method.
#### Parameters ##### Parameters
| Name | Type | Description | • **updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
| :------ | :------ | :------ |
| `updates` | `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> | the columns to update Keys in the map should specify the name of the column to update. Values in the map provide the new value of the column. These can be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions based on the row being updated (e.g. "my_col + 1") |
| `options?` | `Partial`\<[`UpdateOptions`](../interfaces/UpdateOptions.md)\> | additional options to control the update behavior |
#### Returns the
columns to update
`Promise`\<`void`\> Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
#### Defined in • **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
[table.ts:137](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L137) additional options to control
the update behavior
___ ##### Returns
### vectorSearch `Promise`&lt;`void`&gt;
▸ **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md) ***
### vectorSearch()
> `abstract` **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
Search the table with a given query vector. Search the table with a given query vector.
@@ -556,39 +647,50 @@ by `query`.
#### Parameters #### Parameters
| Name | Type | • **vector**: `IntoVector`
| :------ | :------ |
| `vector` | `unknown` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
**`See`** #### See
[Query#nearestTo](Query.md#nearestto) for more details. [Query#nearestTo](Query.md#nearestto) for more details.
#### Defined in ***
[table.ts:249](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L249) ### version()
___ > `abstract` **version**(): `Promise`&lt;`number`&gt;
### version
▸ **version**(): `Promise`\<`number`\>
Retrieve the version of the table Retrieve the version of the table
LanceDb supports versioning. Every operation that modifies the table increases #### Returns
version. As long as a version hasn't been deleted you can `[Self::checkout]` that
version to view the data at that point. In addition, you can `[Self::restore]` the `Promise`&lt;`number`&gt;
version to replace the current table with a previous version.
***
### parseTableData()
> `static` **parseTableData**(`data`, `options`?, `streaming`?): `Promise`&lt;`object`&gt;
#### Parameters
• **data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
• **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
• **streaming?**: `boolean` = `false`
#### Returns #### Returns
`Promise`\<`number`\> `Promise`&lt;`object`&gt;
#### Defined in ##### buf
[table.ts:297](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L297) > **buf**: `Buffer`
##### mode
> **mode**: `string`

View File

@@ -1,45 +1,29 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorColumnOptions [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / VectorColumnOptions
# Class: VectorColumnOptions # Class: VectorColumnOptions
## Table of contents
### Constructors
- [constructor](VectorColumnOptions.md#constructor)
### Properties
- [type](VectorColumnOptions.md#type)
## Constructors ## Constructors
### constructor ### new VectorColumnOptions()
**new VectorColumnOptions**(`values?`): [`VectorColumnOptions`](VectorColumnOptions.md) > **new VectorColumnOptions**(`values`?): [`VectorColumnOptions`](VectorColumnOptions.md)
#### Parameters #### Parameters
| Name | Type | **values?**: `Partial`&lt;[`VectorColumnOptions`](VectorColumnOptions.md)&gt;
| :------ | :------ |
| `values?` | `Partial`\<[`VectorColumnOptions`](VectorColumnOptions.md)\> |
#### Returns #### Returns
[`VectorColumnOptions`](VectorColumnOptions.md) [`VectorColumnOptions`](VectorColumnOptions.md)
#### Defined in
[arrow.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L49)
## Properties ## Properties
### type ### type
**type**: `Float`\<`Floats`\> > **type**: `Float`&lt;`Floats`&gt;
Vector column type. Vector column type.
#### Defined in
[arrow.ts:47](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L47)

View File

@@ -1,4 +1,8 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorQuery [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / VectorQuery
# Class: VectorQuery # Class: VectorQuery
@@ -6,50 +10,19 @@ A builder used to construct a vector search
This builder can be reused to execute the query many times. This builder can be reused to execute the query many times.
## Hierarchy ## Extends
- [`QueryBase`](QueryBase.md)\<`NativeVectorQuery`, [`VectorQuery`](VectorQuery.md)\> - [`QueryBase`](QueryBase.md)&lt;`NativeVectorQuery`&gt;
**`VectorQuery`**
## Table of contents
### Constructors
- [constructor](VectorQuery.md#constructor)
### Properties
- [inner](VectorQuery.md#inner)
### Methods
- [[asyncIterator]](VectorQuery.md#[asynciterator])
- [bypassVectorIndex](VectorQuery.md#bypassvectorindex)
- [column](VectorQuery.md#column)
- [distanceType](VectorQuery.md#distancetype)
- [execute](VectorQuery.md#execute)
- [limit](VectorQuery.md#limit)
- [nativeExecute](VectorQuery.md#nativeexecute)
- [nprobes](VectorQuery.md#nprobes)
- [postfilter](VectorQuery.md#postfilter)
- [refineFactor](VectorQuery.md#refinefactor)
- [select](VectorQuery.md#select)
- [toArray](VectorQuery.md#toarray)
- [toArrow](VectorQuery.md#toarrow)
- [where](VectorQuery.md#where)
## Constructors ## Constructors
### constructor ### new VectorQuery()
**new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md) > **new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
#### Parameters #### Parameters
| Name | Type | **inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
| :------ | :------ |
| `inner` | `VectorQuery` |
#### Returns #### Returns
@@ -57,49 +30,37 @@ This builder can be reused to execute the query many times.
#### Overrides #### Overrides
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor) [`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors)
#### Defined in
[query.ts:189](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L189)
## Properties ## Properties
### inner ### inner
`Protected` **inner**: `VectorQuery` > `protected` **inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner) [`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods ## Methods
### [asyncIterator] ### \[asyncIterator\]()
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\> > **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
#### Returns #### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\> `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator]) [`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D)
#### Defined in ***
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154) ### bypassVectorIndex()
___ > **bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
### bypassVectorIndex
**bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
If this is called then any vector index is skipped If this is called then any vector index is skipped
@@ -113,15 +74,11 @@ calculate your recall to select an appropriate value for nprobes.
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
#### Defined in ***
[query.ts:321](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L321) ### column()
___ > **column**(`column`): [`VectorQuery`](VectorQuery.md)
### column
**column**(`column`): [`VectorQuery`](VectorQuery.md)
Set the vector column to query Set the vector column to query
@@ -130,30 +87,24 @@ the call to
#### Parameters #### Parameters
| Name | Type | **column**: `string`
| :------ | :------ |
| `column` | `string` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
**`See`** #### See
[Query#nearestTo](Query.md#nearestto) [Query#nearestTo](Query.md#nearestto)
This parameter must be specified if the table has more than one column This parameter must be specified if the table has more than one column
whose data type is a fixed-size-list of floats. whose data type is a fixed-size-list of floats.
#### Defined in ***
[query.ts:229](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L229) ### distanceType()
___ > **distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
### distanceType
**distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
Set the distance metric to use Set the distance metric to use
@@ -163,15 +114,13 @@ use. See
#### Parameters #### Parameters
| Name | Type | **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
| :------ | :------ |
| `distanceType` | `string` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
**`See`** #### See
[IvfPqOptions.distanceType](../interfaces/IvfPqOptions.md#distancetype) for more details on the different [IvfPqOptions.distanceType](../interfaces/IvfPqOptions.md#distancetype) for more details on the different
distance metrics available. distance metrics available.
@@ -182,23 +131,41 @@ invalid.
By default "l2" is used. By default "l2" is used.
#### Defined in ***
[query.ts:248](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L248) ### doCall()
___ > `protected` **doCall**(`fn`): `void`
### execute #### Parameters
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md) **fn**
#### Returns
`void`
#### Inherited from
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
***
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
[`RecordBatchIterator`](RecordBatchIterator.md) [`RecordBatchIterator`](RecordBatchIterator.md)
**`See`** #### See
- AsyncIterator - AsyncIterator
of of
@@ -212,17 +179,76 @@ single query)
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute) [`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute)
#### Defined in ***
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149) ### explainPlan()
___ > **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
### limit Generates an explanation of the query execution plan.
**limit**(`limit`): [`VectorQuery`](VectorQuery.md) #### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
`Promise`&lt;`string`&gt;
A Promise that resolves to a string containing the query execution plan explanation.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
***
### ~~filter()~~
> **filter**(`predicate`): `this`
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
#### Returns
`this`
#### Alias
where
#### Deprecated
Use `where` instead
#### Inherited from
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
***
### limit()
> **limit**(`limit`): `this`
Set the maximum number of results to return. Set the maximum number of results to return.
@@ -231,45 +257,39 @@ called then every valid row from the table will be returned.
#### Parameters #### Parameters
| Name | Type | **limit**: `number`
| :------ | :------ |
| `limit` | `number` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) `this`
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit) [`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit)
#### Defined in ***
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129) ### nativeExecute()
___ > `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
### nativeExecute #### Parameters
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\> **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`\<`RecordBatchIterator`\> `Promise`&lt;`RecordBatchIterator`&gt;
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute) [`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute)
#### Defined in ***
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134) ### nprobes()
___ > **nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
### nprobes
**nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
Set the number of partitions to search (probe) Set the number of partitions to search (probe)
@@ -294,23 +314,17 @@ you the desired recall.
#### Parameters #### Parameters
| Name | Type | **nprobes**: `number`
| :------ | :------ |
| `nprobes` | `number` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
#### Defined in ***
[query.ts:215](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L215) ### postfilter()
___ > **postfilter**(): [`VectorQuery`](VectorQuery.md)
### postfilter
**postfilter**(): [`VectorQuery`](VectorQuery.md)
If this is called then filtering will happen after the vector search instead of If this is called then filtering will happen after the vector search instead of
before. before.
@@ -333,20 +347,16 @@ Post filtering happens during the "refine stage" (described in more detail in
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
**`See`** #### See
[VectorQuery#refineFactor](VectorQuery.md#refinefactor)). This means that setting a higher refine [VectorQuery#refineFactor](VectorQuery.md#refinefactor)). This means that setting a higher refine
factor can often help restore some of the results lost by post filtering. factor can often help restore some of the results lost by post filtering.
#### Defined in ***
[query.ts:307](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L307) ### refineFactor()
___ > **refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
### refineFactor
**refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
A multiplier to control how many additional rows are taken during the refine step A multiplier to control how many additional rows are taken during the refine step
@@ -378,23 +388,17 @@ distance between the query vector and the actual uncompressed vector.
#### Parameters #### Parameters
| Name | Type | **refineFactor**: `number`
| :------ | :------ |
| `refineFactor` | `number` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
#### Defined in ***
[query.ts:282](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L282) ### select()
___ > **select**(`columns`): `this`
### select
**select**(`columns`): [`VectorQuery`](VectorQuery.md)
Return only the specified columns. Return only the specified columns.
@@ -418,15 +422,13 @@ input to this method would be:
#### Parameters #### Parameters
| Name | Type | **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) `this`
**`Example`** #### Example
```ts ```ts
new Map([["combined", "a + b"], ["c", "c"]]) new Map([["combined", "a + b"], ["c", "c"]])
@@ -441,61 +443,57 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[select](QueryBase.md#select) [`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select)
#### Defined in ***
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108) ### toArray()
___ > **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects. Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`\<`unknown`[]\> `Promise`&lt;`any`[]&gt;
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray) [`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray)
#### Defined in ***
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169) ### toArrow()
___ > **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`\<`Table`\<`any`\>\> `Promise`&lt;`Table`&lt;`any`&gt;&gt;
**`See`** #### See
ArrowTable. ArrowTable.
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow) [`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow)
#### Defined in ***
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160) ### where()
___ > **where**(`predicate`): `this`
### where
**where**(`predicate`): [`VectorQuery`](VectorQuery.md)
A filter statement to be applied to this query. A filter statement to be applied to this query.
@@ -503,15 +501,13 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters #### Parameters
| Name | Type | **predicate**: `string`
| :------ | :------ |
| `predicate` | `string` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) `this`
**`Example`** #### Example
```ts ```ts
x > 10 x > 10
@@ -524,8 +520,4 @@ on the filter column(s).
#### Inherited from #### Inherited from
[QueryBase](QueryBase.md).[where](QueryBase.md#where) [`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -1,111 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
[embedding](../modules/embedding.md).OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Implements
- [`EmbeddingFunction`](../interfaces/embedding.EmbeddingFunction.md)\<`string`\>
## Table of contents
### Constructors
- [constructor](embedding.OpenAIEmbeddingFunction.md#constructor)
### Properties
- [\_modelName](embedding.OpenAIEmbeddingFunction.md#_modelname)
- [\_openai](embedding.OpenAIEmbeddingFunction.md#_openai)
- [sourceColumn](embedding.OpenAIEmbeddingFunction.md#sourcecolumn)
### Methods
- [embed](embedding.OpenAIEmbeddingFunction.md#embed)
## Constructors
### constructor
**new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`): [`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Parameters
| Name | Type | Default value |
| :------ | :------ | :------ |
| `sourceColumn` | `string` | `undefined` |
| `openAIKey` | `string` | `undefined` |
| `modelName` | `string` | `"text-embedding-ada-002"` |
#### Returns
[`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Defined in
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L22)
## Properties
### \_modelName
`Private` `Readonly` **\_modelName**: `string`
#### Defined in
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L20)
___
### \_openai
`Private` `Readonly` **\_openai**: `OpenAI`
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L19)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[sourceColumn](../interfaces/embedding.EmbeddingFunction.md#sourcecolumn)
#### Defined in
[embedding/openai.ts:61](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L61)
## Methods
### embed
**embed**(`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `string`[] |
#### Returns
`Promise`\<`number`[][]\>
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[embed](../interfaces/embedding.EmbeddingFunction.md#embed)
#### Defined in
[embedding/openai.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L48)

View File

@@ -0,0 +1,27 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / WriteMode
# Enumeration: WriteMode
Write mode for writing a table.
## Enumeration Members
### Append
> **Append**: `"Append"`
***
### Create
> **Create**: `"Create"`
***
### Overwrite
> **Overwrite**: `"Overwrite"`

View File

@@ -1,43 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteMode
# Enumeration: WriteMode
Write mode for writing a table.
## Table of contents
### Enumeration Members
- [Append](WriteMode.md#append)
- [Create](WriteMode.md#create)
- [Overwrite](WriteMode.md#overwrite)
## Enumeration Members
### Append
**Append** = ``"Append"``
#### Defined in
native.d.ts:69
___
### Create
• **Create** = ``"Create"``
#### Defined in
native.d.ts:68
___
### Overwrite
• **Overwrite** = ``"Overwrite"``
#### Defined in
native.d.ts:70

View File

@@ -0,0 +1,82 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / connect
# Function: connect()
## connect(uri, opts)
> **connect**(`uri`, `opts`?): `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
Connect to a LanceDB instance at the given URI.
Accepted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (LanceDB cloud)
### Parameters
**uri**: `string`
The uri of the database. If the database uri starts
with `db://` then it connects to a remote database.
**opts?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`&gt;
### Returns
`Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
### See
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
### Examples
```ts
const conn = await connect("/path/to/database");
```
```ts
const conn = await connect(
"s3://bucket/path/to/database",
{storageOptions: {timeout: "60s"}
});
```
## connect(opts)
> **connect**(`opts`): `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
Connect to a LanceDB instance at the given URI.
Accepted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (LanceDB cloud)
### Parameters
**opts**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`&gt; & `object`
### Returns
`Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
### See
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
### Example
```ts
const conn = await connect({
uri: "/path/to/database",
storageOptions: {timeout: "60s"}
});
```

View File

@@ -1,103 +1,12 @@
[@lancedb/lancedb](README.md) / Exports [**@lancedb/lancedb**](../README.md) • **Docs**
# @lancedb/lancedb ***
## Table of contents [@lancedb/lancedb](../globals.md) / makeArrowTable
### Namespaces # Function: makeArrowTable()
- [embedding](modules/embedding.md) > **makeArrowTable**(`data`, `options`?, `metadata`?): `ArrowTable`
### Enumerations
- [WriteMode](enums/WriteMode.md)
### Classes
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Table](classes/Table.md)
- [VectorColumnOptions](classes/VectorColumnOptions.md)
- [VectorQuery](classes/VectorQuery.md)
### Interfaces
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)
### Type Aliases
- [Data](modules.md#data)
### Functions
- [connect](modules.md#connect)
- [makeArrowTable](modules.md#makearrowtable)
## Type Aliases
### Data
Ƭ **Data**: `Record`\<`string`, `unknown`\>[] \| `ArrowTable`
Data type accepted by NodeJS SDK
#### Defined in
[arrow.ts:40](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L40)
## Functions
### connect
**connect**(`uri`, `opts?`): `Promise`\<[`Connection`](classes/Connection.md)\>
Connect to a LanceDB instance at the given URI.
Accpeted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (LanceDB cloud)
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `uri` | `string` | The uri of the database. If the database uri starts with `db://` then it connects to a remote database. |
| `opts?` | `Partial`\<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> | - |
#### Returns
`Promise`\<[`Connection`](classes/Connection.md)\>
**`See`**
[ConnectionOptions](interfaces/ConnectionOptions.md) for more details on the URI format.
#### Defined in
[index.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/index.ts#L62)
___
### makeArrowTable
**makeArrowTable**(`data`, `options?`): `ArrowTable`
An enhanced version of the makeTable function from Apache Arrow An enhanced version of the makeTable function from Apache Arrow
that supports nested fields and embeddings columns. that supports nested fields and embeddings columns.
@@ -129,20 +38,20 @@ rules are as follows:
- Record<String, any> => Struct - Record<String, any> => Struct
- Array<any> => List - Array<any> => List
#### Parameters ## Parameters
| Name | Type | **data**: `Record`&lt;`string`, `unknown`&gt;[]
| :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] |
| `options?` | `Partial`\<[`MakeArrowTableOptions`](classes/MakeArrowTableOptions.md)\> |
#### Returns **options?**: `Partial`&lt;[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)&gt;
**metadata?**: `Map`&lt;`string`, `string`&gt;
## Returns
`ArrowTable` `ArrowTable`
**`Example`** ## Example
```ts
import { fromTableToBuffer, makeArrowTable } from "../arrow"; import { fromTableToBuffer, makeArrowTable } from "../arrow";
import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow"; import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
@@ -203,7 +112,3 @@ const table = makeArrowTable([
} }
assert.deepEqual(table.schema, schema) assert.deepEqual(table.schema, schema)
``` ```
#### Defined in
[arrow.ts:197](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L197)

