Compare commits

..

32 Commits

Author SHA1 Message Date
Lance Release
5210f40a33 [python] Bump version: 0.1.7 → 0.1.8 2023-06-12 22:06:59 +00:00
gsilvestrin
5ec4a5d730 feat(python): add action to build and publish wheel (#179) 2023-06-12 14:54:54 -07:00
gsilvestrin
e4f64fca7b Bump pylance 0.4.17 -> 0.4.20 (#173) 2023-06-12 14:54:20 -07:00
Lance Release
4744640bd2 [python] Bump version: 0.1.6 → 0.1.7 2023-06-12 21:39:16 +00:00
gsilvestrin
094b5e643c bugfix(python) Make release action has invalid name (#180) 2023-06-12 14:24:15 -07:00
gsilvestrin
a318778d2a feat(python): add action to tag python releases (#172) 2023-06-12 13:59:08 -07:00
Tevin Wang
9b83ce3d2a add black to python CI (#178)
Closes #48
2023-06-12 11:22:34 -07:00
Nithin PS
7bad676f30 [Python] FIx Contextualizer validation to arguments (#168)
Closes #164

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-12 09:20:09 -07:00
gsilvestrin
0e981e782b [nodejs] bumping version to 0.1.5 (#171) 2023-06-09 12:33:17 -07:00
Utkarsh Gautam
e18cdfc7cf [docs] Fixed Minor typo in embedding.md (#167)
Added missing tab to python snippet
2023-06-08 22:01:51 -07:00
Will Jones
fed33a51d5 wip: make the python API reference a bit nicer (#162)
Adds:

* Make `mkdocstrings` aware we are using numpy-style docstrings
* Fixes broken link on `index.md` to Python API docs (and added link to
node ones)
* Added examples to various classes.
* Added doctest to verify examples work.
2023-06-08 16:07:06 -07:00
Jai
a56b65db84 rename examples for slugs (#159) 2023-06-07 16:44:54 -07:00
gsilvestrin
f21caebeda Update links in README.md (#161)
Current one 404s
2023-06-07 13:16:00 -07:00
gsilvestrin
12da77a9f7 [doc] removed index creation from quickstart (#160) 2023-06-07 09:29:38 -07:00
gsilvestrin
131b2dc57b [nodejs] Added completed youtube transcript example / docs (#156) 2023-06-06 16:26:21 -07:00
Chang She
3798f56a9b bump version for v0.1.6-python 2023-06-05 18:20:15 -07:00
Chang She
50cdb16b45 Better handle empty results from tantivy (#155)
Closes #154

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-06-05 18:18:14 -07:00
gsilvestrin
d803482588 [nodejs] bumping version to 0.1.4 (#147) 2023-06-03 13:59:58 -07:00
gsilvestrin
f37994b72a [nodejs] deprecated created_index in favor of createIndex. (#145) 2023-06-03 11:05:35 -07:00
gsilvestrin
2418de0a3c [nodejs] add npm clean task (#146) 2023-06-03 11:05:02 -07:00
gsilvestrin
d0c47e3838 added projection api for nodejs (#140) 2023-06-03 10:34:08 -07:00
Jai
41cca31f48 Modal example using LangChain (#143) 2023-06-03 06:08:31 -07:00
Jai
b621009d39 add multimodal gif, add copy about fts, sql (#144) 2023-06-02 22:25:33 -07:00
Jai
6a9cde22de Update broken doc links to refer to new directory and include gallery app for multimodal search (#142)
closes #121 
adds new multimodal example to gallery app
2023-06-02 21:27:26 -07:00
Chang She
bfa90b35ee add code snippet for each example (#141)
<img width="1937" alt="image"
src="https://github.com/lancedb/lancedb/assets/759245/4ee52e4a-5955-47c2-9ffe-84d1bc0062ff">

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-06-02 21:27:02 -07:00
gsilvestrin
12ec29f55b Adding nodejs CHANGELOG.md (#132) 2023-06-02 18:27:53 -07:00
Lei Xu
cdd08ef35c [Doc] Metrics types. (#135)
Closes #129
2023-06-02 17:18:01 -07:00
Jai
adcb2a1387 Update mkdocs.yml (#138) 2023-06-02 17:13:32 -07:00
Jai
9d52a32668 Minor patch to docs (#136) 2023-06-02 16:26:03 -07:00
Jai
11b2e63eea fix index docs (#134) 2023-06-02 16:16:34 -07:00
Jai
daedf1396b update references to end to end examples, use s3 for langchain exampl… (#133) 2023-06-02 16:08:56 -07:00
Jai
8af5f19cc1 js docs, modal example, doc notebook integration, update doc styles (#131) 2023-06-02 15:24:16 -07:00
67 changed files with 3180 additions and 357 deletions

31
.github/workflows/pypi-publish.yml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: PyPI Publish
on:
release:
types: [ published ]
tags:
- 'python-v*' # Push events that matches the python-make-release action
jobs:
publish:
runs-on: ubuntu-latest
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Build distribution
run: |
ls -la
pip install wheel setuptools --upgrade
python setup.py sdist bdist_wheel
- name: Publish
uses: pypa/gh-action-pypi-publish@v1.8.5
with:
password: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
packages-dir: python/dist

View File

@@ -0,0 +1,56 @@
name: Python - Create release commit
on:
workflow_dispatch:
inputs:
dry_run:
description: 'Dry run (create the local commit/tags but do not push it)'
required: true
default: "false"
type: choice
options:
- "true"
- "false"
part:
description: 'What kind of release is this?'
required: true
default: 'patch'
type: choice
options:
- patch
- minor
- major
jobs:
bump-version:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Bump version, create tag and commit
working-directory: python
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -32,9 +32,13 @@ jobs:
run: | run: |
pip install -e . pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pip install pytest pytest-mock black
- name: Black
run: black --check --diff --no-color --quiet .
- name: Run tests - name: Run tests
run: pytest -x -v --durations=30 tests run: pytest -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
mac: mac:
timeout-minutes: 30 timeout-minutes: 30
runs-on: "macos-12" runs-on: "macos-12"
@@ -55,6 +59,6 @@ jobs:
run: | run: |
pip install -e . pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pip install pytest pytest-mock
- name: Run tests - name: Run tests
run: pytest -x -v --durations=30 tests run: pytest -x -v --durations=30 tests

2
.gitignore vendored
View File

@@ -15,7 +15,7 @@ site
python/build python/build
python/dist python/dist
notebooks/.ipynb_checkpoints **/.ipynb_checkpoints
**/.hypothesis **/.hypothesis

View File

@@ -10,6 +10,10 @@
<a href="https://discord.gg/zMM32dvNtd">Discord</a> <a href="https://discord.gg/zMM32dvNtd">Discord</a>
<a href="https://twitter.com/lancedb">Twitter</a> <a href="https://twitter.com/lancedb">Twitter</a>
</p>
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
</p> </p>
</div> </div>
@@ -23,13 +27,15 @@ The key features of LanceDB include:
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more). * Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support. * Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. * Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way. * Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/eto-ai/lance">Lance</a>, an open-source columnar format designed for performant ML workloads. LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start ## Quick Start
@@ -69,4 +75,4 @@ result = table.search([100, 100]).limit(2).to_df()
## Blogs, Tutorials & Videos ## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a> * 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a> * 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>

