Compare commits

..

14 Commits

Author SHA1 Message Date
Lance Release
60260018cf [python] Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:16 +00:00
Lance Release
bb100c5c19 Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:09 +00:00
elliottRobinson
eab9072bb5 Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2023-12-26 19:24:22 +05:30
Will Jones
ee0f0611d9 docs: update node API reference (#734)
This command hasn't been run for a while...
2023-12-22 10:14:31 -08:00
Will Jones
34966312cb docs: enhance Update user guide (#735)
Closes #705
2023-12-22 10:14:21 -08:00
Bert
756188358c docs: fix JS api docs for update method (#738) 2023-12-21 13:48:00 -05:00
Weston Pace
dc5126d8d1 feat: add the ability to create scalar indices (#679)
This is a pretty direct binding to the underlying lance capability
2023-12-21 09:50:10 -08:00
Aidan
50c20af060 feat: node list tables pagination (#733) 2023-12-21 11:37:19 -05:00
Chang She
0965d7dd5a doc(javascript): minor improvement on docs for working with tables (#736)
Closes #639 
Closes #638
2023-12-20 20:05:22 -08:00
Chang She
7bbb2872de bug(python): fix path handling in windows (#724)
Use pathlib for local paths so that pathlib
can handle the correct separator on windows.

Closes #703

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 15:41:36 -08:00
Will Jones
e81d2975da chore: add issue templates (#732)
This PR adds issue templates, which help two recurring issues:

* Users forget to tell us whether they are using the Node or Python SDK
* Issues don't get appropriate tags

This doesn't force the use of the templates. Because we set
`blank_issues_enabled: true`, users can still create a custom issue.
2023-12-20 15:15:24 -08:00
Will Jones
2c7f96ba4f ci: check formatting and clippy (#730) 2023-12-20 13:37:51 -08:00
Will Jones
f9dd7a5d8a fix: prevent duplicate data in FTS index (#728)
This forces the user to replace the whole FTS directory when re-creating
the index, prevent duplicate data from being created. Previously, the
whole dataset was re-added to the existing index, duplicating existing
rows in the index.

This (in combination with lancedb/lance#1707) caused #726, since the
duplicate data emitted duplicate indices for `take()` and an upstream
issue caused those queries to fail.

This solution isn't ideal, since it makes the FTS index temporarily
unavailable while the index is built. In the future, we should have
multiple FTS index directories, which would allow atomic commits of new
indexes (as well as multiple indexes for different columns).

Fixes #498.
Fixes #726.

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2023-12-20 13:07:07 -08:00
Will Jones
1d4943688d upgrade lance to v0.9.1 (#727)
This brings in some important bugfixes related to take and aarch64
Linux. See changes at:
https://github.com/lancedb/lance/releases/tag/v0.9.1
2023-12-20 13:06:54 -08:00
40 changed files with 697 additions and 130 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.4.0 current_version = 0.4.1
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True

33
.github/ISSUE_TEMPLATE/bug-node.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Bug Report - Node / Typescript
description: File a bug report
title: "bug(node): "
labels: [bug, typescript]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: input
id: version
attributes:
label: LanceDB version
description: What version of LanceDB are you using? `npm list | grep vectordb`.
placeholder: v0.3.2
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
validations:
required: true
- type: textarea
id: reproduction
attributes:
label: Are there known steps to reproduce?
description: |
Let us know how to reproduce the bug and we may be able to fix it more
quickly. This is not required, but it is helpful.
validations:
required: false

33
.github/ISSUE_TEMPLATE/bug-python.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Bug Report - Python
description: File a bug report
title: "bug(python): "
labels: [bug, python]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: input
id: version
attributes:
label: LanceDB version
description: What version of LanceDB are you using? `python -c "import lancedb; print(lancedb.__version__)"`.
placeholder: v0.3.2
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
validations:
required: true
- type: textarea
id: reproduction
attributes:
label: Are there known steps to reproduce?
description: |
Let us know how to reproduce the bug and we may be able to fix it more
quickly. This is not required, but it is helpful.
validations:
required: false

5
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,5 @@
blank_issues_enabled: true
contact_links:
- name: Discord Community Support
url: https://discord.com/invite/zMM32dvNtd
about: Please ask and answer questions here.

View File

@@ -0,0 +1,23 @@
name: 'Documentation improvement'
description: Report an issue with the documentation.
labels: [documentation]
body:
- type: textarea
id: description
attributes:
label: Description
description: >
Describe the issue with the documentation and how it can be fixed or improved.
validations:
required: true
- type: input
id: link
attributes:
label: Link
description: >
Provide a link to the existing documentation, if applicable.
placeholder: ex. https://lancedb.github.io/lancedb/guides/tables/...
validations:
required: false

31
.github/ISSUE_TEMPLATE/feature.yml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: Feature suggestion
description: Suggestion a new feature for LanceDB
title: "Feature: "
labels: [enhancement]
body:
- type: markdown
attributes:
value: |
Share a new idea for a feature or improvement. Be sure to search existing
issues first to avoid duplicates.
- type: dropdown
id: sdk
attributes:
label: SDK
description: Which SDK are you using? This helps us prioritize.
options:
- Python
- Node
- Rust
default: 0
validations:
required: false
- type: textarea
id: description
attributes:
label: Description
description: |
Describe the feature and why it would be useful. If applicable, consider
providing a code example of what it might be like to use the feature.
validations:
required: true

View File

@@ -44,12 +44,19 @@ jobs:
run: pytest -m "not slow" -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest - name: doctest
run: pytest --doctest-modules lancedb run: pytest --doctest-modules lancedb
mac: platform:
name: "Platform: ${{ matrix.config.name }}"
timeout-minutes: 30 timeout-minutes: 30
strategy: strategy:
matrix: matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ] config:
runs-on: "${{ matrix.mac-runner }}" - name: x86 Mac
runner: macos-13
- name: Arm Mac
runner: macos-13-xlarge
- name: x86 Windows
runner: windows-latest
runs-on: "${{ matrix.config.runner }}"
defaults: defaults:
run: run:
shell: bash shell: bash