51
docs/src/js/globals.md Normal file
View File

@@ -0,0 +1,51 @@
[**@lancedb/lancedb**](README.md) • **Docs**
***
# @lancedb/lancedb
## Namespaces
- [embedding](namespaces/embedding/README.md)
## Enumerations
- [WriteMode](enumerations/WriteMode.md)
## Classes
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Table](classes/Table.md)
- [VectorColumnOptions](classes/VectorColumnOptions.md)
- [VectorQuery](classes/VectorQuery.md)
## Interfaces
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexMetadata](interfaces/IndexMetadata.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IndexStatistics](interfaces/IndexStatistics.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)
## Type Aliases
- [Data](type-aliases/Data.md)
## Functions
- [connect](functions/connect.md)
- [makeArrowTable](functions/makeArrowTable.md)

View File

@@ -1,37 +1,26 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddColumnsSql [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / AddColumnsSql
# Interface: AddColumnsSql # Interface: AddColumnsSql
A definition of a new column to add to a table. A definition of a new column to add to a table.
## Table of contents
### Properties
- [name](AddColumnsSql.md#name)
- [valueSql](AddColumnsSql.md#valuesql)
## Properties ## Properties
### name ### name
**name**: `string` > **name**: `string`
The name of the new column. The name of the new column.
#### Defined in ***
native.d.ts:43
___
### valueSql ### valueSql
**valueSql**: `string` > **valueSql**: `string`
The values to populate the new column with, as a SQL expression. The values to populate the new column with, as a SQL expression.
The expression can reference other columns in the table. The expression can reference other columns in the table.
#### Defined in
native.d.ts:48

View File

@@ -1,25 +1,19 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddDataOptions [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / AddDataOptions
# Interface: AddDataOptions # Interface: AddDataOptions
Options for adding data to a table. Options for adding data to a table.
## Table of contents
### Properties
- [mode](AddDataOptions.md#mode)
## Properties ## Properties
### mode ### mode
**mode**: ``"append"`` \| ``"overwrite"`` > **mode**: `"append"` \| `"overwrite"`
If "append" (the default) then the new data will be added to the table If "append" (the default) then the new data will be added to the table
If "overwrite" then the new data will replace the existing data in the table. If "overwrite" then the new data will replace the existing data in the table.
#### Defined in
[table.ts:36](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L36)

View File

@@ -1,4 +1,8 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ColumnAlteration [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / ColumnAlteration
# Interface: ColumnAlteration # Interface: ColumnAlteration
@@ -7,50 +11,30 @@ A definition of a column alteration. The alteration changes the column at
and to have the data type `data_type`. At least one of `rename` or `nullable` and to have the data type `data_type`. At least one of `rename` or `nullable`
must be provided. must be provided.
## Table of contents
### Properties
- [nullable](ColumnAlteration.md#nullable)
- [path](ColumnAlteration.md#path)
- [rename](ColumnAlteration.md#rename)
## Properties ## Properties
### nullable ### nullable?
`Optional` **nullable**: `boolean` > `optional` **nullable**: `boolean`
Set the new nullability. Note that a nullable column cannot be made non-nullable. Set the new nullability. Note that a nullable column cannot be made non-nullable.
#### Defined in ***
native.d.ts:38
___
### path ### path
**path**: `string` > **path**: `string`
The path to the column to alter. This is a dot-separated path to the column. The path to the column to alter. This is a dot-separated path to the column.
If it is a top-level column then it is just the name of the column. If it is If it is a top-level column then it is just the name of the column. If it is
a nested column then it is the path to the column, e.g. "a.b.c" for a column a nested column then it is the path to the column, e.g. "a.b.c" for a column
`c` nested inside a column `b` nested inside a column `a`. `c` nested inside a column `b` nested inside a column `a`.
#### Defined in ***
native.d.ts:31 ### rename?
___ > `optional` **rename**: `string`
### rename
`Optional` **rename**: `string`
The new name of the column. If not provided then the name will not be changed. The new name of the column. If not provided then the name will not be changed.
This must be distinct from the names of all other columns in the table. This must be distinct from the names of all other columns in the table.
#### Defined in
native.d.ts:36

View File

@@ -1,40 +1,16 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ConnectionOptions [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / ConnectionOptions
# Interface: ConnectionOptions # Interface: ConnectionOptions
## Table of contents
### Properties
- [apiKey](ConnectionOptions.md#apikey)
- [hostOverride](ConnectionOptions.md#hostoverride)
- [readConsistencyInterval](ConnectionOptions.md#readconsistencyinterval)
## Properties ## Properties
### apiKey ### readConsistencyInterval?
`Optional` **apiKey**: `string` > `optional` **readConsistencyInterval**: `number`
#### Defined in
native.d.ts:51
___
### hostOverride
`Optional` **hostOverride**: `string`
#### Defined in
native.d.ts:52
___
### readConsistencyInterval
`Optional` **readConsistencyInterval**: `number`
(For LanceDB OSS only): The interval, in seconds, at which to check for (For LanceDB OSS only): The interval, in seconds, at which to check for
updates to the table from other processes. If None, then consistency is not updates to the table from other processes. If None, then consistency is not
@@ -46,6 +22,12 @@ has passed since the last check, then the table will be checked for updates.
Note: this consistency only applies to read operations. Write operations are Note: this consistency only applies to read operations. Write operations are
always consistent. always consistent.
#### Defined in ***
native.d.ts:64 ### storageOptions?
> `optional` **storageOptions**: `Record`&lt;`string`, `string`&gt;
(For LanceDB OSS only): configuration for object storage.
The available options are described at https://lancedb.github.io/lancedb/guides/storage/

View File

@@ -1,32 +1,31 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / CreateTableOptions [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / CreateTableOptions
# Interface: CreateTableOptions # Interface: CreateTableOptions
## Table of contents
### Properties
- [existOk](CreateTableOptions.md#existok)
- [mode](CreateTableOptions.md#mode)
## Properties ## Properties
### embeddingFunction?
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
***
### existOk ### existOk
**existOk**: `boolean` > **existOk**: `boolean`
If this is true and the table already exists and the mode is "create" If this is true and the table already exists and the mode is "create"
then no error will be raised. then no error will be raised.
#### Defined in ***
[connection.ts:35](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L35)
___
### mode ### mode
**mode**: ``"overwrite"`` \| ``"create"`` > **mode**: `"overwrite"` \| `"create"`
The mode to use when creating the table. The mode to use when creating the table.
@@ -36,6 +35,31 @@ happen. Any provided data will be ignored.
If this is set to "overwrite" then any existing table will be replaced. If this is set to "overwrite" then any existing table will be replaced.
#### Defined in ***
[connection.ts:30](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L30) ### schema?
> `optional` **schema**: `SchemaLike`
***
### storageOptions?
> `optional` **storageOptions**: `Record`&lt;`string`, `string`&gt;
Configuration for object storage.
Options already set on the connection will be inherited by the table,
but can be overridden here.
The available options are described at https://lancedb.github.io/lancedb/guides/storage/
***
### useLegacyFormat?
> `optional` **useLegacyFormat**: `boolean`
If true then data files will be written with the legacy format
The default is true while the new format is in beta

View File

@@ -1,4 +1,8 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ExecutableQuery [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / ExecutableQuery
# Interface: ExecutableQuery # Interface: ExecutableQuery

View File

@@ -1,39 +1,36 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexConfig [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexConfig
# Interface: IndexConfig # Interface: IndexConfig
A description of an index currently configured on a column A description of an index currently configured on a column
## Table of contents
### Properties
- [columns](IndexConfig.md#columns)
- [indexType](IndexConfig.md#indextype)
## Properties ## Properties
### columns ### columns
**columns**: `string`[] > **columns**: `string`[]
The columns in the index The columns in the index
Currently this is always an array of size 1. In the future there may Currently this is always an array of size 1. In the future there may
be more columns to represent composite indices. be more columns to represent composite indices.
#### Defined in ***
native.d.ts:16
___
### indexType ### indexType
**indexType**: `string` > **indexType**: `string`
The type of the index The type of the index
#### Defined in ***
native.d.ts:9 ### name
> **name**: `string`
The name of the index

View File

@@ -0,0 +1,19 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexMetadata
# Interface: IndexMetadata
## Properties
### indexType?
> `optional` **indexType**: `string`
***
### metricType?
> `optional` **metricType**: `string`

View File

@@ -1,19 +1,16 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexOptions [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexOptions
# Interface: IndexOptions # Interface: IndexOptions
## Table of contents
### Properties
- [config](IndexOptions.md#config)
- [replace](IndexOptions.md#replace)
## Properties ## Properties
### config ### config?
`Optional` **config**: [`Index`](../classes/Index.md) > `optional` **config**: [`Index`](../classes/Index.md)
Advanced index configuration Advanced index configuration
@@ -25,15 +22,11 @@ See the static methods on Index for details on the various index types.
If this is not supplied then column data type(s) and column statistics If this is not supplied then column data type(s) and column statistics
will be used to determine the most useful kind of index to create. will be used to determine the most useful kind of index to create.
#### Defined in ***
[indices.ts:192](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L192) ### replace?
___ > `optional` **replace**: `boolean`
### replace
`Optional` **replace**: `boolean`
Whether to replace the existing index Whether to replace the existing index
@@ -42,7 +35,3 @@ and the same name, then an error will be returned. This is true even if
that index is out of date. that index is out of date.
The default is true The default is true
#### Defined in
[indices.ts:202](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L202)

View File

@@ -0,0 +1,39 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexStatistics
# Interface: IndexStatistics
## Properties
### indexType?
> `optional` **indexType**: `string`
The type of the index
***
### indices
> **indices**: [`IndexMetadata`](IndexMetadata.md)[]
The metadata for each index
***
### numIndexedRows
> **numIndexedRows**: `number`
The number of rows indexed by the index
***
### numUnindexedRows
> **numUnindexedRows**: `number`
The number of rows not indexed

View File

@@ -1,24 +1,18 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IvfPqOptions [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / IvfPqOptions
# Interface: IvfPqOptions # Interface: IvfPqOptions
Options to create an `IVF_PQ` index Options to create an `IVF_PQ` index
## Table of contents
### Properties
- [distanceType](IvfPqOptions.md#distancetype)
- [maxIterations](IvfPqOptions.md#maxiterations)
- [numPartitions](IvfPqOptions.md#numpartitions)
- [numSubVectors](IvfPqOptions.md#numsubvectors)
- [sampleRate](IvfPqOptions.md#samplerate)
## Properties ## Properties
### distanceType ### distanceType?
`Optional` **distanceType**: ``"l2"`` \| ``"cosine"`` \| ``"dot"`` > `optional` **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
Distance type to use to build the index. Distance type to use to build the index.
@@ -52,15 +46,11 @@ never be returned from a vector search.
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
L2 norm is 1), then dot distance is equivalent to the cosine distance. L2 norm is 1), then dot distance is equivalent to the cosine distance.
#### Defined in ***
[indices.ts:83](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L83) ### maxIterations?
___ > `optional` **maxIterations**: `number`
### maxIterations
• `Optional` **maxIterations**: `number`
Max iteration to train IVF kmeans. Max iteration to train IVF kmeans.
@@ -72,15 +62,11 @@ iterations have diminishing returns.
The default value is 50. The default value is 50.
#### Defined in ***
[indices.ts:96](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L96) ### numPartitions?
___ > `optional` **numPartitions**: `number`
### numPartitions
• `Optional` **numPartitions**: `number`
The number of IVF partitions to create. The number of IVF partitions to create.
@@ -92,15 +78,11 @@ If this value is too large then the first part of the search (picking the
right partition) will be slow. If this value is too small then the second right partition) will be slow. If this value is too small then the second
part of the search (searching within a partition) will be slow. part of the search (searching within a partition) will be slow.
#### Defined in ***
[indices.ts:32](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L32) ### numSubVectors?
___ > `optional` **numSubVectors**: `number`
### numSubVectors
• `Optional` **numSubVectors**: `number`
Number of sub-vectors of PQ. Number of sub-vectors of PQ.
@@ -115,15 +97,11 @@ us to use efficient SIMD instructions.
If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and
will likely result in poor performance. will likely result in poor performance.
#### Defined in ***
[indices.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L48) ### sampleRate?
___ > `optional` **sampleRate**: `number`
### sampleRate
• `Optional` **sampleRate**: `number`
The number of vectors, per partition, to sample when training IVF kmeans. The number of vectors, per partition, to sample when training IVF kmeans.
@@ -138,7 +116,3 @@ Increasing this value might improve the quality of the index but in most cases t
default should be sufficient. default should be sufficient.
The default value is 256. The default value is 256.
#### Defined in
[indices.ts:113](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L113)

View File

@@ -1,38 +1,27 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / TableNamesOptions [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / TableNamesOptions
# Interface: TableNamesOptions # Interface: TableNamesOptions
## Table of contents
### Properties
- [limit](TableNamesOptions.md#limit)
- [startAfter](TableNamesOptions.md#startafter)
## Properties ## Properties
### limit ### limit?
`Optional` **limit**: `number` > `optional` **limit**: `number`
An optional limit to the number of results to return. An optional limit to the number of results to return.
#### Defined in ***
[connection.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L48) ### startAfter?
___ > `optional` **startAfter**: `string`
### startAfter
`Optional` **startAfter**: `string`
If present, only return names that come lexicographically after the If present, only return names that come lexicographically after the
supplied value. supplied value.
This can be combined with limit to implement pagination by setting this to This can be combined with limit to implement pagination by setting this to
the last table name from the previous page. the last table name from the previous page.
#### Defined in
[connection.ts:46](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L46)

View File

@@ -1,18 +1,16 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / UpdateOptions [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / UpdateOptions
# Interface: UpdateOptions # Interface: UpdateOptions
## Table of contents
### Properties
- [where](UpdateOptions.md#where)
## Properties ## Properties
### where ### where
**where**: `string` > **where**: `string`
A filter that limits the scope of the update. A filter that limits the scope of the update.
@@ -22,7 +20,3 @@ Only rows that satisfy the expression will be updated.
For example, this could be 'my_col == 0' to replace all instances For example, this could be 'my_col == 0' to replace all instances
of 0 in a column with some other default value. of 0 in a column with some other default value.
#### Defined in
[table.ts:50](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L50)

View File

@@ -1,21 +1,17 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteOptions [**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / WriteOptions
# Interface: WriteOptions # Interface: WriteOptions
Write options when creating a Table. Write options when creating a Table.
## Table of contents
### Properties
- [mode](WriteOptions.md#mode)
## Properties ## Properties
### mode ### mode?
`Optional` **mode**: [`WriteMode`](../enums/WriteMode.md) > `optional` **mode**: [`WriteMode`](../enumerations/WriteMode.md)
#### Defined in Write mode for writing to a table.
native.d.ts:74

View File

@@ -1,129 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / EmbeddingFunction
# Interface: EmbeddingFunction\<T\>
[embedding](../modules/embedding.md).EmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Type parameters
| Name |
| :------ |
| `T` |
## Implemented by
- [`OpenAIEmbeddingFunction`](../classes/embedding.OpenAIEmbeddingFunction.md)
## Table of contents
### Properties
- [destColumn](embedding.EmbeddingFunction.md#destcolumn)
- [embed](embedding.EmbeddingFunction.md#embed)
- [embeddingDataType](embedding.EmbeddingFunction.md#embeddingdatatype)
- [embeddingDimension](embedding.EmbeddingFunction.md#embeddingdimension)
- [excludeSource](embedding.EmbeddingFunction.md#excludesource)
- [sourceColumn](embedding.EmbeddingFunction.md#sourcecolumn)
## Properties
### destColumn
`Optional` **destColumn**: `string`
The name of the column that will contain the embedding
By default this is "vector"
#### Defined in
[embedding/embedding_function.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L49)
___
### embed
**embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Type declaration
▸ (`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
##### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `T`[] |
##### Returns
`Promise`\<`number`[][]\>
#### Defined in
[embedding/embedding_function.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L62)
___
### embeddingDataType
`Optional` **embeddingDataType**: `Float`\<`Floats`\>
The data type of the embedding
The embedding function should return `number`. This will be converted into
an Arrow float array. By default this will be Float32 but this property can
be used to control the conversion.
#### Defined in
[embedding/embedding_function.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L33)
___
### embeddingDimension
`Optional` **embeddingDimension**: `number`
The dimension of the embedding
This is optional, normally this can be determined by looking at the results of
`embed`. If this is not specified, and there is an attempt to apply the embedding
to an empty table, then that process will fail.
#### Defined in
[embedding/embedding_function.ts:42](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L42)
___
### excludeSource
`Optional` **excludeSource**: `boolean`
Should the source column be excluded from the resulting table
By default the source column is included. Set this to true and
only the embedding will be stored.
#### Defined in
[embedding/embedding_function.ts:57](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L57)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L24)

View File

@@ -1,45 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / embedding
# Namespace: embedding
## Table of contents
### Classes
- [OpenAIEmbeddingFunction](../classes/embedding.OpenAIEmbeddingFunction.md)
### Interfaces
- [EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md)
### Functions
- [isEmbeddingFunction](embedding.md#isembeddingfunction)
## Functions
### isEmbeddingFunction
**isEmbeddingFunction**\<`T`\>(`value`): value is EmbeddingFunction\<T\>
Test if the input seems to be an embedding function
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `unknown` |
#### Returns
value is EmbeddingFunction\<T\>
#### Defined in
[embedding/embedding_function.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L66)

View File

@@ -0,0 +1,29 @@
[**@lancedb/lancedb**](../../README.md) • **Docs**
***
[@lancedb/lancedb](../../globals.md) / embedding
# embedding
## Index
### Classes
- [EmbeddingFunction](classes/EmbeddingFunction.md)
- [EmbeddingFunctionRegistry](classes/EmbeddingFunctionRegistry.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
### Interfaces
- [EmbeddingFunctionConfig](interfaces/EmbeddingFunctionConfig.md)
### Type Aliases
- [OpenAIOptions](type-aliases/OpenAIOptions.md)
### Functions
- [LanceSchema](functions/LanceSchema.md)
- [getRegistry](functions/getRegistry.md)
- [register](functions/register.md)