View File

@@ -1,29 +1,43 @@
site_name: LanceDB Documentation site_name: LanceDB Docs
repo_url: https://github.com/lancedb/lancedb
repo_name: lancedb/lancedb
docs_dir: src docs_dir: src
theme: theme:
name: "material" name: "material"
logo: assets/logo.png
features: features:
- content.code.copy - content.code.copy
- content.tabs.link
icon:
repo: fontawesome/brands/github
plugins: plugins:
- search - search
- autorefs
- mkdocstrings: - mkdocstrings:
handlers: handlers:
python: python:
paths: [../python] paths: [../python]
selection:
docstring_style: numpy
rendering:
heading_level: 4
show_source: false
show_symbol_type_in_heading: true
show_signature_annotations: true
show_root_heading: true
members_order: source
import:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter - mkdocs-jupyter
nav:
- Home: index.md
- Basics: basic.md
- Embeddings: embedding.md
- Indexing: ann_indexes.md
- Full-text search: fts.md
- Integrations: integrations.md
- Python API: python.md
markdown_extensions: markdown_extensions:
- admonition
- pymdownx.superfences
- pymdownx.details
- pymdownx.highlight: - pymdownx.highlight:
anchor_linenums: true anchor_linenums: true
line_spans: __span line_spans: __span
@@ -31,3 +45,29 @@ markdown_extensions:
- pymdownx.inlinehilite - pymdownx.inlinehilite
- pymdownx.snippets - pymdownx.snippets
- pymdownx.superfences - pymdownx.superfences
- pymdownx.tabbed:
alternate_style: true
nav:
- Home: index.md
- Basics: basic.md
- Embeddings: embedding.md
- Python full-text search: fts.md
- Python integrations: integrations.md
- Python examples:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- Javascript examples:
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- References:
- Vector Search: search.md
- Indexing: ann_indexes.md
- API references:
- Python API: python/python.md
- Javascript API: javascript/modules.md
extra_css:
- styles/global.css