View File

@@ -24,6 +24,29 @@ env:
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:
lint:
timeout-minutes: 30
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --all --all-features -- -D warnings
linux: linux:
timeout-minutes: 30 timeout-minutes: 30
runs-on: ubuntu-22.04 runs-on: ubuntu-22.04

View File

@@ -5,24 +5,24 @@ exclude = ["python"]
resolver = "2" resolver = "2"
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.9.0", "features" = ["dynamodb"] } lance = { "version" = "=0.9.1", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.0" } lance-index = { "version" = "=0.9.1" }
lance-linalg = { "version" = "=0.9.0" } lance-linalg = { "version" = "=0.9.1" }
lance-testing = { "version" = "=0.9.0" } lance-testing = { "version" = "=0.9.1" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "47.0.0", optional = false } arrow = { version = "49.0.0", optional = false }
arrow-array = "47.0" arrow-array = "49.0"
arrow-data = "47.0" arrow-data = "49.0"
arrow-ipc = "47.0" arrow-ipc = "49.0"
arrow-ord = "47.0" arrow-ord = "49.0"
arrow-schema = "47.0" arrow-schema = "49.0"
arrow-arith = "47.0" arrow-arith = "49.0"
arrow-cast = "47.0" arrow-cast = "49.0"
chrono = "0.4.23" chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [ half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits", "num-traits",
] } ] }
log = "0.4" log = "0.4"
object_store = "0.7.1" object_store = "0.8.0"
snafu = "0.7.4" snafu = "0.7.4"
url = "2" url = "2"

View File

@@ -64,18 +64,26 @@ We'll cover the basics of using LanceDB on your local machine in this section.
tbl = db.create_table("table_from_df", data=df) tbl = db.create_table("table_from_df", data=df)
``` ```
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
=== "Javascript" === "Javascript"
```javascript ```javascript
const tb = await db.createTable("my_table", const tb = await db.createTable(
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, "myTable",
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
``` ```
!!! warning !!! warning
If the table already exists, LanceDB will raise an error by default. If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"` If you want to overwrite the table, you can pass in `"overwrite"`
to the `createTable` function. to the `createTable` function like this: `await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })`
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)." ??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
@@ -108,7 +116,7 @@ Once created, you can open a table using the following code:
=== "Javascript" === "Javascript"
```javascript ```javascript
const tbl = await db.openTable("my_table"); const tbl = await db.openTable("myTable");
``` ```
If you forget the name of your table, you can always get a listing of all table names: If you forget the name of your table, you can always get a listing of all table names:
@@ -198,6 +206,13 @@ This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this, By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`. you can pass in `ignore_missing=True`.
=== "JavaScript"
```javascript
await db.dropTable('myTable')
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## What's next ## What's next

View File

@@ -1,9 +1,9 @@
There are various Embedding functions available out of the box with lancedb. We're working on supporting other popular embedding APIs. There are various Embedding functions available out of the box with LanceDB. We're working on supporting other popular embedding APIs.
## Text Embedding Functions ## Text Embedding Functions
Here are the text embedding functions registered by default. Here are the text embedding functions registered by default.
Embedding functions have inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential standoff. Embedding functions have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential standoff.
Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the deafult value of 7. Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
### Sentence Transformers ### Sentence Transformers
Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values: Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values:
@@ -69,15 +69,15 @@ print(actual.text)
``` ```
### Instructor Embeddings ### Instructor Embeddings
Instructor is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) by simply providing the task instruction, without any finetuning Instructor is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions: If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
Represent the `domain` `text_type` for `task_objective`: Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc. * `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc. * `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc. * `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found here - https://github.com/xlang-ai/instructor-embedding More information about the model can be found here - https://github.com/xlang-ai/instructor-embedding
@@ -119,10 +119,10 @@ tbl.add(texts)
``` ```
## Multi-modal embedding functions ## Multi-modal embedding functions
Multi-modal embedding functions allow you query your table using both images and text. Multi-modal embedding functions allow you to query your table using both images and text.
### OpenClipEmbeddings ### OpenClipEmbeddings
We support CLIP model embeddings using the open souce alternbative, open-clip which support various customizations. It is registered as `open-clip` and supports following customizations. We support CLIP model embeddings using the open source alternative, open-clip which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description | | Parameter | Type | Default Value | Description |

View File

@@ -203,7 +203,7 @@ This guide will show how to create tables, insert data into them, and update the
```javascript ```javascript
data data
const tb = await db.createTable("my_table", const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, [{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
``` ```