View File

@@ -0,0 +1,162 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunction
# Class: `abstract` EmbeddingFunction&lt;T, M&gt;
An embedding function that automatically creates vector representation for a given column.
## Extended by
- [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
## Type Parameters
**T** = `any`
**M** *extends* `FunctionOptions` = `FunctionOptions`
## Constructors
### new EmbeddingFunction()
> **new EmbeddingFunction**&lt;`T`, `M`&gt;(): [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`T`, `M`&gt;
#### Returns
[`EmbeddingFunction`](EmbeddingFunction.md)&lt;`T`, `M`&gt;
## Methods
### computeQueryEmbeddings()
> **computeQueryEmbeddings**(`data`): `Promise`&lt;`number`[] \| `Float32Array` \| `Float64Array`&gt;
Compute the embeddings for a single query
#### Parameters
**data**: `T`
#### Returns
`Promise`&lt;`number`[] \| `Float32Array` \| `Float64Array`&gt;
***
### computeSourceEmbeddings()
> `abstract` **computeSourceEmbeddings**(`data`): `Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
Creates a vector representation for the given values.
#### Parameters
**data**: `T`[]
#### Returns
`Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
***
### embeddingDataType()
> `abstract` **embeddingDataType**(): `Float`&lt;`Floats`&gt;
The datatype of the embeddings
#### Returns
`Float`&lt;`Floats`&gt;
***
### ndims()
> **ndims**(): `undefined` \| `number`
The number of dimensions of the embeddings
#### Returns
`undefined` \| `number`
***
### sourceField()
> **sourceField**(`optionsOrDatatype`): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
sourceField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
#### See
lancedb.LanceSchema
***
### toJSON()
> `abstract` **toJSON**(): `Partial`&lt;`M`&gt;
Convert the embedding function to a JSON object
It is used to serialize the embedding function to the schema
It's important that any object returned by this method contains all the necessary
information to recreate the embedding function
It should return the same object that was passed to the constructor
If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
#### Returns
`Partial`&lt;`M`&gt;
#### Example
```ts
class MyEmbeddingFunction extends EmbeddingFunction {
constructor(options: {model: string, timeout: number}) {
super();
this.model = options.model;
this.timeout = options.timeout;
}
toJSON() {
return {
model: this.model,
timeout: this.timeout,
};
}
```
***
### vectorField()
> **vectorField**(`optionsOrDatatype`?): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
vectorField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
#### See
lancedb.LanceSchema

View File

@@ -0,0 +1,124 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunctionRegistry
# Class: EmbeddingFunctionRegistry
This is a singleton class used to register embedding functions
and fetch them by name. It also handles serializing and deserializing.
You can implement your own embedding function by subclassing EmbeddingFunction
or TextEmbeddingFunction and registering it with the registry
## Constructors
### new EmbeddingFunctionRegistry()
> **new EmbeddingFunctionRegistry**(): [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
#### Returns
[`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
## Methods
### functionToMetadata()
> **functionToMetadata**(`conf`): `Record`&lt;`string`, `any`&gt;
#### Parameters
**conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
#### Returns
`Record`&lt;`string`, `any`&gt;
***
### get()
> **get**&lt;`T`, `Name`&gt;(`name`): `Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`&lt;[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)&gt; : `undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
Fetch an embedding function by name
#### Type Parameters
**T** *extends* [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`unknown`, `FunctionOptions`&gt;
**Name** *extends* `string` = `""`
#### Parameters
**name**: `Name` *extends* `"openai"` ? `"openai"` : `string`
The name of the function
#### Returns
`Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`&lt;[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)&gt; : `undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
***
### getTableMetadata()
> **getTableMetadata**(`functions`): `Map`&lt;`string`, `string`&gt;
#### Parameters
**functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
#### Returns
`Map`&lt;`string`, `string`&gt;
***
### register()
> **register**&lt;`T`&gt;(`this`, `alias`?): (`ctor`) => `any`
Register an embedding function
#### Type Parameters
**T** *extends* `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt; = `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;
#### Parameters
**this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
**alias?**: `string`
#### Returns
`Function`
##### Parameters
**ctor**: `T`
##### Returns
`any`
#### Throws
Error if the function is already registered
***
### reset()
> **reset**(`this`): `void`
reset the registry to the initial state
#### Parameters
**this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
#### Returns
`void`

View File

@@ -0,0 +1,196 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Extends
- [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`string`, `Partial`&lt;[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)&gt;&gt;
## Constructors
### new OpenAIEmbeddingFunction()
> **new OpenAIEmbeddingFunction**(`options`): [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
#### Parameters
**options**: `Partial`&lt;[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)&gt; = `...`
#### Returns
[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`constructor`](EmbeddingFunction.md#constructors)
## Methods
### computeQueryEmbeddings()
> **computeQueryEmbeddings**(`data`): `Promise`&lt;`number`[]&gt;
Compute the embeddings for a single query
#### Parameters
**data**: `string`
#### Returns
`Promise`&lt;`number`[]&gt;
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`computeQueryEmbeddings`](EmbeddingFunction.md#computequeryembeddings)
***
### computeSourceEmbeddings()
> **computeSourceEmbeddings**(`data`): `Promise`&lt;`number`[][]&gt;
Creates a vector representation for the given values.
#### Parameters
**data**: `string`[]
#### Returns
`Promise`&lt;`number`[][]&gt;
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`computeSourceEmbeddings`](EmbeddingFunction.md#computesourceembeddings)
***
### embeddingDataType()
> **embeddingDataType**(): `Float`&lt;`Floats`&gt;
The datatype of the embeddings
#### Returns
`Float`&lt;`Floats`&gt;
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`embeddingDataType`](EmbeddingFunction.md#embeddingdatatype)
***
### ndims()
> **ndims**(): `number`
The number of dimensions of the embeddings
#### Returns
`number`
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`ndims`](EmbeddingFunction.md#ndims)
***
### sourceField()
> **sourceField**(`optionsOrDatatype`): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
sourceField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
#### See
lancedb.LanceSchema
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`sourceField`](EmbeddingFunction.md#sourcefield)
***
### toJSON()
> **toJSON**(): `object`
Convert the embedding function to a JSON object
It is used to serialize the embedding function to the schema
It's important that any object returned by this method contains all the necessary
information to recreate the embedding function
It should return the same object that was passed to the constructor
If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
#### Returns
`object`
##### model
> **model**: `string` & `object` \| `"text-embedding-ada-002"` \| `"text-embedding-3-small"` \| `"text-embedding-3-large"`
#### Example
```ts
class MyEmbeddingFunction extends EmbeddingFunction {
constructor(options: {model: string, timeout: number}) {
super();
this.model = options.model;
this.timeout = options.timeout;
}
toJSON() {
return {
model: this.model,
timeout: this.timeout,
};
}
```
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`toJSON`](EmbeddingFunction.md#tojson)
***
### vectorField()
> **vectorField**(`optionsOrDatatype`?): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
vectorField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
#### See
lancedb.LanceSchema
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`vectorField`](EmbeddingFunction.md#vectorfield)

View File

@@ -0,0 +1,39 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / LanceSchema
# Function: LanceSchema()
> **LanceSchema**(`fields`): `Schema`
Create a schema with embedding functions.
## Parameters
**fields**: `Record`&lt;`string`, `object` \| [`object`, `Map`&lt;`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]&gt;
## Returns
`Schema`
Schema
## Example
```ts
class MyEmbeddingFunction extends EmbeddingFunction {
// ...
}
const func = new MyEmbeddingFunction();
const schema = LanceSchema({
id: new Int32(),
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
// optional: specify the datatype and/or dimensions
vector2: func.vectorField({ datatype: new Float32(), dims: 3}),
});
const table = await db.createTable("my_table", data, { schema });
```

View File

@@ -0,0 +1,23 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / getRegistry
# Function: getRegistry()
> **getRegistry**(): [`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
Utility function to get the global instance of the registry
## Returns
[`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
`EmbeddingFunctionRegistry` The global instance of the registry
## Example
```ts
const registry = getRegistry();
const openai = registry.get("openai").create();

View File

@@ -0,0 +1,25 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / register
# Function: register()
> **register**(`name`?): (`ctor`) => `any`
## Parameters
**name?**: `string`
## Returns
`Function`
### Parameters
**ctor**: `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;
### Returns
`any`

View File

@@ -0,0 +1,25 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunctionConfig
# Interface: EmbeddingFunctionConfig
## Properties
### function
> **function**: [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;
***
### sourceColumn
> **sourceColumn**: `string`
***
### vectorColumn?
> `optional` **vectorColumn**: `string`

View File

@@ -0,0 +1,19 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIOptions
# Type Alias: OpenAIOptions
> **OpenAIOptions**: `object`
## Type declaration
### apiKey
> **apiKey**: `string`
### model
> **model**: `EmbeddingCreateParams`\[`"model"`\]

View File

@@ -0,0 +1,11 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Data
# Type Alias: Data
> **Data**: `Record`&lt;`string`, `unknown`&gt;[] \| `TableLike`
Data type accepted by NodeJS SDK

View File

@@ -9,7 +9,8 @@ around the asynchronous client.
This guide describes the differences between the two APIs and will hopefully assist users This guide describes the differences between the two APIs and will hopefully assist users
that would like to migrate to the new API. that would like to migrate to the new API.
## Closeable Connections ## Python
### Closeable Connections
The Connection now has a `close` method. You can call this when The Connection now has a `close` method. You can call this when
you are done with the connection to eagerly free resources. Currently you are done with the connection to eagerly free resources. Currently
@@ -32,20 +33,20 @@ async def my_async_fn():
It is not mandatory to call the `close` method. If you do not call it It is not mandatory to call the `close` method. If you do not call it
then the connection will be closed when the object is garbage collected. then the connection will be closed when the object is garbage collected.
## Closeable Table ### Closeable Table
The Table now also has a `close` method, similar to the connection. This The Table now also has a `close` method, similar to the connection. This
can be used to eagerly free the cache used by a Table object. Similar to can be used to eagerly free the cache used by a Table object. Similar to
the connection, it can be used as a context manager and it is not mandatory the connection, it can be used as a context manager and it is not mandatory
to call the `close` method. to call the `close` method.
### Changes to Table APIs #### Changes to Table APIs
- Previously `Table.schema` was a property. Now it is an async method. - Previously `Table.schema` was a property. Now it is an async method.
- The method `Table.__len__` was removed and `len(table)` will no longer - The method `Table.__len__` was removed and `len(table)` will no longer
work. Use `Table.count_rows` instead. work. Use `Table.count_rows` instead.
### Creating Indices #### Creating Indices
The `Table.create_index` method is now used for creating both vector indices The `Table.create_index` method is now used for creating both vector indices
and scalar indices. It currently requires a column name to be specified (the and scalar indices. It currently requires a column name to be specified (the
@@ -55,12 +56,12 @@ the size of the data.
To specify index configuration details you will need to specify which kind of To specify index configuration details you will need to specify which kind of
index you are using. index you are using.
### Querying #### Querying
The `Table.search` method has been renamed to `AsyncTable.vector_search` for The `Table.search` method has been renamed to `AsyncTable.vector_search` for
clarity. clarity.
## Features not yet supported ### Features not yet supported
The following features are not yet supported by the asynchronous API. However, The following features are not yet supported by the asynchronous API. However,
we plan to support them soon. we plan to support them soon.
@@ -74,3 +75,117 @@ we plan to support them soon.
search search
- Remote connections to LanceDb Cloud are not yet supported. - Remote connections to LanceDb Cloud are not yet supported.
- The method Table.head is not yet supported. - The method Table.head is not yet supported.
## TypeScript/JavaScript
For JS/TS users, we offer a brand new SDK [@lancedb/lancedb](https://www.npmjs.com/package/@lancedb/lancedb)
We tried to keep the API as similar as possible to the previous version, but there are a few small changes. Here are the most important ones:
### Creating Tables
[CreateTableOptions.writeOptions.writeMode](./javascript/interfaces/WriteOptions.md#writemode) has been replaced with [CreateTableOptions.mode](./js/interfaces/CreateTableOptions.md#mode)
=== "vectordb (deprecated)"
```ts
db.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite });
```
=== "@lancedb/lancedb"
```ts
db.createTable(tableName, data, { mode: "overwrite" })
```
### Changes to Table APIs
Previously `Table.schema` was a property. Now it is an async method.
#### Creating Indices
The `Table.createIndex` method is now used for creating both vector indices
and scalar indices. It currently requires a column name to be specified (the
column to index). Vector index defaults are now smarter and scale better with
the size of the data.
=== "vectordb (deprecated)"
```ts
await tbl.createIndex({
column: "vector", // default
type: "ivf_pq",
num_partitions: 2,
num_sub_vectors: 2,
});
```
=== "@lancedb/lancedb"
```ts
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 2,
numSubVectors: 2,
}),
});
```
### Embedding Functions
The embedding API has been completely reworked, and it now more closely resembles the Python API, including the new [embedding registry](./js/classes/embedding.EmbeddingFunctionRegistry.md)
=== "vectordb (deprecated)"
```ts
const embeddingFunction = new lancedb.OpenAIEmbeddingFunction('text', API_KEY)
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const table = await db.createTable('vectors', data, embeddingFunction)
```
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
const func = getRegistry().get("openai").create({apiKey: API_KEY});
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const table = await db.createTable('vectors', data, {
embeddingFunction: {
sourceColumn: "text",
function: func,
}
})
```
You can also use a schema driven approach, which parallels the Pydantic integration in our Python SDK:
```ts
const func = getRegistry().get("openai").create({apiKey: API_KEY});
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8()),
price: new arrow.Float64(),
vector: func.vectorField()
})
const table = await db.createTable('vectors', data, {schema})
```