View File

@@ -12,29 +12,43 @@ In the future we will look to automatically create and configure the ANN index.
## Creating an ANN Index ## Creating an ANN Index
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method. === "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python ```python
import lancedb import lancedb
import numpy as np import numpy as np
uri = "~/.lancedb" uri = "data/sample-lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
# Create 10,000 sample vectors # Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"} data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))] for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))]
# Add the vectors to a table # Add the vectors to a table
tbl = db.create_table("my_vectors", data=data) tbl = db.create_table("my_vectors", data=data)
# Create and train the index - you need to have enough data in the table for an effective training step # Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96) tbl.create_index(num_partitions=256, num_sub_vectors=96)
``` ```
=== "Javascript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
const table = await db.createTable('vectors', data)
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
```
Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index
creation by providing the following parameters: creation by providing the following parameters:
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support cosine distance. - **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support "cosine" distance.
- **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table - **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table
with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional. with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional.
A higher number leads to faster queries, but it makes index generation slower. A higher number leads to faster queries, but it makes index generation slower.
@@ -57,18 +71,28 @@ There are a couple of parameters that can be used to fine-tune the search:
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/> e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored. Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
=== "Python"
```python ```python
tbl.search(np.random.random((768))) \ tbl.search(np.random.random((768))) \
.limit(2) \ .limit(2) \
.nprobes(20) \ .nprobes(20) \
.refine_factor(10) \ .refine_factor(10) \
.to_df() .to_df()
vector item score vector item score
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333 0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867 1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
``` ```
=== "Javascript"
```javascript
const results = await table
.search(Array(768).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute()
```
The search will return the data requested in addition to the score of each item. The search will return the data requested in addition to the score of each item.
@@ -78,18 +102,36 @@ The search will return the data requested in addition to the score of each item.
You can further filter the elements returned by a search using a where clause. You can further filter the elements returned by a search using a where clause.
```python === "Python"
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df() ```python
``` tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df()
```
=== "Javascript"
```javascript
const results = await table
.search(Array(1536).fill(1.2))
.where("item != 'item 1141'")
.execute()
```
### Projections (select clause) ### Projections (select clause)
You can select the columns returned by the query using a select clause. You can select the columns returned by the query using a select clause.
```python === "Python"
tbl.search(np.random.random((768))).select(["vector"]).to_df() ```python
vector score tbl.search(np.random.random((768))).select(["vector"]).to_df()
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092 vector score
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485 0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
... 1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
``` ...
```
=== "Javascript"
```javascript
const results = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.execute()
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

BIN
docs/src/assets/logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

View File

@@ -1,74 +1,142 @@
# Basic LanceDB Functionality # Basic LanceDB Functionality
We'll cover the basics of using LanceDB on your local machine in this section.
??? info "LanceDB runs embedded on your backend application, so there is no need to run a separate server."
<img src="../assets/lancedb_embedded_explanation.png" width="650px" />
## Installation
=== "Python"
```shell
pip install lancedb
```
=== "Javascript"
```shell
npm install vectordb
```
## How to connect to a database ## How to connect to a database
In local mode, LanceDB stores data in a directory on your local machine. To connect to a local database, you can use the following code: === "Python"
```python ```python
import lancedb import lancedb
uri = "~/.lancedb" uri = "~/.lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
``` ```
LanceDB will create the directory if it doesn't exist (including parent directories). LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, use the `db.uri` property. If you need a reminder of the uri, use the `db.uri` property.
=== "Javascript"
```javascript
const lancedb = require("vectordb");
const uri = "~./lancedb";
const db = await lancedb.connect(uri);
```
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`.
## How to create a table ## How to create a table
To create a table, you can use the following code: === "Python"
```python ```python
tbl = db.create_table("my_table", tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
``` ```
Under the hood, LanceDB is converting the input data into an Apache Arrow table If the table already exists, LanceDB will raise an error by default.
and persisting it to disk in [Lance format](github.com/eto-ai/lance). If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
If the table already exists, LanceDB will raise an error by default. You can also pass in a pandas DataFrame directly:
If you want to overwrite the table, you can pass in `mode="overwrite"` ```python
to the `create_table` method. import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
```
You can also pass in a pandas DataFrame directly: === "Javascript"
```python ```javascript
import pandas as pd const tb = await db.createTable("my_table",
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df) ```
```
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
## How to open an existing table ## How to open an existing table
Once created, you can open a table using the following code: Once created, you can open a table using the following code:
```python
tbl = db.open_table("my_table")
```
If you forget the name of your table, you can always get a listing of all table names: === "Python"
```python
tbl = db.open_table("my_table")
```
```python If you forget the name of your table, you can always get a listing of all table names:
db.table_names()
``` ```python
print(db.table_names())
```
=== "Javascript"
```javascript
const tbl = await db.openTable("my_table");
```
If you forget the name of your table, you can always get a listing of all table names:
```javascript
console.log(db.tableNames());
```
## How to add data to a table ## How to add data to a table
After a table has been created, you can always add more data to it using After a table has been created, you can always add more data to it using
```python === "Python"
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0}, ```python
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]) df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
tbl.add(df) {"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
``` tbl.add(df)
```
=== "Javascript"
```javascript
await tbl.add([vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
```
## How to search for (approximate) nearest neighbors ## How to search for (approximate) nearest neighbors
Once you've embedded the query, you can find its nearest neighbors using the following code: Once you've embedded the query, you can find its nearest neighbors using the following code:
```python === "Python"
tbl.search([100, 100]).limit(2).to_df() ```python
``` tbl.search([100, 100]).limit(2).to_df()
```
This returns a pandas DataFrame with the results. This returns a pandas DataFrame with the results.
=== "Javascript"
```javascript
const query = await tbl.search([100, 100]).limit(2).execute();
```
## What's next ## What's next

View File

@@ -25,55 +25,88 @@ def embed_func(batch):
return [model.encode(sentence) for sentence in batch] return [model.encode(sentence) for sentence in batch]
``` ```
Please note that currently HuggingFace is only supported in the Python SDK.
### OpenAI example ### OpenAI example
You can also use an external API like OpenAI to generate embeddings You can also use an external API like OpenAI to generate embeddings
```python === "Python"
import openai ```python
import os import openai
import os
# Configuring the environment variable OPENAI_API_KEY # Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ: if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable # OR set the key here as a variable
openai.api_key = "sk-..." openai.api_key = "sk-..."
# verify that the API key is working # verify that the API key is working
assert len(openai.Model.list()["data"]) > 0 assert len(openai.Model.list()["data"]) > 0
def embed_func(c): def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002") rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]] return [record["embedding"] for record in rs["data"]]
``` ```
=== "Javascript"
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## Applying an embedding function ## Applying an embedding function
Using an embedding function, you can apply it to raw data === "Python"
to generate embeddings for each row. Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
Say if you have a pandas DataFrame with a `text` column that you want to be embedded, Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings) you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
function to generate embeddings and add create a combined pyarrow table: function to generate embeddings and add create a combined pyarrow table:
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame([{"text": "pepperoni"}, ```python
{"text": "pineapple"}]) import pandas as pd
data = with_embeddings(embed_func, df) from lancedb.embeddings import with_embeddings
# The output is used to create / append to a table df = pd.DataFrame([{"text": "pepperoni"},
# db.create_table("my_table", data=data) {"text": "pineapple"}])
``` data = with_embeddings(embed_func, df)
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`. # The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
By default, LanceDB calls the function with batches of 1000 rows. This can be configured If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
using the `batch_size` parameter to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
=== "Javascript"
Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
You can just pass the embedding function created previously and LanceDB will automatically generate
embededings for your data.
```javascript
const db = await lancedb.connect("/tmp/lancedb");
const data = [
{ text: 'pepperoni' },
{ text: 'pineapple' }
]
const table = await db.createTable('vectors', data, embedding)
```
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
## Searching with an embedding function ## Searching with an embedding function
@@ -81,13 +114,25 @@ At inference time, you also need the same embedding function to embed your query
It's important that you use the same model / function otherwise the embedding vectors don't It's important that you use the same model / function otherwise the embedding vectors don't
belong in the same latent space and your results will be nonsensical. belong in the same latent space and your results will be nonsensical.
```python === "Python"
query = "What's the best pizza topping?" ```python
query_vector = embed_func([query])[0] query = "What's the best pizza topping?"
tbl.search(query_vector).limit(10).to_df() query_vector = embed_func([query])[0]
``` tbl.search(query_vector).limit(10).to_df()
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "Javascript"
```javascript
const results = await table
.search('What's the best pizza topping?')
.limit(10)
.execute()
```
The above snippet returns an array of records with the 10 closest vectors to the query.
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
## Roadmap ## Roadmap

View File

@@ -4,4 +4,4 @@
<img id="splash" width="400" alt="langchain" src="https://user-images.githubusercontent.com/917119/236580868-61a246a9-e587-4c2b-8ae5-6fe5f7b7e81e.png"> <img id="splash" width="400" alt="langchain" src="https://user-images.githubusercontent.com/917119/236580868-61a246a9-e587-4c2b-8ae5-6fe5f7b7e81e.png">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/code_qa_bot.ipynb) This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/code_qa_bot.ipynb)

View File

@@ -0,0 +1,119 @@
import sys
from modal import Secret, Stub, Image, web_endpoint
import lancedb
import re
import pickle
import requests
import zipfile
from pathlib import Path
from langchain.document_loaders import UnstructuredHTMLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import LanceDB
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
lancedb_image = Image.debian_slim().pip_install(
"lancedb", "langchain", "openai", "pandas", "tiktoken", "unstructured", "tabulate"
)
stub = Stub(
name="example-langchain-lancedb",
image=lancedb_image,
secrets=[Secret.from_name("my-openai-secret")],
)
docsearch = None
docs_path = Path("docs.pkl")
db_path = Path("lancedb")
def get_document_title(document):
m = str(document.metadata["source"])
title = re.findall("pandas.documentation(.*).html", m)
if title[0] is not None:
return title[0]
return ""
def download_docs():
pandas_docs = requests.get(
"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip"
)
with open(Path("pandas.documentation.zip"), "wb") as f:
f.write(pandas_docs.content)
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
file.extractall(path=Path("pandas_docs"))
def store_docs():
docs = []
if not docs_path.exists():
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
if p.is_dir():
continue
loader = UnstructuredHTMLLoader(p)
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
m["version"] = "2.0rc0"
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
return docs
def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()
db = lancedb.connect(db_path)
table = db.create_table(
"pandas_docs",
data=[
{
"vector": embeddings.embed_query("Hello World"),
"text": "Hello World",
"id": "1",
}
],
mode="overwrite",
)
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
qa = RetrievalQA.from_chain_type(
llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever()
)
return qa.run(query)
@stub.function()
@web_endpoint(method="GET")
def web(query: str):
answer = qanda_langchain(query)
return {
"answer": answer,
}
@stub.function()
def cli(query: str):
answer = qanda_langchain(query)
print(answer)

View File

@@ -0,0 +1,7 @@
# Image multimodal search
## Search through an image dataset using natural language, full text and SQL
<img id="splash" width="400" alt="multimodal search" src="https://github.com/lancedb/lancedb/assets/917119/993a7c9f-be01-449d-942e-1ce1d4ed63af">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/multimodal_search.ipynb)

View File

@@ -1,99 +0,0 @@
# YouTube transcript QA bot with NodeJS
## use LanceDB's Javascript API and OpenAI to build a QA bot for YouTube transcripts
<img id="splash" width="400" alt="nodejs" src="https://github.com/lancedb/lancedb/assets/917119/3a140e75-bf8e-438a-a1e4-af14a72bcf98">
This Q&A bot will allow you to search through youtube transcripts using natural language! We'll introduce how you can use LanceDB's Javascript API to store and manage your data easily.
For this example we're using a HuggingFace dataset that contains YouTube transcriptions: `jamescalam/youtube-transcriptions`, to make it easier, we've converted it to a LanceDB `db` already, which you can download and put in a working directory:
```wget -c https://eto-public.s3.us-west-2.amazonaws.com/lancedb_demo.tar.gz -O - | tar -xz -C .```
Now, we'll create a simple app that can:
1. Take a text based query and search for contexts in our corpus, using embeddings generated from the OpenAI Embedding API.
2. Create a prompt with the contexts, and call the OpenAI Completion API to answer the text based query.
Dependencies and setup of OpenAI API:
```javascript
const lancedb = require("vectordb");
const { Configuration, OpenAIApi } = require("openai");
const configuration = new Configuration({
apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(configuration);
```
First, let's set our question and the context amount. The context amount will be used to query similar documents in our corpus.
```javascript
const QUESTION = "who was the 12th person on the moon and when did they land?";
const CONTEXT_AMOUNT = 3;
```
Now, let's generate an embedding from this question:
```javascript
const embeddingResponse = await openai.createEmbedding({
model: "text-embedding-ada-002",
input: QUESTION,
});
const embedding = embeddingResponse.data["data"][0]["embedding"];
```
Once we have the embedding, we can connect to LanceDB (using the database we downloaded earlier), and search through the chatbot table.
We'll extract 3 similar documents found.
```javascript
const db = await lancedb.connect('./lancedb');
const tbl = await db.openTable('chatbot');
const query = tbl.search(embedding);
query.limit = CONTEXT_AMOUNT;
const context = await query.execute();
```
Let's combine the context together so we can pass it into our prompt:
```javascript
for (let i = 1; i < context.length; i++) {
context[0]["text"] += " " + context[i]["text"];
}
```
Lastly, let's construct the prompt. You could play around with this to create more accurate/better prompts to yield results.
```javascript
const prompt = "Answer the question based on the context below.\n\n" +
"Context:\n" +
`${context[0]["text"]}\n` +
`\n\nQuestion: ${QUESTION}\nAnswer:`;
```
We pass the prompt, along with the context, to the completion API.
```javascript
const completion = await openai.createCompletion({
model: "text-davinci-003",
prompt,
temperature: 0,
max_tokens: 400,
top_p: 1,
frequency_penalty: 0,
presence_penalty: 0,
});
```
And that's it!
```javascript
console.log(completion.data.choices[0].text);
```
The response is (which is non deterministic):
```
The 12th person on the moon was Harrison Schmitt and he landed on December 11, 1972.
```