View File

@@ -11,8 +11,13 @@ npm install vectordb
``` ```
This will download the appropriate native library for your platform. We currently This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not support:
yet support musl-based Linux (such as Alpine Linux).
* Linux (x86_64 and aarch64)
* MacOS (Intel and ARM/M1/M2)
* Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage ## Usage

View File

@@ -22,7 +22,7 @@ import numpy as np
uri = "data/sample-lancedb" uri = "data/sample-lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
data = [{"vector": row, "item": f"item {i}"} data = [{"vector": row, "item": f"item {i}", "id": i}
for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))] for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))]
tbl = db.create_table("my_vectors", data=data) tbl = db.create_table("my_vectors", data=data)
@@ -35,33 +35,25 @@ const db = await vectordb.connect('data/sample-lancedb')
let data = [] let data = []
for (let i = 0; i < 10_000; i++) { for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},) data.push({vector: Array(1536).fill(i), id: i, item: `item ${i}`, strId: `${i}`})
} }
const tbl = await db.createTable('my_vectors', data) const tbl = await db.createTable('myVectors', data)
``` ```
--> -->
=== "Python" === "Python"
```python ```python
tbl.search([100, 102]) \ tbl.search([100, 102]) \
.where("""( .where("(item IN ('item 0', 'item 2')) AND (id > 10)") \
(label IN [10, 20]) .to_arrow()
AND
(note.email IS NOT NULL)
) OR NOT note.created
""")
``` ```
=== "Javascript" === "Javascript"
```javascript ```javascript
tbl.search([100, 102]) await tbl.search(Array(1536).fill(0))
.where(`( .where("(item IN ('item 0', 'item 2')) AND (id > 10)")
(label IN [10, 20]) .execute()
AND
(note.email IS NOT NULL)
) OR NOT note.created
`)
``` ```
@@ -118,3 +110,22 @@ The mapping from SQL types to Arrow types is:
[^1]: See precision mapping in previous table. [^1]: See precision mapping in previous table.
## Filtering without Vector Search
You can also filter your data without search.
=== "Python"
```python
tbl.search().where("id=10").limit(10).to_arrow()
```
=== "JavaScript"
```javascript
await tbl.where('id=10').limit(10).execute()
```
!!! warning
If your table is large, this could potentially return a very large
amount of data. Please be sure to use a `limit` clause unless
you're sure you want to return the whole result set.