View File

@@ -0,0 +1,538 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "2db56c9b",
"metadata": {},
"source": [
"<a href=\"https://colab.research.google.com/github/run-llama/llama_index/blob/main/docs/docs/examples/vector_stores/LanceDBIndexDemo.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "db0855d0",
"metadata": {},
"source": [
"# LanceDB Vector Store\n",
"In this notebook we are going to show how to use [LanceDB](https://www.lancedb.com) to perform vector searches in LlamaIndex"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f44170b2",
"metadata": {},
"source": [
"If you're opening this Notebook on colab, you will probably need to install LlamaIndex 🦙."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c84199c",
"metadata": {},
"outputs": [],
"source": [
"%pip install llama-index llama-index-vector-stores-lancedb"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1a90ce34",
"metadata": {},
"outputs": [],
"source": [
"%pip install lancedb==0.6.13 #Only required if the above cell installs an older version of lancedb (pypi package may not be released yet)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "39c62671",
"metadata": {},
"outputs": [],
"source": [
"# Refresh vector store URI if restarting or re-using the same notebook\n",
"! rm -rf ./lancedb"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59b54276",
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import sys\n",
"\n",
"# Uncomment to see debug logs\n",
"# logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)\n",
"# logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))\n",
"\n",
"\n",
"from llama_index.core import SimpleDirectoryReader, Document, StorageContext\n",
"from llama_index.core import VectorStoreIndex\n",
"from llama_index.vector_stores.lancedb import LanceDBVectorStore\n",
"import textwrap"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "26c71b6d",
"metadata": {},
"source": [
"### Setup OpenAI\n",
"The first step is to configure the openai key. It will be used to created embeddings for the documents loaded into the index"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "67b86621",
"metadata": {},
"outputs": [],
"source": [
"import openai\n",
"\n",
"openai.api_key = \"sk-\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "073f0a68",
"metadata": {},
"source": [
"Download Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eef1b911",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2024-06-11 16:42:37-- https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.108.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 75042 (73K) [text/plain]\n",
"Saving to: data/paul_graham/paul_graham_essay.txt\n",
"\n",
"data/paul_graham/pa 100%[===================>] 73.28K --.-KB/s in 0.02s \n",
"\n",
"2024-06-11 16:42:37 (3.97 MB/s) - data/paul_graham/paul_graham_essay.txt saved [75042/75042]\n",
"\n"
]
}
],
"source": [
"!mkdir -p 'data/paul_graham/'\n",
"!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f7010b1d-d1bb-4f08-9309-a328bb4ea396",
"metadata": {},
"source": [
"### Loading documents\n",
"Load the documents stored in the `data/paul_graham/` using the SimpleDirectoryReader"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c154dd4b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Document ID: cac1ba78-5007-4cf8-89ba-280264790115 Document Hash: fe2d4d3ef3a860780f6c2599808caa587c8be6516fe0ba4ca53cf117044ba953\n"
]
}
],
"source": [
"documents = SimpleDirectoryReader(\"./data/paul_graham/\").load_data()\n",
"print(\"Document ID:\", documents[0].doc_id, \"Document Hash:\", documents[0].hash)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c0232fd1",
"metadata": {},
"source": [
"### Create the index\n",
"Here we create an index backed by LanceDB using the documents loaded previously. LanceDBVectorStore takes a few arguments.\n",
"- uri (str, required): Location where LanceDB will store its files.\n",
"- table_name (str, optional): The table name where the embeddings will be stored. Defaults to \"vectors\".\n",
"- nprobes (int, optional): The number of probes used. A higher number makes search more accurate but also slower. Defaults to 20.\n",
"- refine_factor: (int, optional): Refine the results by reading extra elements and re-ranking them in memory. Defaults to None\n",
"\n",
"- More details can be found at [LanceDB docs](https://lancedb.github.io/lancedb/ann_indexes)"
]
},
{
"cell_type": "markdown",
"id": "1f2e20ef",
"metadata": {},
"source": [
"##### For LanceDB cloud :\n",
"```python\n",
"vector_store = LanceDBVectorStore( \n",
" uri=\"db://db_name\", # your remote DB URI\n",
" api_key=\"sk_..\", # lancedb cloud api key\n",
" region=\"your-region\" # the region you configured\n",
" ...\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8731da62",
"metadata": {},
"outputs": [],
"source": [
"vector_store = LanceDBVectorStore(\n",
" uri=\"./lancedb\", mode=\"overwrite\", query_type=\"hybrid\"\n",
")\n",
"storage_context = StorageContext.from_defaults(vector_store=vector_store)\n",
"\n",
"index = VectorStoreIndex.from_documents(\n",
" documents, storage_context=storage_context\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "8ee4473a-094f-4d0a-a825-e1213db07240",
"metadata": {},
"source": [
"### Query the index\n",
"We can now ask questions using our index. We can use filtering via `MetadataFilters` or use native lance `where` clause."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5eb6419b",
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core.vector_stores import (\n",
" MetadataFilters,\n",
" FilterOperator,\n",
" FilterCondition,\n",
" MetadataFilter,\n",
")\n",
"\n",
"from datetime import datetime\n",
"\n",
"\n",
"query_filters = MetadataFilters(\n",
" filters=[\n",
" MetadataFilter(\n",
" key=\"creation_date\",\n",
" operator=FilterOperator.EQ,\n",
" value=datetime.now().strftime(\"%Y-%m-%d\"),\n",
" ),\n",
" MetadataFilter(\n",
" key=\"file_size\", value=75040, operator=FilterOperator.GT\n",
" ),\n",
" ],\n",
" condition=FilterCondition.AND,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "ee201930",
"metadata": {},
"source": [
"### Hybrid Search\n",
"\n",
"LanceDB offers hybrid search with reranking capabilities. For complete documentation, refer [here](https://lancedb.github.io/lancedb/hybrid_search/hybrid_search/).\n",
"\n",
"This example uses the `colbert` reranker. The following cell installs the necessary dependencies for `colbert`. If you choose a different reranker, make sure to adjust the dependencies accordingly."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e12d1454",
"metadata": {},
"outputs": [],
"source": [
"! pip install -U torch transformers tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985"
]
},
{
"cell_type": "markdown",
"id": "c742cb07",
"metadata": {},
"source": [
"if you want to add a reranker at vector store initialization, you can pass it in the arguments like below :\n",
"```\n",
"from lancedb.rerankers import ColbertReranker\n",
"reranker = ColbertReranker()\n",
"vector_store = LanceDBVectorStore(uri=\"./lancedb\", reranker=reranker, mode=\"overwrite\")\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "27ea047b",
"metadata": {},
"outputs": [],
"source": [
"import lancedb"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8414517f",
"metadata": {},
"outputs": [],
"source": [
"from lancedb.rerankers import ColbertReranker\n",
"\n",
"reranker = ColbertReranker()\n",
"vector_store._add_reranker(reranker)\n",
"\n",
"query_engine = index.as_query_engine(\n",
" filters=query_filters,\n",
" # vector_store_kwargs={\n",
" # \"query_type\": \"fts\",\n",
" # },\n",
")\n",
"\n",
"response = query_engine.query(\"How much did Viaweb charge per month?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc6ccb7a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Viaweb charged $100 a month for a small store and $300 a month for a big one.\n",
"metadata - {'65ed5f07-5b8a-4143-a939-e8764884828e': {'file_path': '/Users/raghavdixit/Desktop/open_source/llama_index_lance/docs/docs/examples/vector_stores/data/paul_graham/paul_graham_essay.txt', 'file_name': 'paul_graham_essay.txt', 'file_type': 'text/plain', 'file_size': 75042, 'creation_date': '2024-06-11', 'last_modified_date': '2024-06-11'}, 'be231827-20b8-4988-ac75-94fa79b3c22e': {'file_path': '/Users/raghavdixit/Desktop/open_source/llama_index_lance/docs/docs/examples/vector_stores/data/paul_graham/paul_graham_essay.txt', 'file_name': 'paul_graham_essay.txt', 'file_type': 'text/plain', 'file_size': 75042, 'creation_date': '2024-06-11', 'last_modified_date': '2024-06-11'}}\n"
]
}
],
"source": [
"print(response)\n",
"print(\"metadata -\", response.metadata)"
]
},
{
"cell_type": "markdown",
"id": "0c1c6c73",
"metadata": {},
"source": [
"##### lance filters(SQL like) directly via the `where` clause :"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0a2bcc07",
"metadata": {},
"outputs": [],
"source": [
"lance_filter = \"metadata.file_name = 'paul_graham_essay.txt' \"\n",
"retriever = index.as_retriever(vector_store_kwargs={\"where\": lance_filter})\n",
"response = retriever.retrieve(\"What did the author do growing up?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7ac47cf9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"What I Worked On\n",
"\n",
"February 2021\n",
"\n",
"Before college the two main things I worked on, outside of school, were writing and programming. I didn't write essays. I wrote what beginning writers were supposed to write then, and probably still are: short stories. My stories were awful. They had hardly any plot, just characters with strong feelings, which I imagined made them deep.\n",
"\n",
"The first programs I tried writing were on the IBM 1401 that our school district used for what was then called \"data processing.\" This was in 9th grade, so I was 13 or 14. The school district's 1401 happened to be in the basement of our junior high school, and my friend Rich Draves and I got permission to use it. It was like a mini Bond villain's lair down there, with all these alien-looking machines — CPU, disk drives, printer, card reader — sitting up on a raised floor under bright fluorescent lights.\n",
"\n",
"The language we used was an early version of Fortran. You had to type programs on punch cards, then stack them in the card reader and press a button to load the program into memory and run it. The result would ordinarily be to print something on the spectacularly loud printer.\n",
"\n",
"I was puzzled by the 1401. I couldn't figure out what to do with it. And in retrospect there's not much I could have done with it. The only form of input to programs was data stored on punched cards, and I didn't have any data stored on punched cards. The only other option was to do things that didn't rely on any input, like calculate approximations of pi, but I didn't know enough math to do anything interesting of that type. So I'm not surprised I can't remember any programs I wrote, because they can't have done much. My clearest memory is of the moment I learned it was possible for programs not to terminate, when one of mine didn't. On a machine without time-sharing, this was a social as well as a technical error, as the data center manager's expression made clear.\n",
"\n",
"With microcomputers, everything changed. Now you could have a computer sitting right in front of you, on a desk, that could respond to your keystrokes as it was running instead of just churning through a stack of punch cards and then stopping. [1]\n",
"\n",
"The first of my friends to get a microcomputer built it himself. It was sold as a kit by Heathkit. I remember vividly how impressed and envious I felt watching him sitting in front of it, typing programs right into the computer.\n",
"\n",
"Computers were expensive in those days and it took me years of nagging before I convinced my father to buy one, a TRS-80, in about 1980. The gold standard then was the Apple II, but a TRS-80 was good enough. This was when I really started programming. I wrote simple games, a program to predict how high my model rockets would fly, and a word processor that my father used to write at least one book. There was only room in memory for about 2 pages of text, so he'd write 2 pages at a time and then print them out, but it was a lot better than a typewriter.\n",
"\n",
"Though I liked programming, I didn't plan to study it in college. In college I was going to study philosophy, which sounded much more powerful. It seemed, to my naive high school self, to be the study of the ultimate truths, compared to which the things studied in other fields would be mere domain knowledge. What I discovered when I got to college was that the other fields took up so much of the space of ideas that there wasn't much left for these supposed ultimate truths. All that seemed left for philosophy were edge cases that people in other fields felt could safely be ignored.\n",
"\n",
"I couldn't have put this into words when I was 18. All I knew at the time was that I kept taking philosophy courses and they kept being boring. So I decided to switch to AI.\n",
"\n",
"AI was in the air in the mid 1980s, but there were two things especially that made me want to work on it: a novel by Heinlein called The Moon is a Harsh Mistress, which featured an intelligent computer called Mike, and a PBS documentary that showed Terry Winograd using SHRDLU. I haven't tried rereading The Moon is a Harsh Mistress, so I don't know how well it has aged, but when I read it I was drawn entirely into its world.\n",
"metadata - {'file_path': '/Users/raghavdixit/Desktop/open_source/llama_index_lance/docs/docs/examples/vector_stores/data/paul_graham/paul_graham_essay.txt', 'file_name': 'paul_graham_essay.txt', 'file_type': 'text/plain', 'file_size': 75042, 'creation_date': '2024-06-11', 'last_modified_date': '2024-06-11'}\n"
]
}
],
"source": [
"print(response[0].get_content())\n",
"print(\"metadata -\", response[0].metadata)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "6afc84ac",
"metadata": {},
"source": [
"### Appending data\n",
"You can also add data to an existing index"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "759a532e",
"metadata": {},
"outputs": [],
"source": [
"nodes = [node.node for node in response]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "069fc099",
"metadata": {},
"outputs": [],
"source": [
"del index\n",
"\n",
"index = VectorStoreIndex.from_documents(\n",
" [Document(text=\"The sky is purple in Portland, Maine\")],\n",
" uri=\"/tmp/new_dataset\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a64ed441",
"metadata": {},
"outputs": [],
"source": [
"index.insert_nodes(nodes)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b5cffcfe",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Portland, Maine\n"
]
}
],
"source": [
"query_engine = index.as_query_engine()\n",
"response = query_engine.query(\"Where is the sky purple?\")\n",
"print(textwrap.fill(str(response), 100))"
]
},
{
"cell_type": "markdown",
"id": "ec548a02",
"metadata": {},
"source": [
"You can also create an index from an existing table"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc99404d",
"metadata": {},
"outputs": [],
"source": [
"del index\n",
"\n",
"vec_store = LanceDBVectorStore.from_table(vector_store._table)\n",
"index = VectorStoreIndex.from_vector_store(vec_store)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7b2e8cca",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The author started Viaweb and Aspra.\n"
]
}
],
"source": [
"query_engine = index.as_query_engine()\n",
"response = query_engine.query(\"What companies did the author start?\")\n",
"print(textwrap.fill(str(response), 100))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,566 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "683953b3",
"metadata": {},
"source": [
"# LanceDB\n",
"\n",
">[LanceDB](https://lancedb.com/) is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings. Fully open source.\n",
"\n",
"This notebook shows how to use functionality related to the `LanceDB` vector database based on the Lance data format."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1051ba9",
"metadata": {},
"outputs": [],
"source": [
"! pip install tantivy"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "88ac92c0",
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain-openai langchain-community"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a1c84d6-a10f-428c-95cd-46d3a1702e07",
"metadata": {},
"outputs": [],
"source": [
"! pip install lancedb"
]
},
{
"cell_type": "markdown",
"id": "99134dd1-b91e-486f-8d90-534248e43b9d",
"metadata": {},
"source": [
"We want to use OpenAIEmbeddings so we have to get the OpenAI API Key. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a0361f5c-e6f4-45f4-b829-11680cf03cec",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d114ed78",
"metadata": {},
"outputs": [],
"source": [
"! rm -rf /tmp/lancedb"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a3c3999a",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import TextLoader\n",
"from langchain_community.vectorstores import LanceDB\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain_text_splitters import CharacterTextSplitter\n",
"\n",
"loader = TextLoader(\"../../how_to/state_of_the_union.txt\")\n",
"documents = loader.load()\n",
"\n",
"documents = CharacterTextSplitter().split_documents(documents)\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "markdown",
"id": "e9517bb0",
"metadata": {},
"source": [
"##### For LanceDB cloud, you can invoke the vector store as follows :\n",
"\n",
"\n",
"```python\n",
"db_url = \"db://lang_test\" # url of db you created\n",
"api_key = \"xxxxx\" # your API key\n",
"region=\"us-east-1-dev\" # your selected region\n",
"\n",
"vector_store = LanceDB(\n",
" uri=db_url,\n",
" api_key=api_key,\n",
" region=region,\n",
" embedding=embeddings,\n",
" table_name='langchain_test'\n",
" )\n",
"```\n",
"\n",
"You can also add `region`, `api_key`, `uri` to `from_documents()` classmethod\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6e104aee",
"metadata": {},
"outputs": [],
"source": [
"from lancedb.rerankers import LinearCombinationReranker\n",
"\n",
"reranker = LinearCombinationReranker(weight=0.3)\n",
"\n",
"docsearch = LanceDB.from_documents(documents, embeddings, reranker=reranker)\n",
"query = \"What did the president say about Ketanji Brown Jackson\""
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "259c7988",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"relevance score - 0.7066475030191711\n",
"text- They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun. \n",
"\n",
"Officer Mora was 27 years old. \n",
"\n",
"Officer Rivera was 22. \n",
"\n",
"Both Dominican Americans whod grown up on the same streets they later chose to patrol as police officers. \n",
"\n",
"I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. \n",
"\n",
"Ive worked on these issues a long time. \n",
"\n",
"I know what works: Investing in crime prevention and community police officers wholl walk the beat, wholl know the neighborhood, and who can restore trust and safety. \n",
"\n",
"So lets not abandon our streets. Or choose between safety and equal justice. \n",
"\n",
"Lets come together to protect our communities, restore trust, and hold law enforcement accountable. \n",
"\n",
"Thats why the Justice Department required body cameras, banned chokeholds, and restricted no-knock warrants for its officers. \n",
"\n",
"Thats why the American Rescue \n"
]
}
],
"source": [
"docs = docsearch.similarity_search_with_relevance_scores(query)\n",
"print(\"relevance score - \", docs[0][1])\n",
"print(\"text- \", docs[0][0].page_content[:1000])"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "9fa29dae",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"distance - 0.30000001192092896\n",
"text- My administration is providing assistance with job training and housing, and now helping lower-income veterans get VA care debt-free. \n",
"\n",
"Our troops in Iraq and Afghanistan faced many dangers. \n",
"\n",
"One was stationed at bases and breathing in toxic smoke from “burn pits” that incinerated wastes of war—medical and hazard material, jet fuel, and more. \n",
"\n",
"When they came home, many of the worlds fittest and best trained warriors were never the same. \n",
"\n",
"Headaches. Numbness. Dizziness. \n",
"\n",
"A cancer that would put them in a flag-draped coffin. \n",
"\n",
"I know. \n",
"\n",
"One of those soldiers was my son Major Beau Biden. \n",
"\n",
"We dont know for sure if a burn pit was the cause of his brain cancer, or the diseases of so many of our troops. \n",
"\n",
"But Im committed to finding out everything we can. \n",
"\n",
"Committed to military families like Danielle Robinson from Ohio. \n",
"\n",
"The widow of Sergeant First Class Heath Robinson. \n",
"\n",
"He was born a soldier. Army National Guard. Combat medic in Kosovo and Iraq. \n",
"\n",
"Stationed near Baghdad, just ya\n"
]
}
],
"source": [
"docs = docsearch.similarity_search_with_score(query=\"Headaches\", query_type=\"hybrid\")\n",
"print(\"distance - \", docs[0][1])\n",
"print(\"text- \", docs[0][0].page_content[:1000])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e70ad201",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"reranker : <lancedb.rerankers.linear_combination.LinearCombinationReranker object at 0x107ef1130>\n"
]
}
],
"source": [
"print(\"reranker : \", docsearch._reranker)"
]
},
{
"cell_type": "markdown",
"id": "f5e1cdfd",
"metadata": {},
"source": [
"Additionaly, to explore the table you can load it into a df or save it in a csv file: \n",
"```python\n",
"tbl = docsearch.get_table()\n",
"print(\"tbl:\", tbl)\n",
"pd_df = tbl.to_pandas()\n",
"# pd_df.to_csv(\"docsearch.csv\", index=False)\n",
"\n",
"# you can also create a new vector store object using an older connection object:\n",
"vector_store = LanceDB(connection=tbl, embedding=embeddings)\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "9c608226",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"metadata : {'source': '../../how_to/state_of_the_union.txt'}\n",
"\n",
"SQL filtering :\n",
"\n",
"They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun. \n",
"\n",
"Officer Mora was 27 years old. \n",
"\n",
"Officer Rivera was 22. \n",
"\n",
"Both Dominican Americans whod grown up on the same streets they later chose to patrol as police officers. \n",
"\n",
"I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. \n",
"\n",
"Ive worked on these issues a long time. \n",
"\n",
"I know what works: Investing in crime prevention and community police officers wholl walk the beat, wholl know the neighborhood, and who can restore trust and safety. \n",
"\n",
"So lets not abandon our streets. Or choose between safety and equal justice. \n",
"\n",
"Lets come together to protect our communities, restore trust, and hold law enforcement accountable. \n",
"\n",
"Thats why the Justice Department required body cameras, banned chokeholds, and restricted no-knock warrants for its officers. \n",
"\n",
"Thats why the American Rescue Plan provided $350 Billion that cities, states, and counties can use to hire more police and invest in proven strategies like community violence interruption—trusted messengers breaking the cycle of violence and trauma and giving young people hope. \n",
"\n",
"We should all agree: The answer is not to Defund the police. The answer is to FUND the police with the resources and training they need to protect our communities. \n",
"\n",
"I ask Democrats and Republicans alike: Pass my budget and keep our neighborhoods safe. \n",
"\n",
"And I will keep doing everything in my power to crack down on gun trafficking and ghost guns you can buy online and make at home—they have no serial numbers and cant be traced. \n",
"\n",
"And I ask Congress to pass proven measures to reduce gun violence. Pass universal background checks. Why should anyone on a terrorist list be able to purchase a weapon? \n",
"\n",
"Ban assault weapons and high-capacity magazines. \n",
"\n",
"Repeal the liability shield that makes gun manufacturers the only industry in America that cant be sued. \n",
"\n",
"These laws dont infringe on the Second Amendment. They save lives. \n",
"\n",
"The most fundamental right in America is the right to vote and to have it counted. And its under assault. \n",
"\n",
"In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections. \n",
"\n",
"We cannot let this happen. \n",
"\n",
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence. \n",
"\n",
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
"\n",
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n",
"\n",
"We can do both. At our border, weve installed new technology like cutting-edge scanners to better detect drug smuggling. \n",
"\n",
"Weve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n",
"\n",
"Were putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster.\n"
]
}
],
"source": [
"docs = docsearch.similarity_search(\n",
" query=query, filter={\"metadata.source\": \"../../how_to/state_of_the_union.txt\"}\n",
")\n",
"\n",
"print(\"metadata :\", docs[0].metadata)\n",
"\n",
"# or you can directly supply SQL string filters :\n",
"\n",
"print(\"\\nSQL filtering :\\n\")\n",
"docs = docsearch.similarity_search(query=query, filter=\"text LIKE '%Officer Rivera%'\")\n",
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "9a173c94",
"metadata": {},
"source": [
"## Adding images "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "05f669d7",
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain-experimental"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3ed69810",
"metadata": {},
"outputs": [],
"source": [
"! pip install open_clip_torch torch"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "2cacb5ee",
"metadata": {},
"outputs": [],
"source": [
"! rm -rf '/tmp/multimmodal_lance'"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "b3456e2c",
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.open_clip import OpenCLIPEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "3848eba2",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import requests\n",
"\n",
"# List of image URLs to download\n",
"image_urls = [\n",
" \"https://github.com/raghavdixit99/assets/assets/34462078/abf47cc4-d979-4aaa-83be-53a2115bf318\",\n",
" \"https://github.com/raghavdixit99/assets/assets/34462078/93be928e-522b-4e37-889d-d4efd54b2112\",\n",
"]\n",
"\n",
"texts = [\"bird\", \"dragon\"]\n",
"\n",
"# Directory to save images\n",
"dir_name = \"./photos/\"\n",
"\n",
"# Create directory if it doesn't exist\n",
"os.makedirs(dir_name, exist_ok=True)\n",
"\n",
"image_uris = []\n",
"# Download and save each image\n",
"for i, url in enumerate(image_urls, start=1):\n",
" response = requests.get(url)\n",
" path = os.path.join(dir_name, f\"image{i}.jpg\")\n",
" image_uris.append(path)\n",
" with open(path, \"wb\") as f:\n",
" f.write(response.content)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "3d62c2a0",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import LanceDB\n",
"\n",
"vec_store = LanceDB(\n",
" table_name=\"multimodal_test\",\n",
" embedding=OpenCLIPEmbeddings(),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "ebbb4881",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['b673620b-01f0-42ca-a92e-d033bb92c0a6',\n",
" '99c3a5b0-b577-417a-8177-92f4a655dbfb']"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vec_store.add_images(uris=image_uris)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "3c29dea3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['f7adde5d-a4a3-402b-9e73-088b230722c3',\n",
" 'cbed59da-0aec-4bff-8820-9e59d81a2140']"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vec_store.add_texts(texts)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "8b2f25ce",
"metadata": {},
"outputs": [],
"source": [
"img_embed = vec_store._embedding.embed_query(\"bird\")"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "87a24079",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='bird', metadata={'id': 'f7adde5d-a4a3-402b-9e73-088b230722c3'})"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vec_store.similarity_search_by_vector(img_embed)[0]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "78557867",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LanceTable(connection=LanceDBConnection(/tmp/lancedb), name=\"multimodal_test\")"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vec_store._table"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,6 +1,6 @@
# Python API Reference (SaaS) # Python API Reference (SaaS)
This section contains the API reference for the SaaS Python API. This section contains the API reference for the LanceDB Cloud Python API.
## Installation ## Installation