View File

@@ -0,0 +1,166 @@
# Serverless QA Bot with Modal and LangChain
## use LanceDB's LangChain integration with Modal to run a serverless app
<img id="splash" width="400" alt="modal" src="https://github.com/lancedb/lancedb/assets/917119/7d80a40f-60d7-48a6-972f-dab05000eccf">
We're going to build a QA bot for your documentation using LanceDB's LangChain integration and use Modal for deployment.
Modal is an end-to-end compute platform for model inference, batch jobs, task queues, web apps and more. It's a great way to deploy your LanceDB models and apps.
To get started, ensure that you have created an account and logged into [Modal](https://modal.com/). To follow along, the full source code is available on Github [here](https://github.com/lancedb/lancedb/blob/main/docs/src/examples/modal_langchain.py).
### Setting up Modal
We'll start by specifying our dependencies and creating a new Modal `Stub`:
```python
lancedb_image = Image.debian_slim().pip_install(
"lancedb",
"langchain",
"openai",
"pandas",
"tiktoken",
"unstructured",
"tabulate"
)
stub = Stub(
name="example-langchain-lancedb",
image=lancedb_image,
secrets=[Secret.from_name("my-openai-secret")],
)
```
We're using Modal's Secrets injection to secure our OpenAI key. To set your own, you can access the Modal UI and enter your key.
### Setting up caches for LanceDB and LangChain
Next, we can setup some globals to cache our LanceDB database, as well as our LangChain docsource:
```python
docsearch = None
docs_path = Path("docs.pkl")
db_path = Path("lancedb")
```
### Downloading our dataset
We're going use a pregenerated dataset, which stores HTML files of the Pandas 2.0 documentation.
You could switch this out for your own dataset.
```python
def download_docs():
pandas_docs = requests.get("https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip")
with open(Path("pandas.documentation.zip"), "wb") as f:
f.write(pandas_docs.content)
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
file.extractall(path=Path("pandas_docs"))
```
### Pre-processing the dataset and generating metadata
Once we've downloaded it, we want to parse and pre-process them using LangChain, and then vectorize them and store it in LanceDB.
Let's first create a function that uses LangChains `UnstructuredHTMLLoader` to parse them.
We can then add our own metadata to it and store it alongside the data, we'll later be able to use this for filtering metadata.
```python
def store_docs():
docs = []
if not docs_path.exists():
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
if p.is_dir():
continue
loader = UnstructuredHTMLLoader(p)
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
m["version"] = "2.0rc0"
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
return docs
```
### Simple LangChain chain for a QA bot
Now we can create a simple LangChain chain for our QA bot. We'll use the `RecursiveCharacterTextSplitter` to split our documents into chunks, and then use the `OpenAIEmbeddings` to vectorize them.
Lastly, we'll create a LanceDB table and store the vectorized documents in it, then create a `RetrievalQA` model from the chain and return it.
```python
def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()
db = lancedb.connect(db_path)
table = db.create_table("pandas_docs", data=[
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World", "id": "1"}
], mode="overwrite")
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
return qa.run(query)
```
### Creating our Modal entry points
Now we can create our Modal entry points for our CLI and web endpoint:
```python
@stub.function()
@web_endpoint(method="GET")
def web(query: str):
answer = qanda_langchain(query)
return {
"answer": answer,
}
@stub.function()
def cli(query: str):
answer = qanda_langchain(query)
print(answer)
```
# Testing it out!
Testing the CLI:
```bash
modal run modal_langchain.py --query "What are the major differences in pandas 2.0?"
```
Testing the web endpoint:
```bash
modal serve modal_langchain.py
```
In the CLI, Modal will provide you a web endpoint. Copy this endpoint URI for the next step.
Once this is served, then we can hit it with `curl`.
Note, the first time this runs, it will take a few minutes to download the dataset and vectorize it.
An actual production example would pre-cache/load the dataset and vectorized documents prior
```bash
curl --get --data-urlencode "query=What are the major differences in pandas 2.0?" https://your-modal-endpoint-app.modal.run
{"answer":" The major differences in pandas 2.0 include the ability to use any numpy numeric dtype in a Index, installing optional dependencies with pip extras, and enhancements, bug fixes, and performance improvements."}
```

View File

@@ -4,4 +4,4 @@
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png"> <img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/youtube_transcript_search.ipynb) This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)

View File

@@ -0,0 +1,139 @@
# YouTube transcript QA bot with NodeJS
## use LanceDB's Javascript API and OpenAI to build a QA bot for YouTube transcripts
<img id="splash" width="400" alt="nodejs" src="https://github.com/lancedb/lancedb/assets/917119/3a140e75-bf8e-438a-a1e4-af14a72bcf98">
This Q&A bot will allow you to search through youtube transcripts using natural language! We'll introduce how to use LanceDB's Javascript API to store and manage your data easily.
```bash
npm install vectordb
```
## Download the data
For this example, we're using a sample of a HuggingFace dataset that contains YouTube transcriptions: `jamescalam/youtube-transcriptions`. Download and extract this file under the `data` folder:
```bash
wget -c https://eto-public.s3.us-west-2.amazonaws.com/datasets/youtube_transcript/youtube-transcriptions_sample.jsonl
```
## Prepare Context
Each item in the dataset contains just a short chunk of text. We'll need to merge a bunch of these chunks together on a rolling basis. For this demo, we'll look back 20 records to create a more complete context for each sentence.
First, we need to read and parse the input file.
```javascript
const lines = (await fs.readFile(INPUT_FILE_NAME, 'utf-8'))
.toString()
.split('\n')
.filter(line => line.length > 0)
.map(line => JSON.parse(line))
const data = contextualize(lines, 20, 'video_id')
```
The contextualize function groups the transcripts by video_id and then creates the expanded context for each item.
```javascript
function contextualize (rows, contextSize, groupColumn) {
const grouped = []
rows.forEach(row => {
if (!grouped[row[groupColumn]]) {
grouped[row[groupColumn]] = []
}
grouped[row[groupColumn]].push(row)
})
const data = []
Object.keys(grouped).forEach(key => {
for (let i = 0; i < grouped[key].length; i++) {
const start = i - contextSize > 0 ? i - contextSize : 0
grouped[key][i].context = grouped[key].slice(start, i + 1).map(r => r.text).join(' ')
}
data.push(...grouped[key])
})
return data
}
```
## Create the LanceDB Table
To load our data into LanceDB, we need to create embedding (vectors) for each item. For this example, we will use the OpenAI embedding functions, which have a native integration with LanceDB.
```javascript
// You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable
const apiKey = process.env.OPENAI_API_KEY
// The embedding function will create embeddings for the 'context' column
const embedFunction = new lancedb.OpenAIEmbeddingFunction('context', apiKey)
// Connects to LanceDB
const db = await lancedb.connect('data/youtube-lancedb')
const tbl = await db.createTable('vectors', data, embedFunction)
```
## Create and answer the prompt
We will accept questions in natural language and use our corpus stored in LanceDB to answer them. First, we need to set up the OpenAI client:
```javascript
const configuration = new Configuration({ apiKey })
const openai = new OpenAIApi(configuration)
```
Then we can prompt questions and use LanceDB to retrieve the three most relevant transcripts for this prompt.
```javascript
const query = await rl.question('Prompt: ')
const results = await tbl
.search(query)
.select(['title', 'text', 'context'])
.limit(3)
.execute()
```
The query and the transcripts' context are appended together in a single prompt:
```javascript
function createPrompt (query, context) {
let prompt =
'Answer the question based on the context below.\n\n' +
'Context:\n'
// need to make sure our prompt is not larger than max size
prompt = prompt + context.map(c => c.context).join('\n\n---\n\n').substring(0, 3750)
prompt = prompt + `\n\nQuestion: ${query}\nAnswer:`
return prompt
}
```
We can now use the OpenAI Completion API to process our custom prompt and give us an answer.
```javascript
const response = await openai.createCompletion({
model: 'text-davinci-003',
prompt: createPrompt(query, results),
max_tokens: 400,
temperature: 0,
top_p: 1,
frequency_penalty: 0,
presence_penalty: 0
})
console.log(response.data.choices[0].text)
```
## Let's put it all together now
Now we can provide queries and have them answered based on your local LanceDB data.
```bash
Prompt: who was the 12th person on the moon and when did they land?
The 12th person on the moon was Harrison Schmitt and he landed on December 11, 1972.
Prompt: Which training method should I use for sentence transformers when I only have pairs of related sentences?
NLI with multiple negative ranking loss.
```
## That's a wrap
In this example, you learned how to use LanceDB to store and query embedding representations of your local data. The complete example code is on [GitHub](https://github.com/lancedb/lancedb/tree/main/node/examples), and you can also download the LanceDB dataset using [this link](https://eto-public.s3.us-west-2.amazonaws.com/datasets/youtube_transcript/youtube-lancedb.zip).