View File

@@ -9,8 +9,13 @@ npm install vectordb
``` ```
This will download the appropriate native library for your platform. We currently This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not support:
yet support musl-based Linux (such as Alpine Linux).
* Linux (x86_64 and aarch64)
* MacOS (Intel and ARM/M1/M2)
* Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage ## Usage

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.4.0", "version": "0.4.1",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
@@ -81,10 +81,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.0", "@lancedb/vectordb-darwin-arm64": "0.4.1",
"@lancedb/vectordb-darwin-x64": "0.4.0", "@lancedb/vectordb-darwin-x64": "0.4.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.0", "@lancedb/vectordb-linux-arm64-gnu": "0.4.1",
"@lancedb/vectordb-linux-x64-gnu": "0.4.0", "@lancedb/vectordb-linux-x64-gnu": "0.4.1",
"@lancedb/vectordb-win32-x64-msvc": "0.4.0" "@lancedb/vectordb-win32-x64-msvc": "0.4.1"
} }
} }

View File

@@ -24,7 +24,7 @@ import { isEmbeddingFunction } from './embedding/embedding_function'
import { type Literal, toSQL } from './util' import { type Literal, toSQL } from './util'
// eslint-disable-next-line @typescript-eslint/no-var-requires // eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableUpdate, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js') const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateScalarIndex, tableCreateVectorIndex, tableCountRows, tableDelete, tableUpdate, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js')
export { Query } export { Query }
export type { EmbeddingFunction } export type { EmbeddingFunction }
@@ -223,6 +223,56 @@ export interface Table<T = number[]> {
*/ */
createIndex: (indexParams: VectorIndexParams) => Promise<any> createIndex: (indexParams: VectorIndexParams) => Promise<any>
/**
* Create a scalar index on this Table for the given column
*
* @param column The column to index
* @param replace If false, fail if an index already exists on the column
*
* Scalar indices, like vector indices, can be used to speed up scans. A scalar
* index can speed up scans that contain filter expressions on the indexed column.
* For example, the following scan will be faster if the column `my_col` has
* a scalar index:
*
* ```ts
* const con = await lancedb.connect('./.lancedb');
* const table = await con.openTable('images');
* const results = await table.where('my_col = 7').execute();
* ```
*
* Scalar indices can also speed up scans containing a vector search and a
* prefilter:
*
* ```ts
* const con = await lancedb.connect('././lancedb');
* const table = await con.openTable('images');
* const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true);
* ```
*
* Scalar indices can only speed up scans for basic filters using
* equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set
* membership (e.g. `my_col IN (0, 1, 2)`)
*
* Scalar indices can be used if the filter contains multiple indexed columns and
* the filter criteria are AND'd or OR'd together
* (e.g. `my_col < 0 AND other_col> 100`)
*
* Scalar indices may be used if the filter contains non-indexed columns but,
* depending on the structure of the filter, they may not be usable. For example,
* if the column `not_indexed` does not have a scalar index then the filter
* `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on
* `my_col`.
*
* @examples
*
* ```ts
* const con = await lancedb.connect('././lancedb')
* const table = await con.openTable('images')
* await table.createScalarIndex('my_col')
* ```
*/
createScalarIndex: (column: string, replace: boolean) => Promise<void>
/** /**
* Returns the number of rows in this table. * Returns the number of rows in this table.
*/ */
@@ -281,8 +331,8 @@ export interface Table<T = number[]> {
* const tbl = await con.createTable("my_table", data) * const tbl = await con.createTable("my_table", data)
* *
* await tbl.update({ * await tbl.update({
* filter: "id = 2", * where: "id = 2",
* updates: { vector: [2, 2], name: "Michael" }, * values: { vector: [2, 2], name: "Michael" },
* }) * })
* *
* let results = await tbl.search([1, 1]).execute(); * let results = await tbl.search([1, 1]).execute();
@@ -537,6 +587,10 @@ export class LocalTable<T = number[]> implements Table<T> {
return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable }) return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable })
} }
async createScalarIndex (column: string, replace: boolean): Promise<void> {
return tableCreateScalarIndex.call(this._tbl, column, replace)
}
/** /**
* Returns the number of rows in this table. * Returns the number of rows in this table.
*/ */

View File

@@ -57,8 +57,8 @@ export class RemoteConnection implements Connection {
return 'db://' + this._client.uri return 'db://' + this._client.uri
} }
async tableNames (): Promise<string[]> { async tableNames (pageToken: string = '', limit: number = 10): Promise<string[]> {
const response = await this._client.get('/v1/table/') const response = await this._client.get('/v1/table/', { limit, page_token: pageToken })
return response.data.tables return response.data.tables
} }
@@ -283,6 +283,10 @@ export class RemoteTable<T = number[]> implements Table<T> {
} }
} }
async createScalarIndex (column: string, replace: boolean): Promise<void> {
throw new Error('Not implemented')
}
async countRows (): Promise<number> { async countRows (): Promise<number> {
const result = await this._client.post(`/v1/table/${this._name}/describe/`) const result = await this._client.post(`/v1/table/${this._name}/describe/`)
return result.data?.stats?.num_rows return result.data?.stats?.num_rows

View File

@@ -135,6 +135,17 @@ describe('LanceDB client', function () {
assert.isTrue(results.length === 10) assert.isTrue(results.length === 10)
}) })
it('should allow creation and use of scalar indices', async function () {
const uri = await createTestDB(16, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createScalarIndex('id', true)
// Prefiltering should still work the same
const results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(true).execute()
assert.isTrue(results.length === 10)
})
it('select only a subset of columns', async function () { it('select only a subset of columns', async function () {
const uri = await createTestDB() const uri = await createTestDB()
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.4.0 current_version = 0.4.1
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -23,7 +23,7 @@ from overrides import EnforceOverrides, override
from pyarrow import fs from pyarrow import fs