View File

@@ -15,7 +15,6 @@ LanceDB comes with some built-in rerankers. Some of the rerankers that are avail
Using rerankers is optional for vector and FTS. However, for hybrid search, rerankers are required. To use a reranker, you need to create an instance of the reranker and pass it to the `rerank` method of the query builder. Using rerankers is optional for vector and FTS. However, for hybrid search, rerankers are required. To use a reranker, you need to create an instance of the reranker and pass it to the `rerank` method of the query builder.
```python ```python
import numpy
import lancedb import lancedb
from lancedb.embeddings import get_registry from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector from lancedb.pydantic import LanceModel, Vector
@@ -54,6 +53,7 @@ LanceDB comes with some built-in rerankers. Here are some of the rerankers that
- [ColBERT Reranker](./colbert.md) - [ColBERT Reranker](./colbert.md)
- [OpenAI Reranker](./openai.md) - [OpenAI Reranker](./openai.md)
- [Linear Combination Reranker](./linear_combination.md) - [Linear Combination Reranker](./linear_combination.md)
- [Jina Reranker](./jina.md)
## Creating Custom Rerankers ## Creating Custom Rerankers

View File

@@ -0,0 +1,78 @@
# Jina Reranker
This re-ranker uses the [Jina](https://jina.ai/reranker/) API to rerank the search results. You can use this re-ranker by passing `JinaReranker()` to the `rerank()` method. Note that you'll either need to set the `JINA_API_KEY` environment variable or pass the `api_key` argument to use this re-ranker.
!!! note
Supported Query Types: Hybrid, Vector, FTS
```python
import os
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import JinaReranker
os.environ['JINA_API_KEY'] = "jina_*"
embedder = get_registry().get("jina").create()
db = lancedb.connect("~/.lancedb")
class Schema(LanceModel):
text: str = embedder.SourceField()
vector: Vector(embedder.ndims()) = embedder.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"}
]
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add(data)
reranker = JinaReranker(api_key="key")
# Run vector search with a reranker
result = tbl.search("hello").rerank(reranker=reranker).to_list()
# Run FTS search with a reranker
result = tbl.search("hello", query_type="fts").rerank(reranker=reranker).to_list()
# Run hybrid search with a reranker
tbl.create_fts_index("text", replace=True)
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()
```
Accepted Arguments
----------------
| Argument | Type | Default | Description |
| --- | --- | --- | --- |
| `model_name` | `str` | `"jina-reranker-v2-base-multilingual"` | The name of the reranker model to use. You can find the list of available models in https://jina.ai/reranker/|
| `column` | `str` | `"text"` | The name of the column to use as input to the cross encoder model. |
| `top_n` | `str` | `None` | The number of results to return. If None, will return all results. |
| `api_key` | `str` | `None` | The API key for the Jina API. If not provided, the `JINA_API_KEY` environment variable is used. |
| `return_score` | str | `"relevance"` | Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all" is supported, will return relevance score along with the vector and/or fts scores depending on query type |
## Supported Scores for each query type
You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:
### Hybrid Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
| `all` | ❌ Not Supported | Returns have vector(`_distance`) and FTS(`score`) along with Hybrid Search score(`_relevance_score`) |
### Vector Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
| `all` | ✅ Supported | Returns have vector(`_distance`) along with Hybrid Search score(`_relevance_score`) |
### FTS Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
| `all` | ✅ Supported | Returns have FTS(`score`) along with Hybrid Search score(`_relevance_score`) |

View File

@@ -53,13 +53,24 @@ db.create_table("my_vectors", data=data)
.to_list() .to_list()
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
--8<-- "docs/src/search_legacy.ts:import"
--8<-- "docs/src/search_legacy.ts:search1" ```ts
``` --8<-- "nodejs/examples/search.ts:import"
--8<-- "nodejs/examples/search.ts:search1"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/search_legacy.ts:import"
--8<-- "docs/src/search_legacy.ts:search1"
```
By default, `l2` will be used as metric type. You can specify the metric type as By default, `l2` will be used as metric type. You can specify the metric type as
`cosine` or `dot` if required. `cosine` or `dot` if required.
@@ -73,11 +84,19 @@ By default, `l2` will be used as metric type. You can specify the metric type as
.to_list() .to_list()
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
--8<-- "docs/src/search_legacy.ts:search2"
``` ```ts
--8<-- "nodejs/examples/search.ts:search2"
```
=== "vectordb (deprecated)"
```javascript
--8<-- "docs/src/search_legacy.ts:search2"
```
## Approximate nearest neighbor (ANN) search ## Approximate nearest neighbor (ANN) search

View File

@@ -44,11 +44,19 @@ const tbl = await db.createTable('myVectors', data)
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
--8<-- "docs/src/sql_legacy.ts:search"
``` ```ts
--8<-- "nodejs/examples/filtering.ts:search"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/sql_legacy.ts:search"
```
## SQL filters ## SQL filters
@@ -78,11 +86,19 @@ For example, the following filter string is acceptable:
.to_arrow() .to_arrow()
``` ```
=== "Javascript" === "TypeScript"
```javascript === "@lancedb/lancedb"
--8<-- "docs/src/sql_legacy.ts:vec_search"
``` ```ts
--8<-- "nodejs/examples/filtering.ts:vec_search"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/sql_legacy.ts:vec_search"
```
If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html), If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html),
you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the
@@ -148,10 +164,18 @@ You can also filter your data without search.
tbl.search().where("id = 10").limit(10).to_arrow() tbl.search().where("id = 10").limit(10).to_arrow()
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
--8<---- "docs/src/sql_legacy.ts:sql_search"
``` ```ts
--8<-- "nodejs/examples/filtering.ts:sql_search"
```
=== "vectordb (deprecated)"
```ts
--8<---- "docs/src/sql_legacy.ts:sql_search"
```
!!!warning "If your table is large, this could potentially return a very large amount of data. Please be sure to use a `limit` clause unless you're sure you want to return the whole result set." !!!warning "If your table is large, this could potentially return a very large amount of data. Please be sure to use a `limit` clause unless you're sure you want to return the whole result set."

View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.5.2", "version": "0.7.1",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.5.2", "version": "0.7.1",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"

View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.5.2", "version": "0.7.1",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
"scripts": { "scripts": {
"tsc": "tsc -b", "tsc": "tsc -b",
"build": "npm run tsc && cargo-cp-artifact --artifact cdylib lancedb_node index.node -- cargo build --message-format=json", "build": "npm run tsc && cargo-cp-artifact --artifact cdylib lancedb_node index.node -- cargo build -p lancedb-node --message-format=json",
"build-release": "npm run build -- --release", "build-release": "npm run build -- --release",
"test": "npm run tsc && mocha -recursive dist/test", "test": "npm run tsc && mocha -recursive dist/test",
"integration-test": "npm run tsc && mocha -recursive dist/integration_test", "integration-test": "npm run tsc && mocha -recursive dist/integration_test",

View File

@@ -62,6 +62,8 @@ export {
const defaultAwsRegion = "us-west-2"; const defaultAwsRegion = "us-west-2";
const defaultRequestTimeout = 10_000
export interface AwsCredentials { export interface AwsCredentials {
accessKeyId: string accessKeyId: string
@@ -119,6 +121,11 @@ export interface ConnectionOptions {
*/ */
hostOverride?: string hostOverride?: string
/**
* Duration in milliseconds for request timeout. Default = 10,000 (10 seconds)
*/
timeout?: number
/** /**
* (For LanceDB OSS only): The interval, in seconds, at which to check for * (For LanceDB OSS only): The interval, in seconds, at which to check for
* updates to the table from other processes. If None, then consistency is not * updates to the table from other processes. If None, then consistency is not
@@ -204,7 +211,8 @@ export async function connect(
awsCredentials: undefined, awsCredentials: undefined,
awsRegion: defaultAwsRegion, awsRegion: defaultAwsRegion,
apiKey: undefined, apiKey: undefined,
region: defaultAwsRegion region: defaultAwsRegion,
timeout: defaultRequestTimeout
}, },
arg arg
); );

View File

@@ -41,7 +41,7 @@ async function callWithMiddlewares (
if (i > middlewares.length) { if (i > middlewares.length) {
const headers = Object.fromEntries(req.headers.entries()) const headers = Object.fromEntries(req.headers.entries())
const params = Object.fromEntries(req.params?.entries() ?? []) const params = Object.fromEntries(req.params?.entries() ?? [])
const timeout = 10000 const timeout = opts?.timeout
let res let res
if (req.method === Method.POST) { if (req.method === Method.POST) {
res = await axios.post( res = await axios.post(
@@ -82,6 +82,7 @@ async function callWithMiddlewares (
interface MiddlewareInvocationOptions { interface MiddlewareInvocationOptions {
responseType?: ResponseType responseType?: ResponseType
timeout?: number,
} }
/** /**
@@ -123,15 +124,19 @@ export class HttpLancedbClient {
private readonly _url: string private readonly _url: string
private readonly _apiKey: () => string private readonly _apiKey: () => string
private readonly _middlewares: HttpLancedbClientMiddleware[] private readonly _middlewares: HttpLancedbClientMiddleware[]
private readonly _timeout: number | undefined
public constructor ( public constructor (
url: string, url: string,
apiKey: string, apiKey: string,
private readonly _dbName?: string timeout?: number,
private readonly _dbName?: string,
) { ) {
this._url = url this._url = url
this._apiKey = () => apiKey this._apiKey = () => apiKey
this._middlewares = [] this._middlewares = []
this._timeout = timeout
} }
get uri (): string { get uri (): string {
@@ -230,7 +235,10 @@ export class HttpLancedbClient {
let response let response
try { try {
response = await callWithMiddlewares(req, this._middlewares, { responseType }) response = await callWithMiddlewares(req, this._middlewares, {
responseType,
timeout: this._timeout,
})
// return response // return response
} catch (err: any) { } catch (err: any) {
@@ -267,7 +275,7 @@ export class HttpLancedbClient {
* Make a clone of this client * Make a clone of this client
*/ */
private clone (): HttpLancedbClient { private clone (): HttpLancedbClient {
const clone = new HttpLancedbClient(this._url, this._apiKey(), this._dbName) const clone = new HttpLancedbClient(this._url, this._apiKey(), this._timeout, this._dbName)
for (const mw of this._middlewares) { for (const mw of this._middlewares) {
clone._middlewares.push(mw) clone._middlewares.push(mw)
} }

View File

@@ -72,6 +72,7 @@ export class RemoteConnection implements Connection {
this._client = new HttpLancedbClient( this._client = new HttpLancedbClient(
server, server,
opts.apiKey, opts.apiKey,
opts.timeout,
opts.hostOverride === undefined ? undefined : this._dbName opts.hostOverride === undefined ? undefined : this._dbName
) )
} }

View File

@@ -15,11 +15,11 @@ crate-type = ["cdylib"]
arrow-ipc.workspace = true arrow-ipc.workspace = true
futures.workspace = true futures.workspace = true
lancedb = { path = "../rust/lancedb" } lancedb = { path = "../rust/lancedb" }
napi = { version = "2.15", default-features = false, features = [ napi = { version = "2.16.8", default-features = false, features = [
"napi7", "napi9",
"async", "async",
] } ] }
napi-derive = "2" napi-derive = "2.16.4"
# Prevent dynamic linking of lzma, which comes from datafusion # Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] } lzma-sys = { version = "*", features = ["static"] }

View File

@@ -1,3 +1,4 @@
import { Schema } from "apache-arrow";
// Copyright 2024 Lance Developers. // Copyright 2024 Lance Developers.
// //
// Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
@@ -12,40 +13,12 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
import { import * as arrow13 from "apache-arrow-13";
Binary, import * as arrow14 from "apache-arrow-14";
Bool, import * as arrow15 from "apache-arrow-15";
DataType, import * as arrow16 from "apache-arrow-16";
Dictionary, import * as arrow17 from "apache-arrow-17";
Field,
FixedSizeList,
Float,
Float16,
Float32,
Float64,
Int32,
Int64,
List,
MetadataVersion,
Precision,
Schema,
Struct,
type Table,
Type,
Utf8,
tableFromIPC,
} from "apache-arrow";
import {
Dictionary as OldDictionary,
Field as OldField,
FixedSizeList as OldFixedSizeList,
Float32 as OldFloat32,
Int32 as OldInt32,
Schema as OldSchema,
Struct as OldStruct,
TimestampNanosecond as OldTimestampNanosecond,
Utf8 as OldUtf8,
} from "apache-arrow-old";
import { import {
convertToTable, convertToTable,
fromTableToBuffer, fromTableToBuffer,
@@ -72,429 +45,520 @@ function sampleRecords(): Array<Record<string, any>> {
}, },
]; ];
} }
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
"Arrow",
(
arrow:
| typeof arrow13
| typeof arrow14
| typeof arrow15
| typeof arrow16
| typeof arrow17,
) => {
type ApacheArrow =
| typeof arrow13
| typeof arrow14
| typeof arrow15
| typeof arrow16
| typeof arrow17;
const {
Schema,
Field,
Binary,
Bool,
Utf8,
Float64,
Struct,
List,
Int32,
Int64,
Float,
Float16,
Float32,
FixedSizeList,
Precision,
tableFromIPC,
DataType,
Dictionary,
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
} = <any>arrow;
type Schema = ApacheArrow["Schema"];
type Table = ApacheArrow["Table"];
// Helper method to verify various ways to create a table // Helper method to verify various ways to create a table
async function checkTableCreation( async function checkTableCreation(
tableCreationMethod: ( tableCreationMethod: (
records: Record<string, unknown>[], records: Record<string, unknown>[],
recordsReversed: Record<string, unknown>[], recordsReversed: Record<string, unknown>[],
schema: Schema, schema: Schema,
) => Promise<Table>, ) => Promise<Table>,
infersTypes: boolean, infersTypes: boolean,
): Promise<void> { ): Promise<void> {
const records = sampleRecords(); const records = sampleRecords();
const recordsReversed = [ const recordsReversed = [
{ {
list: ["anime", "action", "comedy"], list: ["anime", "action", "comedy"],
struct: { x: 0, y: 0 }, struct: { x: 0, y: 0 },
string: "hello", string: "hello",
number: 7, number: 7,
boolean: false, boolean: false,
binary: Buffer.alloc(5), binary: Buffer.alloc(5),
},
];
const schema = new Schema([
new Field("binary", new Binary(), false),
new Field("boolean", new Bool(), false),
new Field("number", new Float64(), false),
new Field("string", new Utf8(), false),
new Field(
"struct",
new Struct([
new Field("x", new Float64(), false),
new Field("y", new Float64(), false),
]),
),
new Field("list", new List(new Field("item", new Utf8(), false)), false),
]);
const table = await tableCreationMethod(records, recordsReversed, schema);
schema.fields.forEach((field, idx) => {
const actualField = table.schema.fields[idx];
// Type inference always assumes nullable=true
if (infersTypes) {
expect(actualField.nullable).toBe(true);
} else {
expect(actualField.nullable).toBe(false);
}
expect(table.getChild(field.name)?.type.toString()).toEqual(
field.type.toString(),
);
expect(table.getChildAt(idx)?.type.toString()).toEqual(
field.type.toString(),
);
});
}
describe("The function makeArrowTable", function () {
it("will use data types from a provided schema instead of inference", async function () {
const schema = new Schema([
new Field("a", new Int32()),
new Field("b", new Float32()),
new Field("c", new FixedSizeList(3, new Field("item", new Float16()))),
new Field("d", new Int64()),
]);
const table = makeArrowTable(
[
{ a: 1, b: 2, c: [1, 2, 3], d: 9 },
{ a: 4, b: 5, c: [4, 5, 6], d: 10 },
{ a: 7, b: 8, c: [7, 8, 9], d: null },
],
{ schema },
);
const buf = await fromTableToBuffer(table);
expect(buf.byteLength).toBeGreaterThan(0);
const actual = tableFromIPC(buf);
expect(actual.numRows).toBe(3);
const actualSchema = actual.schema;
expect(actualSchema).toEqual(schema);
});
it("will assume the column `vector` is FixedSizeList<Float32> by default", async function () {
const schema = new Schema([
new Field("a", new Float(Precision.DOUBLE), true),
new Field("b", new Float(Precision.DOUBLE), true),
new Field(
"vector",
new FixedSizeList(
3,
new Field("item", new Float(Precision.SINGLE), true),
),
true,
),
]);
const table = makeArrowTable([
{ a: 1, b: 2, vector: [1, 2, 3] },
{ a: 4, b: 5, vector: [4, 5, 6] },
{ a: 7, b: 8, vector: [7, 8, 9] },
]);
const buf = await fromTableToBuffer(table);
expect(buf.byteLength).toBeGreaterThan(0);
const actual = tableFromIPC(buf);
expect(actual.numRows).toBe(3);
const actualSchema = actual.schema;
expect(actualSchema).toEqual(schema);
});
it("can support multiple vector columns", async function () {
const schema = new Schema([
new Field("a", new Float(Precision.DOUBLE), true),
new Field("b", new Float(Precision.DOUBLE), true),
new Field(
"vec1",
new FixedSizeList(3, new Field("item", new Float16(), true)),
true,
),
new Field(
"vec2",
new FixedSizeList(3, new Field("item", new Float16(), true)),
true,
),
]);
const table = makeArrowTable(
[
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] },
],
{
vectorColumns: {
vec1: { type: new Float16() },
vec2: { type: new Float16() },
}, },
}, ];
); const schema = new Schema([
new Field("binary", new Binary(), false),
const buf = await fromTableToBuffer(table); new Field("boolean", new Bool(), false),
expect(buf.byteLength).toBeGreaterThan(0); new Field("number", new Float64(), false),
new Field("string", new Utf8(), false),
const actual = tableFromIPC(buf); new Field(
expect(actual.numRows).toBe(3); "struct",
const actualSchema = actual.schema; new Struct([
expect(actualSchema).toEqual(schema); new Field("x", new Float64(), false),