View File

@@ -1,6 +1,6 @@
# Welcome to LanceDB's Documentation # Welcome to LanceDB's Documentation
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrivial, filtering and management of embeddings. LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
The key features of LanceDB include: The key features of LanceDB include:
@@ -8,38 +8,59 @@ The key features of LanceDB include:
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more). * Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Native Python and Javascript/Typescript support (coming soon). * Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. * Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way. * Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads. LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start
## Installation === "Python"
```shell
pip install lancedb
```
```shell ```python
pip install lancedb import lancedb
```
## Quickstart uri = "/tmp/lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()
```
```python === "Javascript"
import lancedb ```shell
npm install vectordb
```
db = lancedb.connect(".") ```javascript
table = db.create_table("my_table", const lancedb = require("vectordb");
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()
```
## Complete Demos const uri = "/tmp/lancedb";
const db = await lancedb.connect(uri);
const table = await db.createTable("my_table",
[{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ id: 2, vector: [5.9, 26.5], item: "bar", price: 20.0 }])
const results = await table.search([100, 100]).limit(2).execute();
```
We will be adding completed demo apps built using LanceDB. ## Complete Demos (Python)
- [YouTube Transcript Search](../../notebooks/youtube_transcript_search.ipynb) - [YouTube Transcript Search](notebooks/youtube_transcript_search.ipynb)
- [Documentation QA Bot using LangChain](notebooks/code_qa_bot.ipynb)
- [Multimodal search using CLIP](notebooks/multimodal_search.ipynb)
- [Serverless QA Bot with S3 and Lambda](examples/serverless_lancedb_with_s3_and_lambda.md)
- [Serverless QA Bot with Modal](examples/serverless_qa_bot_with_modal_and_langchain.md)
## Complete Demos (JavaScript)
- [YouTube Transcript Search](examples/youtube_transcript_bot_with_nodejs.md)
## Documentation Quick Links ## Documentation Quick Links
* [`Basic Operations`](basic.md) - basic functionality of LanceDB. * [`Basic Operations`](basic.md) - basic functionality of LanceDB.
@@ -47,4 +68,5 @@ We will be adding completed demo apps built using LanceDB.
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries. * [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API * [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
* [`Ecosystem Integrations`](integrations.md) - integrating LanceDB with python data tooling ecosystem. * [`Ecosystem Integrations`](integrations.md) - integrating LanceDB with python data tooling ecosystem.
* [`API Reference`](python.md) - detailed documentation for the LanceDB Python SDK. * [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Python SDK.

View File

@@ -24,9 +24,6 @@ data = pd.DataFrame({
"price": [10.0, 20.0] "price": [10.0, 20.0]
}) })
table = db.create_table("pd_table", data=data) table = db.create_table("pd_table", data=data)
# Optionally, create a IVF_PQ index
table.create_index(num_partitions=256, num_sub_vectors=96)
``` ```
You will find detailed instructions of creating dataset and index in [Basic Operations](basic.md) and [Indexing](indexing.md) You will find detailed instructions of creating dataset and index in [Basic Operations](basic.md) and [Indexing](indexing.md)

View File

@@ -0,0 +1 @@
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.

View File

@@ -0,0 +1,51 @@
vectordb / [Exports](modules.md)
# LanceDB
A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb).
## Installation
```bash
npm install vectordb
```
## Usage
### Basic Example
```javascript
const lancedb = require('vectordb');
const db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>');
const table = await db.openTable('my_table');
const query = await table.search([0.1, 0.3]).setLimit(20).execute();
console.log(results);
```
The [examples](./examples) folder contains complete examples.
## Development
The LanceDB javascript is built with npm:
```bash
npm run tsc
```
Run the tests with
```bash
npm test
```
To run the linter and have it automatically fix all errors
```bash
npm run lint -- --fix
```
To build documentation
```bash
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
```

View File

@@ -0,0 +1,211 @@
[vectordb](../README.md) / [Exports](../modules.md) / Connection
# Class: Connection
A connection to a LanceDB database.
## Table of contents
### Constructors
- [constructor](Connection.md#constructor)
### Properties
- [\_db](Connection.md#_db)
- [\_uri](Connection.md#_uri)
### Accessors
- [uri](Connection.md#uri)
### Methods
- [createTable](Connection.md#createtable)
- [createTableArrow](Connection.md#createtablearrow)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Constructors
### constructor
**new Connection**(`db`, `uri`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `db` | `any` |
| `uri` | `string` |
#### Defined in
[index.ts:46](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L46)
## Properties
### \_db
`Private` `Readonly` **\_db**: `any`
#### Defined in
[index.ts:44](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L44)
___
### \_uri
`Private` `Readonly` **\_uri**: `string`
#### Defined in
[index.ts:43](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L43)
## Accessors
### uri
`get` **uri**(): `string`
#### Returns
`string`
#### Defined in
[index.ts:51](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L51)
## Methods
### createTable
**createTable**(`name`, `data`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:91](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L91)
**createTable**<`T`\>(`name`, `data`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
Creates a new Table and initialize it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
#### Defined in
[index.ts:99](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L99)
___
### createTableArrow
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `table` | `Table`<`any`\> |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:109](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L109)
___
### openTable
**openTable**(`name`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
Open a table in the database.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:67](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L67)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
Open a table in the database.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
#### Defined in
[index.ts:74](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L74)
___
### tableNames
**tableNames**(): `Promise`<`string`[]\>
Get the names of all tables in the database.
#### Returns
`Promise`<`string`[]\>
#### Defined in
[index.ts:58](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L58)

View File

@@ -0,0 +1,105 @@
[vectordb](../README.md) / [Exports](../modules.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Implements
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`string`\>
## Table of contents
### Constructors
- [constructor](OpenAIEmbeddingFunction.md#constructor)
### Properties
- [\_modelName](OpenAIEmbeddingFunction.md#_modelname)
- [\_openai](OpenAIEmbeddingFunction.md#_openai)
- [sourceColumn](OpenAIEmbeddingFunction.md#sourcecolumn)
### Methods
- [embed](OpenAIEmbeddingFunction.md#embed)
## Constructors
### constructor
**new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`)
#### Parameters
| Name | Type | Default value |
| :------ | :------ | :------ |
| `sourceColumn` | `string` | `undefined` |
| `openAIKey` | `string` | `undefined` |
| `modelName` | `string` | `'text-embedding-ada-002'` |
#### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L21)
## Properties
### \_modelName
`Private` `Readonly` **\_modelName**: `string`
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L19)
___
### \_openai
`Private` `Readonly` **\_openai**: `any`
#### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L18)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Implementation of
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[sourceColumn](../interfaces/EmbeddingFunction.md#sourcecolumn)
#### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L50)
## Methods
### embed
**embed**(`data`): `Promise`<`number`[][]\>
Creates a vector representation for the given values.
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `string`[] |
#### Returns
`Promise`<`number`[][]\>
#### Implementation of
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[embed](../interfaces/EmbeddingFunction.md#embed)
#### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L38)