from .table import LanceTable, Table from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
if TYPE_CHECKING: if TYPE_CHECKING:
from .common import DATA, URI from .common import DATA, URI
@@ -288,14 +288,13 @@ class LanceDBConnection(DBConnection):
A list of table names. A list of table names.
""" """
try: try:
filesystem, path = fs_from_uri(self.uri) filesystem = fs_from_uri(self.uri)[0]
except pa.ArrowInvalid: except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri) raise NotImplementedError("Unsupported scheme: " + self.uri)
try: try:
paths = filesystem.get_file_info( loc = get_uri_location(self.uri)
fs.FileSelector(get_uri_location(self.uri)) paths = filesystem.get_file_info(fs.FileSelector(loc))
)
except FileNotFoundError: except FileNotFoundError:
# It is ok if the file does not exist since it will be created # It is ok if the file does not exist since it will be created
paths = [] paths = []
@@ -373,7 +372,7 @@ class LanceDBConnection(DBConnection):
""" """
try: try:
filesystem, path = fs_from_uri(self.uri) filesystem, path = fs_from_uri(self.uri)
table_path = os.path.join(path, name + ".lance") table_path = join_uri(path, name + ".lance")
filesystem.delete_dir(table_path) filesystem.delete_dir(table_path)
except FileNotFoundError: except FileNotFoundError:
if not ignore_missing: if not ignore_missing:

View File

@@ -64,6 +64,12 @@ class RemoteTable(Table):
"""to_pandas() is not supported on the LanceDB cloud""" """to_pandas() is not supported on the LanceDB cloud"""
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud") return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
def create_scalar_index(self, *args, **kwargs):
"""Creates a scalar index"""
return NotImplementedError(
"create_scalar_index() is not supported on the LanceDB cloud"
)
def create_index( def create_index(
self, self,
metric="L2", metric="L2",

View File

@@ -23,6 +23,7 @@ import lance
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
import pyarrow.compute as pc import pyarrow.compute as pc
import pyarrow.fs as pa_fs
from lance import LanceDataset from lance import LanceDataset
from lance.vector import vec_to_table from lance.vector import vec_to_table
@@ -30,7 +31,7 @@ from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from .pydantic import LanceModel, model_to_dict from .pydantic import LanceModel, model_to_dict
from .query import LanceQueryBuilder, Query from .query import LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas, value_to_sql from .util import fs_from_uri, safe_import_pandas, value_to_sql, join_uri
from .utils.events import register_event from .utils.events import register_event
if TYPE_CHECKING: if TYPE_CHECKING:
@@ -220,6 +221,77 @@ class Table(ABC):
""" """
raise NotImplementedError raise NotImplementedError
@abstractmethod
def create_scalar_index(
self,
column: str,
*,
replace: bool = True,
):
"""Create a scalar index on a column.
Scalar indices, like vector indices, can be used to speed up scans. A scalar
index can speed up scans that contain filter expressions on the indexed column.
For example, the following scan will be faster if the column ``my_col`` has
a scalar index:
.. code-block:: python
import lancedb
db = lancedb.connect("/data/lance")
img_table = db.open_table("images")
my_df = img_table.search().where("my_col = 7", prefilter=True).to_pandas()
Scalar indices can also speed up scans containing a vector search and a
prefilter:
.. code-block::python
import lancedb
db = lancedb.connect("/data/lance")
img_table = db.open_table("images")
img_table.search([1, 2, 3, 4], vector_column_name="vector")
.where("my_col != 7", prefilter=True)
.to_pandas()
Scalar indices can only speed up scans for basic filters using
equality, comparison, range (e.g. ``my_col BETWEEN 0 AND 100``), and set
membership (e.g. `my_col IN (0, 1, 2)`)
Scalar indices can be used if the filter contains multiple indexed columns and
the filter criteria are AND'd or OR'd together
(e.g. ``my_col < 0 AND other_col> 100``)
Scalar indices may be used if the filter contains non-indexed columns but,
depending on the structure of the filter, they may not be usable. For example,
if the column ``not_indexed`` does not have a scalar index then the filter
``my_col = 0 OR not_indexed = 1`` will not be able to use any scalar index on
``my_col``.
**Experimental API**
Parameters
----------
column : str
The column to be indexed. Must be a boolean, integer, float,
or string column.
replace : bool, default True
Replace the existing index if it exists.
Examples
--------
.. code-block:: python
import lance
dataset = lance.dataset("/tmp/images.lance")
dataset.create_scalar_index("category")
"""
raise NotImplementedError
@abstractmethod @abstractmethod
def add( def add(
self, self,
@@ -439,6 +511,7 @@ class Table(ABC):
""" """
raise NotImplementedError raise NotImplementedError
class LanceTable(Table): class LanceTable(Table):
""" """
A table in a LanceDB database. A table in a LanceDB database.
@@ -606,7 +679,7 @@ class LanceTable(Table):
@property @property
def _dataset_uri(self) -> str: def _dataset_uri(self) -> str:
return os.path.join(self._conn.uri, f"{self.name}.lance") return join_uri(self._conn.uri, f"{self.name}.lance")
def create_index( def create_index(
self, self,
@@ -632,7 +705,12 @@ class LanceTable(Table):
self._reset_dataset() self._reset_dataset()
register_event("create_index") register_event("create_index")
def create_fts_index(self, field_names: Union[str, List[str]]): def create_scalar_index(self, column: str, *, replace: bool = True):
self._dataset.create_scalar_index(column, index_type="BTREE", replace=replace)
def create_fts_index(
self, field_names: Union[str, List[str]], *, replace: bool = False
):
"""Create a full-text search index on the table. """Create a full-text search index on the table.
Warning - this API is highly experimental and is highly likely to change Warning - this API is highly experimental and is highly likely to change
@@ -642,17 +720,31 @@ class LanceTable(Table):
---------- ----------
field_names: str or list of str field_names: str or list of str
The name(s) of the field to index. The name(s) of the field to index.
replace: bool, default False
If True, replace the existing index if it exists. Note that this is
not yet an atomic operation; the index will be temporarily
unavailable while the new index is being created.
""" """
from .fts import create_index, populate_index from .fts import create_index, populate_index
if isinstance(field_names, str): if isinstance(field_names, str):
field_names = [field_names] field_names = [field_names]
fs, path = fs_from_uri(self._get_fts_index_path())