}); new Field("y", new Float64(), false),
]),
it("will allow different vector column types", async function () {
const table = makeArrowTable([{ fp16: [1], fp32: [1], fp64: [1] }], {
vectorColumns: {
fp16: { type: new Float16() },
fp32: { type: new Float32() },
fp64: { type: new Float64() },
},
});
expect(table.getChild("fp16")?.type.children[0].type.toString()).toEqual(
new Float16().toString(),
);
expect(table.getChild("fp32")?.type.children[0].type.toString()).toEqual(
new Float32().toString(),
);
expect(table.getChild("fp64")?.type.children[0].type.toString()).toEqual(
new Float64().toString(),
);
});
it("will use dictionary encoded strings if asked", async function () {
const table = makeArrowTable([{ str: "hello" }]);
expect(DataType.isUtf8(table.getChild("str")?.type)).toBe(true);
const tableWithDict = makeArrowTable([{ str: "hello" }], {
dictionaryEncodeStrings: true,
});
expect(DataType.isDictionary(tableWithDict.getChild("str")?.type)).toBe(
true,
);
const schema = new Schema([
new Field("str", new Dictionary(new Utf8(), new Int32())),
]);
const tableWithDict2 = makeArrowTable([{ str: "hello" }], { schema });
expect(DataType.isDictionary(tableWithDict2.getChild("str")?.type)).toBe(
true,
);
});
it("will infer data types correctly", async function () {
await checkTableCreation(async (records) => makeArrowTable(records), true);
});
it("will allow a schema to be provided", async function () {
await checkTableCreation(
async (records, _, schema) => makeArrowTable(records, { schema }),
false,
);
});
it("will use the field order of any provided schema", async function () {
await checkTableCreation(
async (_, recordsReversed, schema) =>
makeArrowTable(recordsReversed, { schema }),
false,
);
});
it("will make an empty table", async function () {
await checkTableCreation(
async (_, __, schema) => makeArrowTable([], { schema }),
false,
);
});
});
class DummyEmbedding extends EmbeddingFunction<string> {
toJSON(): Partial<FunctionOptions> {
return {};
}
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
return data.map(() => [0.0, 0.0]);
}
ndims(): number {
return 2;
}
embeddingDataType() {
return new Float16();
}
}
class DummyEmbeddingWithNoDimension extends EmbeddingFunction<string> {
toJSON(): Partial<FunctionOptions> {
return {};
}
embeddingDataType(): Float {
return new Float16();
}
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
return data.map(() => [0.0, 0.0]);
}
}
const dummyEmbeddingConfig: EmbeddingFunctionConfig = {
sourceColumn: "string",
function: new DummyEmbedding(),
};
const dummyEmbeddingConfigWithNoDimension: EmbeddingFunctionConfig = {
sourceColumn: "string",
function: new DummyEmbeddingWithNoDimension(),
};
describe("convertToTable", function () {
it("will infer data types correctly", async function () {
await checkTableCreation(
async (records) => await convertToTable(records),
true,
);
});
it("will allow a schema to be provided", async function () {
await checkTableCreation(
async (records, _, schema) =>
await convertToTable(records, undefined, { schema }),
false,
);
});
it("will use the field order of any provided schema", async function () {
await checkTableCreation(
async (_, recordsReversed, schema) =>
await convertToTable(recordsReversed, undefined, { schema }),
false,
);
});
it("will make an empty table", async function () {
await checkTableCreation(
async (_, __, schema) => await convertToTable([], undefined, { schema }),
false,
);
});
it("will apply embeddings", async function () {
const records = sampleRecords();
const table = await convertToTable(records, dummyEmbeddingConfig);
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
new Float16().toString(),
);
});
it("will fail if missing the embedding source column", async function () {
await expect(
convertToTable([{ id: 1 }], dummyEmbeddingConfig),
).rejects.toThrow("'string' was not present");
});
it("use embeddingDimension if embedding missing from table", async function () {
const schema = new Schema([new Field("string", new Utf8(), false)]);
// Simulate getting an empty Arrow table (minus embedding) from some other source
// In other words, we aren't starting with records
const table = makeEmptyTable(schema);
// If the embedding specifies the dimension we are fine
await fromTableToBuffer(table, dummyEmbeddingConfig);
// We can also supply a schema and should be ok
const schemaWithEmbedding = new Schema([
new Field("string", new Utf8(), false),
new Field(
"vector",
new FixedSizeList(2, new Field("item", new Float16(), false)),
false,
),
]);
await fromTableToBuffer(
table,
dummyEmbeddingConfigWithNoDimension,
schemaWithEmbedding,
);
// Otherwise we will get an error
await expect(
fromTableToBuffer(table, dummyEmbeddingConfigWithNoDimension),
).rejects.toThrow("does not specify `embeddingDimension`");
});
it("will apply embeddings to an empty table", async function () {
const schema = new Schema([
new Field("string", new Utf8(), false),
new Field(
"vector",
new FixedSizeList(2, new Field("item", new Float16(), false)),
false,
),
]);
const table = await convertToTable([], dummyEmbeddingConfig, { schema });
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
new Float16().toString(),
);
});
it("will complain if embeddings present but schema missing embedding column", async function () {
const schema = new Schema([new Field("string", new Utf8(), false)]);
await expect(
convertToTable([], dummyEmbeddingConfig, { schema }),
).rejects.toThrow("column vector was missing");
});
it("will provide a nice error if run twice", async function () {
const records = sampleRecords();
const table = await convertToTable(records, dummyEmbeddingConfig);
// fromTableToBuffer will try and apply the embeddings again
await expect(
fromTableToBuffer(table, dummyEmbeddingConfig),
).rejects.toThrow("already existed");
});
});
describe("makeEmptyTable", function () {
it("will make an empty table", async function () {
await checkTableCreation(
async (_, __, schema) => makeEmptyTable(schema),
false,
);
});
});
describe("when using two versions of arrow", function () {
it("can still import data", async function () {
const schema = new OldSchema([
new OldField("id", new OldInt32()),
new OldField(
"vector",
new OldFixedSizeList(
1024,
new OldField("item", new OldFloat32(), true),
), ),
), new Field(
new OldField( "list",
"struct", new List(new Field("item", new Utf8(), false)),
new OldStruct([ false,
new OldField( ),
"nested", ]);
new OldDictionary(new OldUtf8(), new OldInt32(), 1, true),
const table = (await tableCreationMethod(
records,
recordsReversed,
schema,
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
)) as any;
schema.fields.forEach(
(
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
field: { name: any; type: { toString: () => any } },
idx: string | number,
) => {
const actualField = table.schema.fields[idx];
// Type inference always assumes nullable=true
if (infersTypes) {
expect(actualField.nullable).toBe(true);
} else {
expect(actualField.nullable).toBe(false);
}
expect(table.getChild(field.name)?.type.toString()).toEqual(
field.type.toString(),
);
expect(table.getChildAt(idx)?.type.toString()).toEqual(
field.type.toString(),
);
},
);
}
describe("The function makeArrowTable", function () {
it("will use data types from a provided schema instead of inference", async function () {
const schema = new Schema([
new Field("a", new Int32()),
new Field("b", new Float32()),
new Field(
"c",
new FixedSizeList(3, new Field("item", new Float16())),
), ),
new OldField("ts_with_tz", new OldTimestampNanosecond("some_tz")), new Field("d", new Int64()),
new OldField("ts_no_tz", new OldTimestampNanosecond(null)), ]);
]), const table = makeArrowTable(
), [
// biome-ignore lint/suspicious/noExplicitAny: skip { a: 1, b: 2, c: [1, 2, 3], d: 9 },
]) as any; { a: 4, b: 5, c: [4, 5, 6], d: 10 },
schema.metadataVersion = MetadataVersion.V5; { a: 7, b: 8, c: [7, 8, 9], d: null },
const table = makeArrowTable([], { schema }); ],
{ schema },
);
const buf = await fromTableToBuffer(table); const buf = await fromTableToBuffer(table);
expect(buf.byteLength).toBeGreaterThan(0); expect(buf.byteLength).toBeGreaterThan(0);
const actual = tableFromIPC(buf);
const actualSchema = actual.schema;
expect(actualSchema.fields.length).toBe(3);
// Deep equality gets hung up on some very minor unimportant differences const actual = tableFromIPC(buf);
// between arrow version 13 and 15 which isn't really what we're testing for expect(actual.numRows).toBe(3);
// and so we do our own comparison that just checks name/type/nullability const actualSchema = actual.schema;
function compareFields(lhs: Field, rhs: Field) { expect(actualSchema).toEqual(schema);
expect(lhs.name).toEqual(rhs.name); });
expect(lhs.nullable).toEqual(rhs.nullable);
expect(lhs.typeId).toEqual(rhs.typeId); it("will assume the column `vector` is FixedSizeList<Float32> by default", async function () {
if ("children" in lhs.type && lhs.type.children !== null) { const schema = new Schema([
const lhsChildren = lhs.type.children as Field[]; new Field("a", new Float(Precision.DOUBLE), true),
lhsChildren.forEach((child: Field, idx) => { new Field("b", new Float(Precision.DOUBLE), true),
compareFields(child, rhs.type.children[idx]); new Field(
"vector",
new FixedSizeList(
3,
new Field("item", new Float(Precision.SINGLE), true),
),
true,
),
]);
const table = makeArrowTable([
{ a: 1, b: 2, vector: [1, 2, 3] },
{ a: 4, b: 5, vector: [4, 5, 6] },
{ a: 7, b: 8, vector: [7, 8, 9] },
]);
const buf = await fromTableToBuffer(table);
expect(buf.byteLength).toBeGreaterThan(0);
const actual = tableFromIPC(buf);
expect(actual.numRows).toBe(3);
const actualSchema = actual.schema;
expect(actualSchema).toEqual(schema);
});
it("can support multiple vector columns", async function () {
const schema = new Schema([
new Field("a", new Float(Precision.DOUBLE), true),
new Field("b", new Float(Precision.DOUBLE), true),
new Field(
"vec1",
new FixedSizeList(3, new Field("item", new Float16(), true)),
true,
),
new Field(
"vec2",
new FixedSizeList(3, new Field("item", new Float16(), true)),
true,
),
]);
const table = makeArrowTable(
[
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] },
],
{
vectorColumns: {
vec1: { type: new Float16() },
vec2: { type: new Float16() },
},
},
);
const buf = await fromTableToBuffer(table);
expect(buf.byteLength).toBeGreaterThan(0);
const actual = tableFromIPC(buf);
expect(actual.numRows).toBe(3);
const actualSchema = actual.schema;
expect(actualSchema).toEqual(schema);
});
it("will allow different vector column types", async function () {
const table = makeArrowTable([{ fp16: [1], fp32: [1], fp64: [1] }], {
vectorColumns: {
fp16: { type: new Float16() },
fp32: { type: new Float32() },
fp64: { type: new Float64() },
},
}); });
expect(
table.getChild("fp16")?.type.children[0].type.toString(),
).toEqual(new Float16().toString());
expect(
table.getChild("fp32")?.type.children[0].type.toString(),
).toEqual(new Float32().toString());
expect(
table.getChild("fp64")?.type.children[0].type.toString(),
).toEqual(new Float64().toString());
});
it("will use dictionary encoded strings if asked", async function () {
const table = makeArrowTable([{ str: "hello" }]);
expect(DataType.isUtf8(table.getChild("str")?.type)).toBe(true);
const tableWithDict = makeArrowTable([{ str: "hello" }], {
dictionaryEncodeStrings: true,
});
expect(DataType.isDictionary(tableWithDict.getChild("str")?.type)).toBe(
true,
);
const schema = new Schema([
new Field("str", new Dictionary(new Utf8(), new Int32())),
]);
const tableWithDict2 = makeArrowTable([{ str: "hello" }], { schema });
expect(
DataType.isDictionary(tableWithDict2.getChild("str")?.type),
).toBe(true);
});
it("will infer data types correctly", async function () {
await checkTableCreation(
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
async (records) => (<any>makeArrowTable)(records),
true,
);
});
it("will allow a schema to be provided", async function () {
await checkTableCreation(
async (records, _, schema) =>
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
(<any>makeArrowTable)(records, { schema }),
false,
);
});
it("will use the field order of any provided schema", async function () {
await checkTableCreation(
async (_, recordsReversed, schema) =>
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
(<any>makeArrowTable)(recordsReversed, { schema }),
false,
);
});
it("will make an empty table", async function () {
await checkTableCreation(
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
async (_, __, schema) => (<any>makeArrowTable)([], { schema }),
false,
);
});
});
class DummyEmbedding extends EmbeddingFunction<string> {
toJSON(): Partial<FunctionOptions> {
return {};
}
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
return data.map(() => [0.0, 0.0]);
}
ndims(): number {
return 2;
}
embeddingDataType() {
return new Float16();
} }
} }
actualSchema.fields.forEach((field, idx) => {
compareFields(field, actualSchema.fields[idx]); class DummyEmbeddingWithNoDimension extends EmbeddingFunction<string> {
toJSON(): Partial<FunctionOptions> {
return {};
}
embeddingDataType() {
return new Float16();
}
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
return data.map(() => [0.0, 0.0]);
}
}
const dummyEmbeddingConfig: EmbeddingFunctionConfig = {
sourceColumn: "string",
function: new DummyEmbedding(),
};
const dummyEmbeddingConfigWithNoDimension: EmbeddingFunctionConfig = {
sourceColumn: "string",
function: new DummyEmbeddingWithNoDimension(),
};
describe("convertToTable", function () {
it("will infer data types correctly", async function () {
await checkTableCreation(
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
async (records) => await (<any>convertToTable)(records),
true,
);
});
it("will allow a schema to be provided", async function () {
await checkTableCreation(
async (records, _, schema) =>
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
await (<any>convertToTable)(records, undefined, { schema }),
false,
);
});
it("will use the field order of any provided schema", async function () {
await checkTableCreation(
async (_, recordsReversed, schema) =>
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
await (<any>convertToTable)(recordsReversed, undefined, { schema }),
false,
);
});
it("will make an empty table", async function () {
await checkTableCreation(
async (_, __, schema) =>
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
await (<any>convertToTable)([], undefined, { schema }),
false,
);
});
it("will apply embeddings", async function () {
const records = sampleRecords();
const table = await convertToTable(records, dummyEmbeddingConfig);
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(
true,
);
expect(
table.getChild("vector")?.type.children[0].type.toString(),
).toEqual(new Float16().toString());
});
it("will fail if missing the embedding source column", async function () {
await expect(
convertToTable([{ id: 1 }], dummyEmbeddingConfig),
).rejects.toThrow("'string' was not present");
});
it("use embeddingDimension if embedding missing from table", async function () {
const schema = new Schema([new Field("string", new Utf8(), false)]);
// Simulate getting an empty Arrow table (minus embedding) from some other source
// In other words, we aren't starting with records
const table = makeEmptyTable(schema);
// If the embedding specifies the dimension we are fine
await fromTableToBuffer(table, dummyEmbeddingConfig);
// We can also supply a schema and should be ok
const schemaWithEmbedding = new Schema([
new Field("string", new Utf8(), false),
new Field(
"vector",
new FixedSizeList(2, new Field("item", new Float16(), false)),
false,
),
]);
await fromTableToBuffer(
table,
dummyEmbeddingConfigWithNoDimension,
schemaWithEmbedding,
);
// Otherwise we will get an error
await expect(
fromTableToBuffer(table, dummyEmbeddingConfigWithNoDimension),
).rejects.toThrow("does not specify `embeddingDimension`");
});
it("will apply embeddings to an empty table", async function () {
const schema = new Schema([
new Field("string", new Utf8(), false),
new Field(
"vector",
new FixedSizeList(2, new Field("item", new Float16(), false)),
false,
),
]);
const table = await convertToTable([], dummyEmbeddingConfig, {
schema,
});
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(
true,
);
expect(
table.getChild("vector")?.type.children[0].type.toString(),
).toEqual(new Float16().toString());
});
it("will complain if embeddings present but schema missing embedding column", async function () {
const schema = new Schema([new Field("string", new Utf8(), false)]);
await expect(
convertToTable([], dummyEmbeddingConfig, { schema }),
).rejects.toThrow("column vector was missing");
});
it("will provide a nice error if run twice", async function () {
const records = sampleRecords();
const table = await convertToTable(records, dummyEmbeddingConfig);
// fromTableToBuffer will try and apply the embeddings again
await expect(
fromTableToBuffer(table, dummyEmbeddingConfig),
).rejects.toThrow("already existed");
});
}); });
});
}); describe("makeEmptyTable", function () {
it("will make an empty table", async function () {
await checkTableCreation(
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
async (_, __, schema) => (<any>makeEmptyTable)(schema),
false,
);
});
});
describe("when using two versions of arrow", function () {
it("can still import data", async function () {
const schema = new arrow13.Schema([
new arrow13.Field("id", new arrow13.Int32()),
new arrow13.Field(
"vector",
new arrow13.FixedSizeList(
1024,
new arrow13.Field("item", new arrow13.Float32(), true),
),
),
new arrow13.Field(
"struct",
new arrow13.Struct([
new arrow13.Field(
"nested",
new arrow13.Dictionary(
new arrow13.Utf8(),
new arrow13.Int32(),
1,
true,
),
),
new arrow13.Field(
"ts_with_tz",
new arrow13.TimestampNanosecond("some_tz"),
),
new arrow13.Field(
"ts_no_tz",
new arrow13.TimestampNanosecond(null),
),
]),
),
// biome-ignore lint/suspicious/noExplicitAny: skip
]) as any;
schema.metadataVersion = arrow13.MetadataVersion.V5;
const table = makeArrowTable([], { schema });
const buf = await fromTableToBuffer(table);
expect(buf.byteLength).toBeGreaterThan(0);
const actual = tableFromIPC(buf);
const actualSchema = actual.schema;
expect(actualSchema.fields.length).toBe(3);