View File

@@ -0,0 +1,299 @@
[vectordb](../README.md) / [Exports](../modules.md) / Query
# Class: Query<T\>
A builder for nearest neighbor queries for LanceDB.
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Table of contents
### Constructors
- [constructor](Query.md#constructor)
### Properties
- [\_columns](Query.md#_columns)
- [\_embeddings](Query.md#_embeddings)
- [\_filter](Query.md#_filter)
- [\_limit](Query.md#_limit)
- [\_metricType](Query.md#_metrictype)
- [\_nprobes](Query.md#_nprobes)
- [\_query](Query.md#_query)
- [\_queryVector](Query.md#_queryvector)
- [\_refineFactor](Query.md#_refinefactor)
- [\_tbl](Query.md#_tbl)
### Methods
- [execute](Query.md#execute)
- [filter](Query.md#filter)
- [limit](Query.md#limit)
- [metricType](Query.md#metrictype)
- [nprobes](Query.md#nprobes)
- [refineFactor](Query.md#refinefactor)
## Constructors
### constructor
**new Query**<`T`\>(`tbl`, `query`, `embeddings?`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `any` |
| `query` | `T` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Defined in
[index.ts:241](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L241)
## Properties
### \_columns
`Private` `Optional` `Readonly` **\_columns**: `string`[]
#### Defined in
[index.ts:236](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L236)
___
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
#### Defined in
[index.ts:239](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L239)
___
### \_filter
`Private` `Optional` **\_filter**: `string`
#### Defined in
[index.ts:237](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L237)
___
### \_limit
`Private` **\_limit**: `number`
#### Defined in
[index.ts:233](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L233)
___
### \_metricType
`Private` `Optional` **\_metricType**: [`MetricType`](../enums/MetricType.md)
#### Defined in
[index.ts:238](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L238)
___
### \_nprobes
`Private` **\_nprobes**: `number`
#### Defined in
[index.ts:235](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L235)
___
### \_query
`Private` `Readonly` **\_query**: `T`
#### Defined in
[index.ts:231](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L231)
___
### \_queryVector
`Private` `Optional` **\_queryVector**: `number`[]
#### Defined in
[index.ts:232](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L232)
___
### \_refineFactor
`Private` `Optional` **\_refineFactor**: `number`
#### Defined in
[index.ts:234](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L234)
___
### \_tbl
`Private` `Readonly` **\_tbl**: `any`
#### Defined in
[index.ts:230](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L230)
## Methods
### execute
**execute**<`T`\>(): `Promise`<`T`[]\>
Execute the query and return the results as an Array of Objects
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `Record`<`string`, `unknown`\> |
#### Returns
`Promise`<`T`[]\>
#### Defined in
[index.ts:301](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L301)
___
### filter
**filter**(`value`): [`Query`](Query.md)<`T`\>
A filter statement to be applied to this query.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | A filter in the same format used by a sql WHERE clause. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:284](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L284)
___
### limit
**limit**(`value`): [`Query`](Query.md)<`T`\>
Sets the number of results that will be returned
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `number` | number of results |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:257](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L257)
___
### metricType
**metricType**(`value`): [`Query`](Query.md)<`T`\>
The MetricType used for this Query.
**`See`**
MetricType for the different options
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | [`MetricType`](../enums/MetricType.md) | The metric to the. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:293](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L293)
___
### nprobes
**nprobes**(`value`): [`Query`](Query.md)<`T`\>
The number of probes used. A higher number makes search more accurate but also slower.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `number` | The number of probes used. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:275](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L275)
___
### refineFactor
**refineFactor**(`value`): [`Query`](Query.md)<`T`\>
Refine the results by reading extra elements and re-ranking them in memory.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `number` | refine factor to use in this query. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:266](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L266)

View File

@@ -0,0 +1,215 @@
[vectordb](../README.md) / [Exports](../modules.md) / Table
# Class: Table<T\>
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Table of contents
### Constructors
- [constructor](Table.md#constructor)
### Properties
- [\_embeddings](Table.md#_embeddings)
- [\_name](Table.md#_name)
- [\_tbl](Table.md#_tbl)
### Accessors
- [name](Table.md#name)
### Methods
- [add](Table.md#add)
- [create\_index](Table.md#create_index)
- [overwrite](Table.md#overwrite)
- [search](Table.md#search)
## Constructors
### constructor
**new Table**<`T`\>(`tbl`, `name`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `any` |
| `name` | `string` |
#### Defined in
[index.ts:121](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L121)
**new Table**<`T`\>(`tbl`, `name`, `embeddings`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `tbl` | `any` | |
| `name` | `string` | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
#### Defined in
[index.ts:127](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L127)
## Properties
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
#### Defined in
[index.ts:119](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L119)
___
### \_name
`Private` `Readonly` **\_name**: `string`
#### Defined in
[index.ts:118](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L118)
___
### \_tbl
`Private` `Readonly` **\_tbl**: `any`
#### Defined in
[index.ts:117](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L117)
## Accessors
### name
`get` **name**(): `string`
#### Returns
`string`
#### Defined in
[index.ts:134](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L134)
## Methods
### add
**add**(`data`): `Promise`<`number`\>
Insert records into this Table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:152](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L152)
___
### create\_index
**create_index**(`indexParams`): `Promise`<`any`\>
Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
#### Returns
`Promise`<`any`\>
#### Defined in
[index.ts:171](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L171)
___
### overwrite
**overwrite**(`data`): `Promise`<`number`\>
Insert records into this Table, replacing its contents.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:162](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L162)
___
### search
**search**(`query`): [`Query`](Query.md)<`T`\>
Creates a search query to find the nearest neighbors of the given search term
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `query` | `T` | The query search term |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:142](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L142)

View File

@@ -0,0 +1,36 @@
[vectordb](../README.md) / [Exports](../modules.md) / MetricType
# Enumeration: MetricType
Distance metrics type.
## Table of contents
### Enumeration Members
- [Cosine](MetricType.md#cosine)
- [L2](MetricType.md#l2)
## Enumeration Members
### Cosine
**Cosine** = ``"cosine"``
Cosine distance
#### Defined in
[index.ts:341](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L341)
___
### L2
• **L2** = ``"l2"``
Euclidean distance
#### Defined in
[index.ts:336](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L336)

View File

@@ -0,0 +1,30 @@
[vectordb](../README.md) / [Exports](../modules.md) / WriteMode
# Enumeration: WriteMode
## Table of contents
### Enumeration Members
- [Append](WriteMode.md#append)
- [Overwrite](WriteMode.md#overwrite)
## Enumeration Members
### Append
**Append** = ``"append"``
#### Defined in
[index.ts:326](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L326)
___
### Overwrite
• **Overwrite** = ``"overwrite"``
#### Defined in
[index.ts:325](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L325)

View File

@@ -0,0 +1,60 @@
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
# Interface: EmbeddingFunction<T\>
An embedding function that automatically creates vector representation for a given column.
## Type parameters
| Name |
| :------ |
| `T` |
## Implemented by
- [`OpenAIEmbeddingFunction`](../classes/OpenAIEmbeddingFunction.md)
## Table of contents
### Properties
- [embed](EmbeddingFunction.md#embed)
- [sourceColumn](EmbeddingFunction.md#sourcecolumn)
## Properties
### embed
**embed**: (`data`: `T`[]) => `Promise`<`number`[][]\>
#### Type declaration
▸ (`data`): `Promise`<`number`[][]\>
Creates a vector representation for the given values.
##### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `T`[] |
##### Returns
`Promise`<`number`[][]\>
#### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L27)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L22)

View File

@@ -0,0 +1,61 @@
[vectordb](README.md) / Exports
# vectordb
## Table of contents
### Enumerations
- [MetricType](enums/MetricType.md)
- [WriteMode](enums/WriteMode.md)
### Classes
- [Connection](classes/Connection.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
- [Query](classes/Query.md)
- [Table](classes/Table.md)
### Interfaces
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
### Type Aliases
- [VectorIndexParams](modules.md#vectorindexparams)
### Functions
- [connect](modules.md#connect)
## Type Aliases
### VectorIndexParams
Ƭ **VectorIndexParams**: `IvfPQIndexConfig`
#### Defined in
[index.ts:224](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L224)
## Functions
### connect
**connect**(`uri`): `Promise`<[`Connection`](classes/Connection.md)\>
Connect to a LanceDB instance at the given URI
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `uri` | `string` | The uri of the database. |
#### Returns
`Promise`<[`Connection`](classes/Connection.md)\>
#### Defined in
[index.ts:34](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L34)