index_exists = fs.get_file_info(path).type != pa_fs.FileType.NotFound
if index_exists:
if not replace:
raise ValueError(
f"Index already exists. Use replace=True to overwrite."
)
fs.delete_dir(path)
index = create_index(self._get_fts_index_path(), field_names) index = create_index(self._get_fts_index_path(), field_names)
populate_index(index, self, field_names) populate_index(index, self, field_names)
register_event("create_fts_index") register_event("create_fts_index")
def _get_fts_index_path(self): def _get_fts_index_path(self):
return os.path.join(self._dataset_uri, "_indices", "tantivy") return join_uri(self._dataset_uri, "_indices", "tantivy")
@cached_property @cached_property
def _dataset(self) -> LanceDataset: def _dataset(self) -> LanceDataset:

View File

@@ -14,7 +14,8 @@
import os import os
from datetime import date, datetime from datetime import date, datetime
from functools import singledispatch from functools import singledispatch
from typing import Tuple import pathlib
from typing import Tuple, Union
from urllib.parse import urlparse from urllib.parse import urlparse
import numpy as np import numpy as np
@@ -62,6 +63,12 @@ def get_uri_location(uri: str) -> str:
str: Location part of the URL, without scheme str: Location part of the URL, without scheme
""" """
parsed = urlparse(uri) parsed = urlparse(uri)
if len(parsed.scheme) == 1:
# Windows drive names are parsed as the scheme
# e.g. "c:\path" -> ParseResult(scheme="c", netloc="", path="/path", ...)
# So we add special handling here for schemes that are a single character
return uri
if not parsed.netloc: if not parsed.netloc:
return parsed.path return parsed.path
else: else:
@@ -84,6 +91,29 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
return pa_fs.FileSystem.from_uri(uri) return pa_fs.FileSystem.from_uri(uri)
def join_uri(base: Union[str, pathlib.Path], *parts: str) -> str:
"""
Join a URI with multiple parts, handles both local and remote paths
Parameters
----------
base : str
The base URI
parts : str
The parts to join to the base URI, each separated by the
appropriate path separator for the URI scheme and OS
"""
if isinstance(base, pathlib.Path):
return base.joinpath(*parts)
base = str(base)
if get_uri_scheme(base) == "file":
# using pathlib for local paths make this windows compatible
# `get_uri_scheme` returns `file` for windows drive names (e.g. `c:\path`)
return str(pathlib.Path(base, *parts))
# for remote paths, just use os.path.join
return "/".join([p.rstrip("/") for p in [base, *parts]])
def safe_import_pandas(): def safe_import_pandas():
try: try:
import pandas as pd import pandas as pd

View File

@@ -1,9 +1,9 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.4.0" version = "0.4.1"
dependencies = [ dependencies = [
"deprecation", "deprecation",
"pylance==0.9.0", "pylance==0.9.1",
"ratelimiter~=1.0", "ratelimiter~=1.0",
"retry>=0.9.2", "retry>=0.9.2",
"tqdm>=4.27.0", "tqdm>=4.27.0",

View File

@@ -83,6 +83,24 @@ def test_create_index_from_table(tmp_path, table):
assert len(df) == 10 assert len(df) == 10
assert "text" in df.columns assert "text" in df.columns
# Check whether it can be updated
table.add(
[
{
"vector": np.random.randn(128),
"text": "gorilla",
"text2": "gorilla",
"nested": {"text": "gorilla"},
}
]
)
with pytest.raises(ValueError, match="already exists"):
table.create_fts_index("text")
table.create_fts_index("text", replace=True)
assert len(table.search("gorilla").limit(1).to_pandas()) == 1
def test_create_index_multiple_columns(tmp_path, table): def test_create_index_multiple_columns(tmp_path, table):
table.create_fts_index(["text", "text2"]) table.create_fts_index(["text", "text2"])

View File

@@ -21,8 +21,8 @@ import lance
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pyarrow as pa import pyarrow as pa
from pydantic import BaseModel
import pytest import pytest
from pydantic import BaseModel
from lancedb.conftest import MockTextEmbeddingFunction from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.db import LanceDBConnection from lancedb.db import LanceDBConnection
@@ -532,6 +532,33 @@ def test_multiple_vector_columns(db):
assert result1["text"].iloc[0] != result2["text"].iloc[0] assert result1["text"].iloc[0] != result2["text"].iloc[0]
def test_create_scalar_index(db):
vec_array = pa.array(
[[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], pa.list_(pa.float32(), 2)
)
test_data = pa.Table.from_pydict(
{"x": ["c", "b", "a", "e", "b"], "y": [1, 2, 3, 4, 5], "vector": vec_array}
)
table = LanceTable.create(
db,
"my_table",
data=test_data,
)
table.create_scalar_index("x")
indices = table.to_lance().list_indices()
assert len(indices) == 1
scalar_index = indices[0]
assert scalar_index["type"] == "Scalar"
# Confirm that prefiltering still works with the scalar index column
results = table.search().where("x = 'c'").to_arrow()
assert results == test_data.slice(0, 1)
results = table.search([5, 5]).to_arrow()
assert results["_distance"][0].as_py() == 0
results = table.search([5, 5]).where("x != 'b'").to_arrow()
assert results["_distance"][0].as_py() > 0
def test_empty_query(db): def test_empty_query(db):
table = LanceTable.create( table = LanceTable.create(
db, db,

View File

@@ -11,7 +11,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from lancedb.util import get_uri_scheme import os
import pathlib
import pytest
from lancedb.util import get_uri_scheme, join_uri
def test_normalize_uri(): def test_normalize_uri():
@@ -28,3 +33,55 @@ def test_normalize_uri():
for uri, expected_scheme in zip(uris, schemes): for uri, expected_scheme in zip(uris, schemes):
parsed_scheme = get_uri_scheme(uri) parsed_scheme = get_uri_scheme(uri)
assert parsed_scheme == expected_scheme assert parsed_scheme == expected_scheme
def test_join_uri_remote():
schemes = ["s3", "az", "gs"]
for scheme in schemes:
expected = f"{scheme}://bucket/path/to/table.lance"
base_uri = f"{scheme}://bucket/path/to/"
parts = ["table.lance"]
assert join_uri(base_uri, *parts) == expected
base_uri = f"{scheme}://bucket"
parts = ["path", "to", "table.lance"]
assert join_uri(base_uri, *parts) == expected
# skip this test if on windows
@pytest.mark.skipif(os.name == "nt", reason="Windows paths are not POSIX")
def test_join_uri_posix():
for base in [
# relative path
"relative/path",
"relative/path/",
# an absolute path
"/absolute/path",
"/absolute/path/",
# a file URI
"file:///absolute/path",
"file:///absolute/path/",
]:
joined = join_uri(base, "table.lance")
assert joined == str(pathlib.Path(base) / "table.lance")
joined = join_uri(pathlib.Path(base), "table.lance")
assert joined == pathlib.Path(base) / "table.lance"