// Deep equality gets hung up on some very minor unimportant differences
// between arrow version 13 and 15 which isn't really what we're testing for
// and so we do our own comparison that just checks name/type/nullability
function compareFields(lhs: arrow13.Field, rhs: arrow13.Field) {
expect(lhs.name).toEqual(rhs.name);
expect(lhs.nullable).toEqual(rhs.nullable);
expect(lhs.typeId).toEqual(rhs.typeId);
if ("children" in lhs.type && lhs.type.children !== null) {
const lhsChildren = lhs.type.children as arrow13.Field[];
lhsChildren.forEach((child: arrow13.Field, idx) => {
compareFields(child, rhs.type.children[idx]);
});
}
}
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
actualSchema.fields.forEach((field: any, idx: string | number) => {
compareFields(field, actualSchema.fields[idx]);
});
});
});
},
);

View File

@@ -11,8 +11,11 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
import * as arrow from "apache-arrow"; import * as arrow13 from "apache-arrow-13";
import * as arrowOld from "apache-arrow-old"; import * as arrow14 from "apache-arrow-14";
import * as arrow15 from "apache-arrow-15";
import * as arrow16 from "apache-arrow-16";
import * as arrow17 from "apache-arrow-17";
import * as tmp from "tmp"; import * as tmp from "tmp";
@@ -20,150 +23,154 @@ import { connect } from "../lancedb";
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding"; import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
import { getRegistry, register } from "../lancedb/embedding/registry"; import { getRegistry, register } from "../lancedb/embedding/registry";
describe.each([arrow, arrowOld])("LanceSchema", (arrow) => { describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
test("should preserve input order", async () => { "LanceSchema",
const schema = LanceSchema({ (arrow) => {
id: new arrow.Int32(), test("should preserve input order", async () => {
text: new arrow.Utf8(), const schema = LanceSchema({
vector: new arrow.Float32(), id: new arrow.Int32(),
}); text: new arrow.Utf8(),
expect(schema.fields.map((x) => x.name)).toEqual(["id", "text", "vector"]); vector: new arrow.Float32(),
});
});
describe("Registry", () => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => {
tmpDir.removeCallback();
getRegistry().reset();
});
it("should register a new item to the registry", async () => {
@register("mock-embedding")
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType(): arrow.Float {
return new arrow.Float32();
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
}
const func = getRegistry()
.get<MockEmbeddingFunction>("mock-embedding")!
.create();
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8()),
vector: func.vectorField(),
});
const db = await connect(tmpDir.name);
const table = await db.createTable(
"test",
[
{ id: 1, text: "hello" },
{ id: 2, text: "world" },
],
{ schema },
);
const expected = [
[1, 2, 3],
[1, 2, 3],
];
const actual = await table.query().toArrow();
const vectors = actual
.getChild("vector")
?.toArray()
.map((x: unknown) => {
if (x instanceof arrow.Vector) {
return [...x];
} else {
return x;
}
}); });
expect(vectors).toEqual(expected); expect(schema.fields.map((x) => x.name)).toEqual([
}); "id",
test("should error if registering with the same name", async () => { "text",
class MockEmbeddingFunction extends EmbeddingFunction<string> { "vector",
toJSON(): object { ]);
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType(): arrow.Float {
return new arrow.Float32();
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
}
register("mock-embedding")(MockEmbeddingFunction);
expect(() => register("mock-embedding")(MockEmbeddingFunction)).toThrow(
'Embedding function with alias "mock-embedding" already exists',
);
});
test("schema should contain correct metadata", async () => {
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType(): arrow.Float {
return new arrow.Float32();
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
}
const func = new MockEmbeddingFunction();
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8()),
vector: func.vectorField(),
}); });
const expectedMetadata = new Map<string, string>([ },
[ );
"embedding_functions",
JSON.stringify([ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
{ "Registry",
sourceColumn: "text", (arrow) => {
vectorColumn: "vector", let tmpDir: tmp.DirResult;
name: "MockEmbeddingFunction", beforeEach(() => {
model: { someText: "hello" }, tmpDir = tmp.dirSync({ unsafeCleanup: true });
}, });
]),
], afterEach(() => {
]); tmpDir.removeCallback();
expect(schema.metadata).toEqual(expectedMetadata); getRegistry().reset();
}); });
});
it("should register a new item to the registry", async () => {
@register("mock-embedding")
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32();
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
}
const func = getRegistry()
.get<MockEmbeddingFunction>("mock-embedding")!
.create();
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8()),
vector: func.vectorField(),
});
const db = await connect(tmpDir.name);
const table = await db.createTable(
"test",
[
{ id: 1, text: "hello" },
{ id: 2, text: "world" },
],
{ schema },
);
const expected = [
[1, 2, 3],
[1, 2, 3],
];
const actual = await table.query().toArrow();
const vectors = actual.getChild("vector")!.toArray();
expect(JSON.parse(JSON.stringify(vectors))).toEqual(
JSON.parse(JSON.stringify(expected)),
);
});
test("should error if registering with the same name", async () => {
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32();
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
}
register("mock-embedding")(MockEmbeddingFunction);
expect(() => register("mock-embedding")(MockEmbeddingFunction)).toThrow(
'Embedding function with alias "mock-embedding" already exists',
);
});
test("schema should contain correct metadata", async () => {
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32();
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
}
const func = new MockEmbeddingFunction();
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8()),
vector: func.vectorField(),
});
const expectedMetadata = new Map<string, string>([
[
"embedding_functions",
JSON.stringify([
{
sourceColumn: "text",
vectorColumn: "vector",
name: "MockEmbeddingFunction",
model: { someText: "hello" },
},
]),
],
]);
expect(schema.metadata).toEqual(expectedMetadata);
});
},
);

View File

@@ -14,6 +14,11 @@
/* eslint-disable @typescript-eslint/naming-convention */ /* eslint-disable @typescript-eslint/naming-convention */
import {
CreateTableCommand,
DeleteTableCommand,
DynamoDBClient,
} from "@aws-sdk/client-dynamodb";
import { import {
CreateKeyCommand, CreateKeyCommand,
KMSClient, KMSClient,
@@ -38,6 +43,7 @@ const CONFIG = {
awsAccessKeyId: "ACCESSKEY", awsAccessKeyId: "ACCESSKEY",
awsSecretAccessKey: "SECRETKEY", awsSecretAccessKey: "SECRETKEY",
awsEndpoint: "http://127.0.0.1:4566", awsEndpoint: "http://127.0.0.1:4566",
dynamodbEndpoint: "http://127.0.0.1:4566",
awsRegion: "us-east-1", awsRegion: "us-east-1",
}; };
@@ -66,7 +72,6 @@ class S3Bucket {
} catch { } catch {
// It's fine if the bucket doesn't exist // It's fine if the bucket doesn't exist
} }
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
await client.send(new CreateBucketCommand({ Bucket: name })); await client.send(new CreateBucketCommand({ Bucket: name }));
return new S3Bucket(name); return new S3Bucket(name);
} }
@@ -79,32 +84,27 @@ class S3Bucket {
static async deleteBucket(client: S3Client, name: string) { static async deleteBucket(client: S3Client, name: string) {
// Must delete all objects before we can delete the bucket // Must delete all objects before we can delete the bucket
const objects = await client.send( const objects = await client.send(
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
new ListObjectsV2Command({ Bucket: name }), new ListObjectsV2Command({ Bucket: name }),
); );
if (objects.Contents) { if (objects.Contents) {
for (const object of objects.Contents) { for (const object of objects.Contents) {
await client.send( await client.send(
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
new DeleteObjectCommand({ Bucket: name, Key: object.Key }), new DeleteObjectCommand({ Bucket: name, Key: object.Key }),
); );
} }
} }
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
await client.send(new DeleteBucketCommand({ Bucket: name })); await client.send(new DeleteBucketCommand({ Bucket: name }));
} }
public async assertAllEncrypted(path: string, keyId: string) { public async assertAllEncrypted(path: string, keyId: string) {
const client = S3Bucket.s3Client(); const client = S3Bucket.s3Client();
const objects = await client.send( const objects = await client.send(
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
new ListObjectsV2Command({ Bucket: this.name, Prefix: path }), new ListObjectsV2Command({ Bucket: this.name, Prefix: path }),
); );
if (objects.Contents) { if (objects.Contents) {
for (const object of objects.Contents) { for (const object of objects.Contents) {
const metadata = await client.send( const metadata = await client.send(
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
new HeadObjectCommand({ Bucket: this.name, Key: object.Key }), new HeadObjectCommand({ Bucket: this.name, Key: object.Key }),
); );
expect(metadata.ServerSideEncryption).toBe("aws:kms"); expect(metadata.ServerSideEncryption).toBe("aws:kms");
@@ -143,7 +143,6 @@ class KmsKey {
public async delete() { public async delete() {
const client = KmsKey.kmsClient(); const client = KmsKey.kmsClient();
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
await client.send(new ScheduleKeyDeletionCommand({ KeyId: this.keyId })); await client.send(new ScheduleKeyDeletionCommand({ KeyId: this.keyId }));
} }
} }
@@ -224,3 +223,91 @@ maybeDescribe("storage_options", () => {
await bucket.assertAllEncrypted("test/table2.lance", kmsKey.keyId); await bucket.assertAllEncrypted("test/table2.lance", kmsKey.keyId);
}); });
}); });
class DynamoDBCommitTable {
name: string;
constructor(name: string) {
this.name = name;
}
static dynamoClient() {
return new DynamoDBClient({
region: CONFIG.awsRegion,
credentials: {
accessKeyId: CONFIG.awsAccessKeyId,
secretAccessKey: CONFIG.awsSecretAccessKey,
},
endpoint: CONFIG.awsEndpoint,
});
}
public static async create(name: string): Promise<DynamoDBCommitTable> {
const client = DynamoDBCommitTable.dynamoClient();
const command = new CreateTableCommand({
TableName: name,
AttributeDefinitions: [
{
AttributeName: "base_uri",
AttributeType: "S",
},
{
AttributeName: "version",
AttributeType: "N",
},
],
KeySchema: [
{ AttributeName: "base_uri", KeyType: "HASH" },
{ AttributeName: "version", KeyType: "RANGE" },
],
ProvisionedThroughput: {
ReadCapacityUnits: 1,
WriteCapacityUnits: 1,
},
});
await client.send(command);
return new DynamoDBCommitTable(name);
}
public async delete() {
const client = DynamoDBCommitTable.dynamoClient();
await client.send(new DeleteTableCommand({ TableName: this.name }));
}
}
maybeDescribe("DynamoDB Lock", () => {
let bucket: S3Bucket;
let commitTable: DynamoDBCommitTable;
beforeAll(async () => {
bucket = await S3Bucket.create("lancedb2");
commitTable = await DynamoDBCommitTable.create("commitTable");
});
afterAll(async () => {
await commitTable.delete();
await bucket.delete();
});
it("can be used to configure a DynamoDB table for commit log", async () => {
const uri = `s3+ddb://${bucket.name}/test?ddbTableName=${commitTable.name}`;
const db = await connect(uri, {
storageOptions: CONFIG,
readConsistencyInterval: 0,
});
const table = await db.createTable("test", [{ a: 1, b: 2 }]);
// 5 concurrent appends
const futs = Array.from({ length: 5 }, async () => {
// Open a table so each append has a separate table reference. Otherwise
// they will share the same table reference and the internal ReadWriteLock
// will prevent any real concurrency.
const table = await db.openTable("test");
await table.add([{ a: 2, b: 3 }]);
});
await Promise.all(futs);
const rowCount = await table.countRows();
expect(rowCount).toBe(6);
});
});

View File

@@ -16,8 +16,11 @@ import * as fs from "fs";
import * as path from "path"; import * as path from "path";
import * as tmp from "tmp"; import * as tmp from "tmp";
import * as arrow from "apache-arrow"; import * as arrow13 from "apache-arrow-13";
import * as arrowOld from "apache-arrow-old"; import * as arrow14 from "apache-arrow-14";
import * as arrow15 from "apache-arrow-15";
import * as arrow16 from "apache-arrow-16";
import * as arrow17 from "apache-arrow-17";
import { Table, connect } from "../lancedb"; import { Table, connect } from "../lancedb";
import { import {
@@ -31,106 +34,163 @@ import {
Schema, Schema,
makeArrowTable, makeArrowTable,
} from "../lancedb/arrow"; } from "../lancedb/arrow";
import { EmbeddingFunction, LanceSchema, register } from "../lancedb/embedding"; import {
EmbeddingFunction,
LanceSchema,
getRegistry,
register,
} from "../lancedb/embedding";
import { Index } from "../lancedb/indices"; import { Index } from "../lancedb/indices";
// biome-ignore lint/suspicious/noExplicitAny: <explanation> describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
describe.each([arrow, arrowOld])("Given a table", (arrow: any) => { "Given a table",
let tmpDir: tmp.DirResult; // biome-ignore lint/suspicious/noExplicitAny: <explanation>
let table: Table; (arrow: any) => {
let tmpDir: tmp.DirResult;
let table: Table;
const schema = new arrow.Schema([ const schema:
new arrow.Field("id", new arrow.Float64(), true), | import("apache-arrow-13").Schema
]); | import("apache-arrow-14").Schema
| import("apache-arrow-15").Schema
| import("apache-arrow-16").Schema
| import("apache-arrow-17").Schema = new arrow.Schema([
new arrow.Field("id", new arrow.Float64(), true),
]);
beforeEach(async () => { beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true }); tmpDir = tmp.dirSync({ unsafeCleanup: true });
const conn = await connect(tmpDir.name); const conn = await connect(tmpDir.name);
table = await conn.createEmptyTable("some_table", schema); table = await conn.createEmptyTable("some_table", schema);
});
afterEach(() => tmpDir.removeCallback());
it("be displayable", async () => {
expect(table.display()).toMatch(
/NativeTable\(some_table, uri=.*, read_consistency_interval=None\)/,
);
table.close();
expect(table.display()).toBe("ClosedTable(some_table)");
});
it("should let me add data", async () => {
await table.add([{ id: 1 }, { id: 2 }]);
await table.add([{ id: 1 }]);
await expect(table.countRows()).resolves.toBe(3);
});
it("should overwrite data if asked", async () => {
await table.add([{ id: 1 }, { id: 2 }]);
await table.add([{ id: 1 }], { mode: "overwrite" });
await expect(table.countRows()).resolves.toBe(1);
});
it("should let me close the table", async () => {
expect(table.isOpen()).toBe(true);
table.close();
expect(table.isOpen()).toBe(false);
expect(table.countRows()).rejects.toThrow("Table some_table is closed");
});
it("should let me update values", async () => {
await table.add([{ id: 1 }]);
expect(await table.countRows("id == 1")).toBe(1);
expect(await table.countRows("id == 7")).toBe(0);
await table.update({ id: "7" });
expect(await table.countRows("id == 1")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
await table.add([{ id: 2 }]);
// Test Map as input
await table.update(new Map(Object.entries({ id: "10" })), {
where: "id % 2 == 0",
}); });
expect(await table.countRows("id == 2")).toBe(0); afterEach(() => tmpDir.removeCallback());
expect(await table.countRows("id == 7")).toBe(1);
expect(await table.countRows("id == 10")).toBe(1);
});
// https://github.com/lancedb/lancedb/issues/1293 it("be displayable", async () => {
test.each([new arrow.Float16(), new arrow.Float32(), new arrow.Float64()])( expect(table.display()).toMatch(
"can create empty table with non default float type: %s", /NativeTable\(some_table, uri=.*, read_consistency_interval=None\)/,
async (floatType) => { );
const db = await connect(tmpDir.name); table.close();
expect(table.display()).toBe("ClosedTable(some_table)");
});
const data = [ it("should let me add data", async () => {
{ text: "hello", vector: Array(512).fill(1.0) }, await table.add([{ id: 1 }, { id: 2 }]);
{ text: "hello world", vector: Array(512).fill(1.0) }, await table.add([{ id: 1 }]);
]; await expect(table.countRows()).resolves.toBe(3);
const f64Schema = new arrow.Schema([ });
new arrow.Field("text", new arrow.Utf8(), true),
new arrow.Field(
"vector",
new arrow.FixedSizeList(512, new arrow.Field("item", floatType)),
true,
),
]);
const f64Table = await db.createEmptyTable("f64", f64Schema, { it("should overwrite data if asked", async () => {
mode: "overwrite", await table.add([{ id: 1 }, { id: 2 }]);
await table.add([{ id: 1 }], { mode: "overwrite" });
await expect(table.countRows()).resolves.toBe(1);
});
it("should let me close the table", async () => {
expect(table.isOpen()).toBe(true);
table.close();
expect(table.isOpen()).toBe(false);
expect(table.countRows()).rejects.toThrow("Table some_table is closed");
});
it("should let me update values", async () => {
await table.add([{ id: 1 }]);
expect(await table.countRows("id == 1")).toBe(1);
expect(await table.countRows("id == 7")).toBe(0);
await table.update({ id: "7" });
expect(await table.countRows("id == 1")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
await table.add([{ id: 2 }]);
// Test Map as input
await table.update(new Map(Object.entries({ id: "10" })), {
where: "id % 2 == 0",
}); });
try { expect(await table.countRows("id == 2")).toBe(0);
await f64Table.add(data); expect(await table.countRows("id == 7")).toBe(1);
const res = await f64Table.query().toArray(); expect(await table.countRows("id == 10")).toBe(1);
expect(res.length).toBe(2); });
} catch (e) {
expect(e).toBeUndefined();
}
},
);
it("should return the table as an instance of an arrow table", async () => { it("should let me update values with `values`", async () => {
const arrowTbl = await table.toArrow(); await table.add([{ id: 1 }]);
expect(arrowTbl).toBeInstanceOf(ArrowTable); expect(await table.countRows("id == 1")).toBe(1);
}); expect(await table.countRows("id == 7")).toBe(0);
}); await table.update({ values: { id: 7 } });
expect(await table.countRows("id == 1")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
await table.add([{ id: 2 }]);
// Test Map as input