View File

@@ -72,6 +72,8 @@
"import lancedb\n", "import lancedb\n",
"import re\n", "import re\n",
"import pickle\n", "import pickle\n",
"import requests\n",
"import zipfile\n",
"from pathlib import Path\n", "from pathlib import Path\n",
"\n", "\n",
"from langchain.document_loaders import UnstructuredHTMLLoader\n", "from langchain.document_loaders import UnstructuredHTMLLoader\n",
@@ -85,10 +87,25 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "6ccf9b2b", "id": "56cc6d50",
"metadata": {}, "metadata": {},
"source": [ "source": [
"You can download the Pandas documentation from https://pandas.pydata.org/docs/. To make sure we're not littering our repo with docs, we won't include it in the LanceDB repo, so download this and store it locally first." "To make this easier, we've downloaded Pandas documentation and stored the raw HTML files for you to download. We'll download them and then use LangChain's HTML document readers to parse them and store them in LanceDB as a vector store, along with relevant metadata."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7da77e75",
"metadata": {},
"outputs": [],
"source": [
"pandas_docs = requests.get(\"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip\")\n",
"with open('/tmp/pandas.documentation.zip', 'wb') as f:\n",
" f.write(pandas_docs.content)\n",
"\n",
"file = zipfile.ZipFile(\"/tmp/pandas.documentation.zip\")\n",
"file.extractall(path=\"/tmp/pandas_docs\")"
] ]
}, },
{ {
@@ -137,7 +154,8 @@
"docs = []\n", "docs = []\n",
"\n", "\n",
"if not docs_path.exists():\n", "if not docs_path.exists():\n",
" for p in Path(\"./pandas.documentation\").rglob(\"*.html\"):\n", " for p in Path(\"/tmp/pandas_docs/pandas.documentation\").rglob(\"*.html\"):\n",
" print(p)\n",
" if p.is_dir():\n", " if p.is_dir():\n",
" continue\n", " continue\n",
" loader = UnstructuredHTMLLoader(p)\n", " loader = UnstructuredHTMLLoader(p)\n",

View File

@@ -25,7 +25,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 60, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -81,7 +81,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 62, "execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -98,7 +98,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 63, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -125,20 +125,41 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 64, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"def find_image_vectors(query):\n", "def find_image_vectors(query):\n",
" emb = embed_func(query)\n", " emb = embed_func(query)\n",
" return _extract(tbl.search(emb).limit(9).to_df())\n", " code = (\n",
" \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"embedding = embed_func('{query}')\\n\"\n",
" \"tbl.search(embedding).limit(9).to_df()\"\n",
" )\n",
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
"\n", "\n",
"def find_image_keywords(query):\n", "def find_image_keywords(query):\n",
" return _extract(tbl.search(query).limit(9).to_df())\n", " code = (\n",
" \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
" )\n",
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
"\n", "\n",
"def find_image_sql(query):\n", "def find_image_sql(query):\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"import duckdb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" \"diffusiondb = tbl.to_lance()\\n\"\n",
" f\"duckdb.sql('{query}').to_df()\"\n",
" ) \n",
" diffusiondb = tbl.to_lance()\n", " diffusiondb = tbl.to_lance()\n",
" return _extract(duckdb.query(query).to_df())\n", " return (_extract(duckdb.sql(query).to_df()), code)\n",
"\n", "\n",
"def _extract(df):\n", "def _extract(df):\n",
" image_col = \"image\"\n", " image_col = \"image\"\n",
@@ -154,14 +175,14 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 65, "execution_count": 28,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"Running on local URL: http://127.0.0.1:7867\n", "Running on local URL: http://127.0.0.1:7881\n",
"\n", "\n",
"To create a public link, set `share=True` in `launch()`.\n" "To create a public link, set `share=True` in `launch()`.\n"
] ]
@@ -169,7 +190,7 @@
{ {
"data": { "data": {
"text/html": [ "text/html": [
"<div><iframe src=\"http://127.0.0.1:7867/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>" "<div><iframe src=\"http://127.0.0.1:7881/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
], ],
"text/plain": [ "text/plain": [
"<IPython.core.display.HTML object>" "<IPython.core.display.HTML object>"
@@ -182,7 +203,7 @@
"data": { "data": {
"text/plain": [] "text/plain": []
}, },
"execution_count": 65, "execution_count": 28,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@@ -192,7 +213,6 @@
"\n", "\n",
"\n", "\n",
"with gr.Blocks() as demo:\n", "with gr.Blocks() as demo:\n",
"\n",
" with gr.Row():\n", " with gr.Row():\n",
" with gr.Tab(\"Embeddings\"):\n", " with gr.Tab(\"Embeddings\"):\n",
" vector_query = gr.Textbox(value=\"portraits of a person\", show_label=False)\n", " vector_query = gr.Textbox(value=\"portraits of a person\", show_label=False)\n",
@@ -204,16 +224,25 @@
" sql_query = gr.Textbox(value=\"SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9\", show_label=False)\n", " sql_query = gr.Textbox(value=\"SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9\", show_label=False)\n",
" b3 = gr.Button(\"Submit\")\n", " b3 = gr.Button(\"Submit\")\n",
" with gr.Row():\n", " with gr.Row():\n",
" code = gr.Code(label=\"Code\", language=\"python\")\n",
" with gr.Row():\n",
" gallery = gr.Gallery(\n", " gallery = gr.Gallery(\n",
" label=\"Found images\", show_label=False, elem_id=\"gallery\"\n", " label=\"Found images\", show_label=False, elem_id=\"gallery\"\n",
" ).style(columns=[3], rows=[3], object_fit=\"contain\", height=\"auto\") \n", " ).style(columns=[3], rows=[3], object_fit=\"contain\", height=\"auto\") \n",
" \n", " \n",
" b1.click(find_image_vectors, inputs=vector_query, outputs=gallery)\n", " b1.click(find_image_vectors, inputs=vector_query, outputs=[gallery, code])\n",
" b2.click(find_image_keywords, inputs=keyword_query, outputs=gallery)\n", " b2.click(find_image_keywords, inputs=keyword_query, outputs=[gallery, code])\n",
" b3.click(find_image_sql, inputs=sql_query, outputs=gallery)\n", " b3.click(find_image_sql, inputs=sql_query, outputs=[gallery, code])\n",
" \n", " \n",
"demo.launch()" "demo.launch()"
] ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {

View File

@@ -1,11 +1,12 @@
{ {
"cells": [ "cells": [
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "42bf01fb", "id": "42bf01fb",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# We're going to build question and answer bot\n", "# Youtube Transcript Search QA Bot\n",
"\n", "\n",
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily." "This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily."
] ]
@@ -35,6 +36,7 @@
] ]
}, },
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "22e570f4", "id": "22e570f4",
"metadata": {}, "metadata": {},
@@ -87,6 +89,7 @@
] ]
}, },
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "5ac2b6a3", "id": "5ac2b6a3",
"metadata": {}, "metadata": {},
@@ -181,6 +184,7 @@
] ]
}, },
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "3044e0b0", "id": "3044e0b0",
"metadata": {}, "metadata": {},
@@ -209,6 +213,7 @@
] ]
}, },
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "db586267", "id": "db586267",
"metadata": {}, "metadata": {},
@@ -229,6 +234,7 @@
] ]
}, },
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "2106b5bb", "id": "2106b5bb",
"metadata": {}, "metadata": {},
@@ -338,6 +344,7 @@
] ]
}, },
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "53e4bff1", "id": "53e4bff1",
"metadata": {}, "metadata": {},
@@ -371,6 +378,7 @@
] ]
}, },
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "8ef34fca", "id": "8ef34fca",
"metadata": {}, "metadata": {},
@@ -459,6 +467,7 @@
] ]
}, },
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "23afc2f9", "id": "23afc2f9",
"metadata": {}, "metadata": {},
@@ -541,6 +550,7 @@
] ]
}, },
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "28705959", "id": "28705959",
"metadata": {}, "metadata": {},
@@ -571,6 +581,7 @@
] ]
}, },
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "559a095b", "id": "559a095b",
"metadata": {}, "metadata": {},