# skip this test if not on windows
@pytest.mark.skipif(os.name != "nt", reason="Windows paths are not POSIX")
def test_local_join_uri_windows():
# https://learn.microsoft.com/en-us/dotnet/standard/io/file-path-formats
for base in [
# windows relative path
"relative\\path",
"relative\\path\\",
# windows absolute path from current drive
"c:\\absolute\\path",
# relative path from root of current drive
"\\relative\\path",
]:
joined = join_uri(base, "table.lance")
assert joined == str(pathlib.Path(base) / "table.lance")
joined = join_uri(pathlib.Path(base), "table.lance")
assert joined == pathlib.Path(base) / "table.lance"

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb-node" name = "vectordb-node"
version = "0.4.0" version = "0.4.1"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
edition = "2018" edition = "2018"

View File

@@ -23,7 +23,7 @@ pub enum Error {
#[snafu(display("column '{name}' is missing"))] #[snafu(display("column '{name}' is missing"))]
MissingColumn { name: String }, MissingColumn { name: String },
#[snafu(display("{name}: {message}"))] #[snafu(display("{name}: {message}"))]
RangeError { name: String, message: String }, OutOfRange { name: String, message: String },
#[snafu(display("{index_type} is not a valid index type"))] #[snafu(display("{index_type} is not a valid index type"))]
InvalidIndexType { index_type: String }, InvalidIndexType { index_type: String },

View File

@@ -12,4 +12,5 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
pub mod scalar;
pub mod vector; pub mod vector;

View File

@@ -0,0 +1,43 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use neon::{
context::{Context, FunctionContext},
result::JsResult,
types::{JsBoolean, JsBox, JsPromise, JsString},
};
use crate::{error::ResultExt, runtime, table::JsTable};
pub(crate) fn table_create_scalar_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let column = cx.argument::<JsString>(0)?.value(&mut cx);
let replace = cx.argument::<JsBoolean>(1)?.value(&mut cx);
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let channel = cx.channel();
let mut table = js_table.table.clone();
rt.spawn(async move {
let idx_result = table.create_scalar_index(&column, replace).await;
deferred.settle_with(&channel, move |mut cx| {
idx_result.or_throw(&mut cx)?;
Ok(cx.undefined())
});
});
Ok(promise)
}

View File

@@ -65,12 +65,10 @@ fn get_index_params_builder(
obj.get_opt::<JsString, _, _>(cx, "index_name")? obj.get_opt::<JsString, _, _>(cx, "index_name")?
.map(|s| index_builder.index_name(s.value(cx))); .map(|s| index_builder.index_name(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "metric_type")? if let Some(metric_type) = obj.get_opt::<JsString, _, _>(cx, "metric_type")? {
.map(|s| MetricType::try_from(s.value(cx).as_str())) let metric_type = MetricType::try_from(metric_type.value(cx).as_str()).unwrap();
.map(|mt| {
let metric_type = mt.unwrap();
index_builder.metric_type(metric_type); index_builder.metric_type(metric_type);
}); }
let num_partitions = obj.get_opt_usize(cx, "num_partitions")?; let num_partitions = obj.get_opt_usize(cx, "num_partitions")?;
let max_iters = obj.get_opt_usize(cx, "max_iters")?; let max_iters = obj.get_opt_usize(cx, "max_iters")?;
@@ -85,23 +83,29 @@ fn get_index_params_builder(
index_builder.ivf_params(ivf_params) index_builder.ivf_params(ivf_params)
}); });
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")? if let Some(use_opq) = obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")? {
.map(|s| pq_params.use_opq = s.value(cx)); pq_params.use_opq = use_opq.value(cx);
}
obj.get_opt_usize(cx, "num_sub_vectors")? if let Some(num_sub_vectors) = obj.get_opt_usize(cx, "num_sub_vectors")? {
.map(|s| pq_params.num_sub_vectors = s); pq_params.num_sub_vectors = num_sub_vectors;
}
obj.get_opt_usize(cx, "num_bits")? if let Some(num_bits) = obj.get_opt_usize(cx, "num_bits")? {
.map(|s| pq_params.num_bits = s); pq_params.num_bits = num_bits;
}
obj.get_opt_usize(cx, "max_iters")? if let Some(max_iters) = obj.get_opt_usize(cx, "max_iters")? {
.map(|s| pq_params.max_iters = s); pq_params.max_iters = max_iters;
}
obj.get_opt_usize(cx, "max_opq_iters")? if let Some(max_opq_iters) = obj.get_opt_usize(cx, "max_opq_iters")? {
.map(|s| pq_params.max_opq_iters = s); pq_params.max_opq_iters = max_opq_iters;
}
obj.get_opt::<JsBoolean, _, _>(cx, "replace")? if let Some(replace) = obj.get_opt::<JsBoolean, _, _>(cx, "replace")? {
.map(|s| index_builder.replace(s.value(cx))); index_builder.replace(replace.value(cx));
}
Ok(index_builder) Ok(index_builder)
} }

View File

@@ -242,6 +242,10 @@ fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("tableCompactFiles", JsTable::js_compact)?; cx.export_function("tableCompactFiles", JsTable::js_compact)?;
cx.export_function("tableListIndices", JsTable::js_list_indices)?; cx.export_function("tableListIndices", JsTable::js_list_indices)?;
cx.export_function("tableIndexStats", JsTable::js_index_stats)?; cx.export_function("tableIndexStats", JsTable::js_index_stats)?;
cx.export_function(
"tableCreateScalarIndex",
index::scalar::table_create_scalar_index,
)?;
cx.export_function( cx.export_function(
"tableCreateVectorIndex", "tableCreateVectorIndex",
index::vector::table_create_vector_index, index::vector::table_create_vector_index,

View File

@@ -47,15 +47,15 @@ fn f64_to_u32_safe(n: f64, key: &str) -> Result<u32> {
use conv::*; use conv::*;
n.approx_as::<u32>().map_err(|e| match e { n.approx_as::<u32>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError { FloatError::NegOverflow(_) => Error::OutOfRange {
name: key.into(), name: key.into(),
message: "must be > 0".to_string(), message: "must be > 0".to_string(),
}, },
FloatError::PosOverflow(_) => Error::RangeError { FloatError::PosOverflow(_) => Error::OutOfRange {
name: key.into(), name: key.into(),
message: format!("must be < {}", u32::MAX), message: format!("must be < {}", u32::MAX),
}, },
FloatError::NotANumber(_) => Error::RangeError { FloatError::NotANumber(_) => Error::OutOfRange {
name: key.into(), name: key.into(),
message: "not a valid number".to_string(), message: "not a valid number".to_string(),
}, },
@@ -66,15 +66,15 @@ fn f64_to_usize_safe(n: f64, key: &str) -> Result<usize> {
use conv::*; use conv::*;
n.approx_as::<usize>().map_err(|e| match e { n.approx_as::<usize>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError { FloatError::NegOverflow(_) => Error::OutOfRange {
name: key.into(), name: key.into(),
message: "must be > 0".to_string(), message: "must be > 0".to_string(),
}, },
FloatError::PosOverflow(_) => Error::RangeError { FloatError::PosOverflow(_) => Error::OutOfRange {