await table.update({
values: {
id: "10",
},
where: "id % 2 == 0",
});
expect(await table.countRows("id == 2")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
expect(await table.countRows("id == 10")).toBe(1);
});
it("should let me update values with `valuesSql`", async () => {
await table.add([{ id: 1 }]);
expect(await table.countRows("id == 1")).toBe(1);
expect(await table.countRows("id == 7")).toBe(0);
await table.update({
valuesSql: {
id: "7",
},
});
expect(await table.countRows("id == 1")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
await table.add([{ id: 2 }]);
// Test Map as input
await table.update({
valuesSql: {
id: "10",
},
where: "id % 2 == 0",
});
expect(await table.countRows("id == 2")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
expect(await table.countRows("id == 10")).toBe(1);
});
// https://github.com/lancedb/lancedb/issues/1293
test.each([new arrow.Float16(), new arrow.Float32(), new arrow.Float64()])(
"can create empty table with non default float type: %s",
async (floatType) => {
const db = await connect(tmpDir.name);
const data = [
{ text: "hello", vector: Array(512).fill(1.0) },
{ text: "hello world", vector: Array(512).fill(1.0) },
];
const f64Schema = new arrow.Schema([
new arrow.Field("text", new arrow.Utf8(), true),
new arrow.Field(
"vector",
new arrow.FixedSizeList(512, new arrow.Field("item", floatType)),
true,
),
]);
const f64Table = await db.createEmptyTable("f64", f64Schema, {
mode: "overwrite",
});
try {
await f64Table.add(data);
const res = await f64Table.query().toArray();
expect(res.length).toBe(2);
} catch (e) {
expect(e).toBeUndefined();
}
},
);
it("should return the table as an instance of an arrow table", async () => {
const arrowTbl = await table.toArrow();
expect(arrowTbl).toBeInstanceOf(ArrowTable);
});
},
);
describe("merge insert", () => { describe("merge insert", () => {
let tmpDir: tmp.DirResult; let tmpDir: tmp.DirResult;
@@ -315,7 +375,7 @@ describe("When creating an index", () => {
.query() .query()
.limit(2) .limit(2)
.nearestTo(queryVec) .nearestTo(queryVec)
.distanceType("DoT") .distanceType("dot")
.toArrow(); .toArrow();
expect(rst.numRows).toBe(2); expect(rst.numRows).toBe(2);
@@ -648,98 +708,151 @@ describe("when optimizing a dataset", () => {
}); });
}); });
describe("table.search", () => { describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
let tmpDir: tmp.DirResult; "when optimizing a dataset",
beforeEach(() => { // biome-ignore lint/suspicious/noExplicitAny: <explanation>
tmpDir = tmp.dirSync({ unsafeCleanup: true }); (arrow: any) => {
}); let tmpDir: tmp.DirResult;
afterEach(() => tmpDir.removeCallback()); beforeEach(() => {
getRegistry().reset();
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => {
tmpDir.removeCallback();
});
test("can search using a string", async () => { test("can search using a string", async () => {
@register() @register()
class MockEmbeddingFunction extends EmbeddingFunction<string> { class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object { toJSON(): object {
return {}; return {};
} }
ndims() { ndims() {
return 1; return 1;
} }
embeddingDataType(): arrow.Float { embeddingDataType() {
return new Float32(); return new Float32();
}
// Hardcoded embeddings for the sake of testing
async computeQueryEmbeddings(_data: string) {
switch (_data) {
case "greetings":
return [0.1];
case "farewell":
return [0.2];
default:
return null as never;
} }
}
// Hardcoded embeddings for the sake of testing // Hardcoded embeddings for the sake of testing
async computeSourceEmbeddings(data: string[]) { async computeQueryEmbeddings(_data: string) {
return data.map((s) => { switch (_data) {
switch (s) { case "greetings":
case "hello world":
return [0.1]; return [0.1];
case "goodbye world": case "farewell":
return [0.2]; return [0.2];
default: default:
return null as never; return null as never;
} }
}); }
// Hardcoded embeddings for the sake of testing
async computeSourceEmbeddings(data: string[]) {
return data.map((s) => {
switch (s) {
case "hello world":
return [0.1];
case "goodbye world":
return [0.2];
default:
return null as never;
}
});
}
} }
}
const func = new MockEmbeddingFunction(); const func = new MockEmbeddingFunction();
const schema = LanceSchema({ const schema = LanceSchema({
text: func.sourceField(new arrow.Utf8()), text: func.sourceField(new arrow.Utf8()),
vector: func.vectorField(), vector: func.vectorField(),
});
const db = await connect(tmpDir.name);
const data = [{ text: "hello world" }, { text: "goodbye world" }];
const table = await db.createTable("test", data, { schema });
const results = await table.search("greetings").toArray();
expect(results[0].text).toBe(data[0].text);
const results2 = await table.search("farewell").toArray();
expect(results2[0].text).toBe(data[1].text);
}); });
const db = await connect(tmpDir.name);
const data = [{ text: "hello world" }, { text: "goodbye world" }];
const table = await db.createTable("test", data, { schema });
const results = await table.search("greetings").then((r) => r.toArray()); test("rejects if no embedding function provided", async () => {
expect(results[0].text).toBe(data[0].text); const db = await connect(tmpDir.name);
const data = [
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
];
const table = await db.createTable("test", data);
const results2 = await table.search("farewell").then((r) => r.toArray()); expect(table.search("hello").toArray()).rejects.toThrow(
expect(results2[0].text).toBe(data[1].text); "No embedding functions are defined in the table",
);
});
test.each([
[0.4, 0.5, 0.599], // number[]
Float32Array.of(0.4, 0.5, 0.599), // Float32Array
Float64Array.of(0.4, 0.5, 0.599), // Float64Array
])("can search using vectorlike datatypes", async (vectorlike) => {
const db = await connect(tmpDir.name);
const data = [
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
];
const table = await db.createTable("test", data);
// biome-ignore lint/suspicious/noExplicitAny: test
const results: any[] = await table.search(vectorlike).toArray();
expect(results.length).toBe(2);
expect(results[0].text).toBe(data[1].text);
});
},
);
describe("when calling explainPlan", () => {
let tmpDir: tmp.DirResult;
let table: Table;
let queryVec: number[];
beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
const con = await connect(tmpDir.name);
table = await con.createTable("vectors", [{ id: 1, vector: [0.1, 0.2] }]);
}); });
test("rejects if no embedding function provided", async () => { afterEach(() => {
const db = await connect(tmpDir.name); tmpDir.removeCallback();
const data = [
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
];
const table = await db.createTable("test", data);
expect(table.search("hello")).rejects.toThrow(
"No embedding functions are defined in the table",
);
}); });
test.each([ it("retrieves query plan", async () => {
[0.4, 0.5, 0.599], // number[] queryVec = Array(2)
Float32Array.of(0.4, 0.5, 0.599), // Float32Array .fill(1)
Float64Array.of(0.4, 0.5, 0.599), // Float64Array .map(() => Math.random());
])("can search using vectorlike datatypes", async (vectorlike) => { const plan = await table.query().nearestTo(queryVec).explainPlan(true);
const db = await connect(tmpDir.name);
const data = [
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
];
const table = await db.createTable("test", data);
// biome-ignore lint/suspicious/noExplicitAny: test expect(plan).toMatch("KNN");
const results: any[] = await table.search(vectorlike).toArray(); });
});
expect(results.length).toBe(2);
expect(results[0].text).toBe(data[1].text); describe("column name options", () => {
let tmpDir: tmp.DirResult;
let table: Table;
beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
const con = await connect(tmpDir.name);
table = await con.createTable("vectors", [
{ camelCase: 1, vector: [0.1, 0.2] },
]);
});
test("can select columns with different names", async () => {
const results = await table.query().select(["camelCase"]).toArray();
expect(results[0].camelCase).toBe(1);
});
test("can filter on columns with different names", async () => {
const results = await table.query().where("`camelCase` = 1").toArray();
expect(results[0].camelCase).toBe(1);
}); });
}); });

View File

@@ -6,5 +6,5 @@
"target": "es2022", "target": "es2022",
"types": ["jest", "node"] "types": ["jest", "node"]
}, },
"include": ["**/*"] "include": ["**/*", "../examples/ann_indexes.ts"]
} }

View File

@@ -0,0 +1,28 @@
import { IntoSql, toSQL } from "../lancedb/util";
test.each([
["string", "'string'"],
[123, "123"],
[1.11, "1.11"],
[true, "TRUE"],
[false, "FALSE"],
[null, "NULL"],
[new Date("2021-01-01T00:00:00.000Z"), "'2021-01-01T00:00:00.000Z'"],
[[1, 2, 3], "[1, 2, 3]"],
[new ArrayBuffer(8), "X'0000000000000000'"],
[Buffer.from("hello"), "X'68656c6c6f'"],
["Hello 'world'", "'Hello ''world'''"],
])("toSQL(%p) === %p", (value, expected) => {
expect(toSQL(value)).toBe(expected);
});
test("toSQL({}) throws on unsupported value type", () => {
expect(() => toSQL({} as unknown as IntoSql)).toThrow(
"Unsupported value type: object value: ([object Object])",
);
});
test("toSQL() throws on unsupported value type", () => {
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
expect(() => (<any>toSQL)()).toThrow(
"Unsupported value type: undefined value: (undefined)",
);
});

View File

@@ -1,5 +1,5 @@
{ {
"$schema": "https://biomejs.dev/schemas/1.7.3/schema.json", "$schema": "https://biomejs.dev/schemas/1.8.3/schema.json",
"organizeImports": { "organizeImports": {
"enabled": true "enabled": true
}, },
@@ -94,12 +94,28 @@
"useValidTypeof": "error" "useValidTypeof": "error"
} }
}, },
"ignore": ["**/dist/**/*", "**/native.js", "**/native.d.ts"] "ignore": [
"**/dist/**/*",
"**/native.js",
"**/native.d.ts",
"__test__/docs/**/*",
"examples/**/*"
]
}, },
"javascript": { "javascript": {
"globals": [] "globals": []
}, },
"overrides": [ "overrides": [
{
"include": ["__test__/s3_integration.test.ts"],
"linter": {
"rules": {
"style": {
"useNamingConvention": "off"
}
}
}
},
{ {
"include": [ "include": [
"**/*.ts", "**/*.ts",

1
nodejs/examples/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
data/

View File

@@ -0,0 +1,49 @@
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
// --8<-- [end:import]
// --8<-- [start:ingest]
const db = await lancedb.connect("/tmp/lancedb/");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
const table = await db.createTable("my_vectors", data, { mode: "overwrite" });
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 16,
numSubVectors: 48,
}),
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const _results1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.toArray();
// --8<-- [end:search2]
// --8<-- [start:search3]
const _results3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.toArray();
// --8<-- [end:search3]
console.log("Ann indexes: done");

162
nodejs/examples/basic.ts Normal file
View File

@@ -0,0 +1,162 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import {
Field,
FixedSizeList,
Float16,
Int32,
Schema,
Utf8,
} from "apache-arrow";
// --8<-- [end:imports]
// --8<-- [start:connect]
const uri = "/tmp/lancedb/";
const db = await lancedb.connect(uri);
// --8<-- [end:connect]
{
// --8<-- [start:create_table]
const tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ mode: "overwrite" },
);
// --8<-- [end:create_table]
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
{
// --8<-- [start:create_table_exists_ok]
const tbl = await db.createTable("myTable", data, {
existsOk: true,
});
// --8<-- [end:create_table_exists_ok]
}
{
// --8<-- [start:create_table_overwrite]
const _tbl = await db.createTable("myTable", data, {
mode: "overwrite",
});
// --8<-- [end:create_table_overwrite]
}
}
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const _tbl = await db.createTable("myTable", data, {
schema,
});
// --8<-- [end:create_table_with_schema]
}
{
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const empty_tbl = await db.createEmptyTable("empty_table", schema);
// --8<-- [end:create_empty_table]
}
{
// --8<-- [start:open_table]
const _tbl = await db.openTable("myTable");
// --8<-- [end:open_table]
}
{
// --8<-- [start:table_names]
const tableNames = await db.tableNames();
console.log(tableNames);
// --8<-- [end:table_names]
}
const tbl = await db.openTable("myTable");
{
// --8<-- [start:add_data]
const data = [
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
];
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:vector_search]
const _res = tbl.search([100, 100]).limit(2).toArray();
// --8<-- [end:vector_search]
}
{
const data = Array.from({ length: 1000 })
.fill(null)
.map(() => ({
vector: [Math.random(), Math.random()],
item: "autogen",
price: Math.round(Math.random() * 100),
}));
await tbl.add(data);
}
// --8<-- [start:create_index]
await tbl.createIndex("vector");
// --8<-- [end:create_index]
// --8<-- [start:delete_rows]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete_rows]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
await db.dropTable("empty_table");
{
// --8<-- [start:create_f16_table]
const db = await lancedb.connect("/tmp/lancedb");
const dim = 16;
const total = 10;
const f16Schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema: f16Schema },
);
const _table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}

View File

@@ -0,0 +1,83 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import { LanceSchema, getRegistry, register } from "@lancedb/lancedb/embedding";
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
import { type Float, Float32, Utf8 } from "apache-arrow";
// --8<-- [end:imports]
{
// --8<-- [start:openai_embeddings]
const db = await lancedb.connect("/tmp/db");
const func = getRegistry()
.get("openai")
?.create({ model: "text-embedding-ada-002" }) as EmbeddingFunction;
const wordsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createEmptyTable("words", wordsSchema, {
mode: "overwrite",
});
await tbl.add([{ text: "hello world" }, { text: "goodbye world" }]);
const query = "greetings";
const actual = (await (await tbl.search(query)).limit(1).toArray())[0];
// --8<-- [end:openai_embeddings]
console.log("result = ", actual.text);
}
{
// --8<-- [start:embedding_function]
const db = await lancedb.connect("/tmp/db");
@register("my_embedding")
class MyEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {};
}
ndims() {
return 3;
}
embeddingDataType(): Float {
return new Float32();
}
async computeQueryEmbeddings(_data: string) {
// This is a placeholder for a real embedding function
return [1, 2, 3];
}
async computeSourceEmbeddings(data: string[]) {
// This is a placeholder for a real embedding function
return Array.from({ length: data.length }).fill([1, 2, 3]) as number[][];
}
}
const func = new MyEmbeddingFunction();
const data = [{ text: "pepperoni" }, { text: "pineapple" }];
// Option 1: manually specify the embedding function
const table = await db.createTable("vectors", data, {
embeddingFunction: {
function: func,
sourceColumn: "text",
vectorColumn: "vector",
},
mode: "overwrite",
});
// Option 2: provide the embedding function through a schema
const schema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const table2 = await db.createTable("vectors2", data, {
schema,
mode: "overwrite",
});
// --8<-- [end:embedding_function]
}

View File

@@ -0,0 +1,34 @@
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
// --8<-- [start:search]
const _result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.where("id = 10")
.toArray();
// --8<-- [end:search]
// --8<-- [start:vec_search]
await tbl
.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.postfilter()
.toArray();
// --8<-- [end:vec_search]
// --8<-- [start:sql_search]
await tbl.query().where("id = 10").limit(10).toArray();
// --8<-- [end:sql_search]
console.log("SQL search: done");

View File

@@ -0,0 +1,27 @@
{
"compilerOptions": {
// Enable latest features
"lib": ["ESNext", "DOM"],
"target": "ESNext",
"module": "ESNext",
"moduleDetection": "force",
"jsx": "react-jsx",
"allowJs": true,
// Bundler mode
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"verbatimModuleSyntax": true,
"noEmit": true,
// Best practices
"strict": true,
"skipLibCheck": true,
"noFallthroughCasesInSwitch": true,
// Some stricter flags (disabled by default)
"noUnusedLocals": false,
"noUnusedParameters": false,
"noPropertyAccessFromIndexSignature": false
}
}

79
nodejs/examples/package-lock.json generated Normal file
View File

@@ -0,0 +1,79 @@
{
"name": "examples",
"version": "1.0.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "examples",
"version": "1.0.0",
"license": "Apache-2.0",
"dependencies": {
"@lancedb/lancedb": "file:../"
},
"peerDependencies": {
"typescript": "^5.0.0"
}
},
"..": {
"name": "@lancedb/lancedb",
"version": "0.6.0",
"cpu": [
"x64",
"arm64"
],
"license": "Apache 2.0",
"os": [
"darwin",
"linux",
"win32"
],
"dependencies": {
"apache-arrow": "^15.0.0",
"axios": "^1.7.2",
"openai": "^4.29.2",
"reflect-metadata": "^0.2.2"
},
"devDependencies": {
"@aws-sdk/client-kms": "^3.33.0",
"@aws-sdk/client-s3": "^3.33.0",
"@biomejs/biome": "^1.7.3",
"@jest/globals": "^29.7.0",
"@napi-rs/cli": "^2.18.0",
"@types/axios": "^0.14.0",
"@types/jest": "^29.1.2",
"@types/tmp": "^0.2.6",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"eslint": "^8.57.0",
"jest": "^29.7.0",
"shx": "^0.3.4",
"tmp": "^0.2.3",
"ts-jest": "^29.1.2",
"typedoc": "^0.25.7",
"typedoc-plugin-markdown": "^3.17.1",
"typescript": "^5.3.3",
"typescript-eslint": "^7.1.0"
},
"engines": {
"node": ">= 18"
}
},
"node_modules/@lancedb/lancedb": {
"resolved": "..",
"link": true
},
"node_modules/typescript": {
"version": "5.5.2",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.2.tgz",
"integrity": "sha512-NcRtPEOsPFFWjobJEtfihkLCZCXZt/os3zf8nTxjVH3RvTSxjrCamJpbExGvYOF+tFHc3pA65qpdwPbzjohhew==",
"peer": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
},
"engines": {
"node": ">=14.17"
}
}
}
}

View File

@@ -0,0 +1,18 @@
{
"name": "examples",
"version": "1.0.0",
"description": "Examples for LanceDB",
"main": "index.js",
"type": "module",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"@lancedb/lancedb": "file:../"
},
"peerDependencies": {
"typescript": "^5.0.0"
}
}

Some files were not shown because too many files have changed in this diff Show More