name: key.into(), name: key.into(),
message: format!("must be < {}", usize::MAX), message: format!("must be < {}", usize::MAX),
}, },
FloatError::NotANumber(_) => Error::RangeError { FloatError::NotANumber(_) => Error::OutOfRange {
name: key.into(), name: key.into(),
message: "not a valid number".to_string(), message: "not a valid number".to_string(),
}, },

View File

@@ -25,11 +25,11 @@ impl JsQuery {
let limit = query_obj let limit = query_obj
.get_opt::<JsNumber, _, _>(&mut cx, "_limit")? .get_opt::<JsNumber, _, _>(&mut cx, "_limit")?
.map(|value| { .map(|value| {
let limit = value.value(&mut cx) as u64; let limit = value.value(&mut cx);
if limit <= 0 { if limit <= 0.0 {
panic!("Limit must be a positive integer"); panic!("Limit must be a positive integer");
} }
limit limit as u64
}); });
let select = query_obj let select = query_obj
.get_opt::<JsArray, _, _>(&mut cx, "_select")? .get_opt::<JsArray, _, _>(&mut cx, "_select")?
@@ -73,7 +73,7 @@ impl JsQuery {
rt.spawn(async move { rt.spawn(async move {
let mut builder = table let mut builder = table
.search(query.map(|q| Float32Array::from(q))) .search(query.map(Float32Array::from))
.refine_factor(refine_factor) .refine_factor(refine_factor)
.nprobes(nprobes) .nprobes(nprobes)
.filter(filter) .filter(filter)

View File

@@ -45,7 +45,7 @@ impl JsTable {
let table_name = cx.argument::<JsString>(0)?.value(&mut cx); let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let buffer = cx.argument::<JsBuffer>(1)?; let buffer = cx.argument::<JsBuffer>(1)?;
let (batches, schema) = let (batches, schema) =
arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?; arrow_buffer_to_record_batch(buffer.as_slice(&cx)).or_throw(&mut cx)?;
// Write mode // Write mode
let mode = match cx.argument::<JsString>(2)?.value(&mut cx).as_str() { let mode = match cx.argument::<JsString>(2)?.value(&mut cx).as_str() {
@@ -93,7 +93,7 @@ impl JsTable {
let buffer = cx.argument::<JsBuffer>(0)?; let buffer = cx.argument::<JsBuffer>(0)?;
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx); let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
let (batches, schema) = let (batches, schema) =
arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?; arrow_buffer_to_record_batch(buffer.as_slice(&cx)).or_throw(&mut cx)?;
let rt = runtime(&mut cx)?; let rt = runtime(&mut cx)?;
let channel = cx.channel(); let channel = cx.channel();
let mut table = js_table.table.clone(); let mut table = js_table.table.clone();
@@ -186,7 +186,7 @@ impl JsTable {
.downcast_or_throw::<JsString, _>(&mut cx)?; .downcast_or_throw::<JsString, _>(&mut cx)?;
let value = updates_arg let value = updates_arg
.get_value(&mut cx, property.clone())? .get_value(&mut cx, property)?
.downcast_or_throw::<JsString, _>(&mut cx)?; .downcast_or_throw::<JsString, _>(&mut cx)?;
let property = property.value(&mut cx); let property = property.value(&mut cx);
@@ -216,7 +216,7 @@ impl JsTable {
.map(|(k, v)| (k.as_str(), v.as_str())) .map(|(k, v)| (k.as_str(), v.as_str()))
.collect::<Vec<_>>(); .collect::<Vec<_>>();
let predicate = predicate.as_ref().map(|s| s.as_str()); let predicate = predicate.as_deref();
let update_result = table.update(predicate, updates_arg).await; let update_result = table.update(predicate, updates_arg).await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb" name = "vectordb"
version = "0.4.0" version = "0.4.1"
edition = "2021" edition = "2021"
description = "LanceDB: A serverless, low-latency vector database for AI applications" description = "LanceDB: A serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"

View File

@@ -26,7 +26,7 @@ use futures::{stream::BoxStream, FutureExt, StreamExt};
use lance::io::object_store::WrappingObjectStore; use lance::io::object_store::WrappingObjectStore;
use object_store::{ use object_store::{
path::Path, Error, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore, path::Path, Error, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore,
Result, PutOptions, PutResult, Result,
}; };
use async_trait::async_trait; use async_trait::async_trait;
@@ -72,13 +72,28 @@ impl PrimaryOnly for Path {
/// Note: this object store does not mirror writes to *.manifest files /// Note: this object store does not mirror writes to *.manifest files
#[async_trait] #[async_trait]
impl ObjectStore for MirroringObjectStore { impl ObjectStore for MirroringObjectStore {
async fn put(&self, location: &Path, bytes: Bytes) -> Result<()> { async fn put(&self, location: &Path, bytes: Bytes) -> Result<PutResult> {
if location.primary_only() { if location.primary_only() {
self.primary.put(location, bytes).await self.primary.put(location, bytes).await
} else { } else {
self.secondary.put(location, bytes.clone()).await?; self.secondary.put(location, bytes.clone()).await?;
self.primary.put(location, bytes).await?; self.primary.put(location, bytes).await
Ok(()) }
}
async fn put_opts(
&self,
location: &Path,
bytes: Bytes,
options: PutOptions,
) -> Result<PutResult> {
if location.primary_only() {
self.primary.put_opts(location, bytes, options).await
} else {
self.secondary
.put_opts(location, bytes.clone(), options.clone())
.await?;
self.primary.put_opts(location, bytes, options).await
} }
} }
@@ -129,8 +144,8 @@ impl ObjectStore for MirroringObjectStore {
self.primary.delete(location).await self.primary.delete(location).await
} }
async fn list(&self, prefix: Option<&Path>) -> Result<BoxStream<'_, Result<ObjectMeta>>> { fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, Result<ObjectMeta>> {
self.primary.list(prefix).await self.primary.list(prefix)
} }
async fn list_with_delimiter(&self, prefix: Option<&Path>) -> Result<ListResult> { async fn list_with_delimiter(&self, prefix: Option<&Path>) -> Result<ListResult> {

View File

@@ -14,6 +14,7 @@
use chrono::Duration; use chrono::Duration;
use lance::dataset::builder::DatasetBuilder; use lance::dataset::builder::DatasetBuilder;
use lance::index::scalar::ScalarIndexParams;
use lance_index::IndexType; use lance_index::IndexType;
use std::sync::Arc; use std::sync::Arc;
@@ -262,6 +263,16 @@ impl Table {
Ok(()) Ok(())
} }
/// Create a scalar index on the table
pub async fn create_scalar_index(&mut self, column: &str, replace: bool) -> Result<()> {
let mut dataset = self.dataset.as_ref().clone();
let params = ScalarIndexParams::default();
dataset
.create_index(&[column], IndexType::Scalar, None, &params, replace)
.await?;
Ok(())
}
pub async fn optimize_indices(&mut self) -> Result<()> { pub async fn optimize_indices(&mut self) -> Result<()> {
let mut dataset = self.dataset.as_ref().clone(); let mut dataset = self.dataset.as_ref().clone();