View File

@@ -1,14 +0,0 @@
# LanceDB Python API Reference
## Installation
```shell
pip install lancedb
```
## ::: lancedb
## ::: lancedb.db
## ::: lancedb.table
## ::: lancedb.query
## ::: lancedb.embeddings
## ::: lancedb.context

43
docs/src/python/python.md Normal file
View File

@@ -0,0 +1,43 @@
# LanceDB Python API Reference
## Installation
```shell
pip install lancedb
```
## Connection
::: lancedb.connect
::: lancedb.LanceDBConnection
## Table
::: lancedb.table.LanceTable
## Querying
::: lancedb.query.LanceQueryBuilder
::: lancedb.query.LanceFtsQueryBuilder
## Embeddings
::: lancedb.embeddings.with_embeddings
::: lancedb.embeddings.EmbeddingFunction
## Context
::: lancedb.context.contextualize
::: lancedb.context.Contextualizer
## Full text search
::: lancedb.fts.create_index
::: lancedb.fts.populate_index
::: lancedb.fts.search_index

85
docs/src/search.md Normal file
View File

@@ -0,0 +1,85 @@
# Vector Search
`Vector Search` finds the nearest vectors from the database.
In a recommendation system or search engine, you can find similar products from
the one you searched.
In LLM and other AI applications,
each data point can be [presented by the embeddings generated from some models](embedding.md),
it returns the most relevant features.
A search in high-dimensional vector space, is to find `K-Nearest-Neighbors (KNN)` of the query vector.
## Metric
In LanceDB, a `Metric` is the way to describe the distance between a pair of vectors.
Currently, we support the following metrics:
| Metric | Description |
| ----------- | ------------------------------------ |
| `L2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `Cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
## Search
### Flat Search
If there is no [vector index is created](ann_indexes.md), LanceDB will just brute-force scan
the vector column and compute the distance.
=== "Python"
```python
import lancedb
db = lancedb.connect("data/sample-lancedb")
tbl = db.open_table("my_vectors")
df = tbl.search(np.random.random((768)))
.limit(10)
.to_df()
```
=== "JavaScript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
tbl = db.open_table("my_vectors")
const results = await tbl.search(Array(768))
.limit(20)
.execute()
```
By default, `l2` will be used as `Metric` type. You can customize the metric type
as well.
=== "Python"
```python
df = tbl.search(np.random.random((768)))
.metric("cosine")
.limit(10)
.to_df()
```
=== "JavaScript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
tbl = db.open_table("my_vectors")
const results = await tbl.search(Array(768))
.metric("cosine")
.limit(20)
.execute()
```
### Search with Vector Index.
See [ANN Index](ann_indexes.md) for more details.

View File

@@ -0,0 +1,6 @@
:root {
--md-primary-fg-color: #625eff;
--md-primary-fg-color--dark: #4338ca;
--md-text-font: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
--md-code-font: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
}

64
node/CHANGELOG.md Normal file
View File

@@ -0,0 +1,64 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.1.5] - 2023-06-00
### Added
- Support for macOS X86
## [0.1.4] - 2023-06-03
### Added
- Select / Project query API
### Changed
- Deprecated created_index in favor of createIndex
## [0.1.3] - 2023-06-01
### Added
- Support S3 and Google Cloud Storage
- Embedding functions support
- OpenAI embedding function
## [0.1.2] - 2023-05-27
### Added
- Append records API
- Extra query params to to nodejs client
- Create_index API
### Fixed
- bugfix: string columns should be converted to Utf8Array (#94)
## [0.1.1] - 2023-05-16
### Added
- create_table API
- limit parameter for queries
- Typescript / JavaScript examples
- Linux support
## [0.1.0] - 2023-05-16
### Added
- Initial JavaScript / Node.js library for LanceDB
- Read-only api to query LanceDB datasets
- Supports macOS arm only
## [pre-0.1.0]
- Various prototypes / test builds

View File

@@ -41,3 +41,9 @@ To run the linter and have it automatically fix all errors
```bash ```bash
npm run lint -- --fix npm run lint -- --fix
``` ```
To build documentation
```bash
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
```

View File

@@ -0,0 +1,122 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
'use strict'
const lancedb = require('vectordb')
const fs = require('fs/promises')
const readline = require('readline/promises')
const { stdin: input, stdout: output } = require('process')
const { Configuration, OpenAIApi } = require('openai')
// Download file from XYZ
const INPUT_FILE_NAME = 'data/youtube-transcriptions_sample.jsonl';
(async () => {
// You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable
const apiKey = process.env.OPENAI_API_KEY
// The embedding function will create embeddings for the 'context' column
const embedFunction = new lancedb.OpenAIEmbeddingFunction('context', apiKey)
// Connects to LanceDB
const db = await lancedb.connect('data/youtube-lancedb')
// Open the vectors table or create one if it does not exist
let tbl
if ((await db.tableNames()).includes('vectors')) {
tbl = await db.openTable('vectors', embedFunction)
} else {
tbl = await createEmbeddingsTable(db, embedFunction)
}
// Use OpenAI Completion API to generate and answer based on the context that LanceDB provides
const configuration = new Configuration({ apiKey })
const openai = new OpenAIApi(configuration)
const rl = readline.createInterface({ input, output })
try {
while (true) {
const query = await rl.question('Prompt: ')
const results = await tbl
.search(query)
.select(['title', 'text', 'context'])
.limit(3)
.execute()
// console.table(results)
const response = await openai.createCompletion({
model: 'text-davinci-003',
prompt: createPrompt(query, results),
max_tokens: 400,
temperature: 0,
top_p: 1,
frequency_penalty: 0,
presence_penalty: 0
})
console.log(response.data.choices[0].text)
}
} catch (err) {
console.log('Error: ', err)
} finally {
rl.close()
}
process.exit(1)
})()
async function createEmbeddingsTable (db, embedFunction) {
console.log(`Creating embeddings from ${INPUT_FILE_NAME}`)
// read the input file into a JSON array, skipping empty lines
const lines = (await fs.readFile(INPUT_FILE_NAME, 'utf-8'))
.toString()
.split('\n')
.filter(line => line.length > 0)
.map(line => JSON.parse(line))
const data = contextualize(lines, 20, 'video_id')
return await db.createTable('vectors', data, embedFunction)
}
// Each transcript has a small text column, we include previous transcripts in order to
// have more context information when creating embeddings
function contextualize (rows, contextSize, groupColumn) {
const grouped = []
rows.forEach(row => {
if (!grouped[row[groupColumn]]) {
grouped[row[groupColumn]] = []
}
grouped[row[groupColumn]].push(row)
})
const data = []
Object.keys(grouped).forEach(key => {
for (let i = 0; i < grouped[key].length; i++) {
const start = i - contextSize > 0 ? i - contextSize : 0
grouped[key][i].context = grouped[key].slice(start, i + 1).map(r => r.text).join(' ')
}
data.push(...grouped[key])
})
return data
}
// Creates a prompt by aggregating all relevant contexts
function createPrompt (query, context) {
let prompt =
'Answer the question based on the context below.\n\n' +
'Context:\n'
// need to make sure our prompt is not larger than max size
prompt = prompt + context.map(c => c.context).join('\n\n---\n\n').substring(0, 3750)
prompt = prompt + `\n\nQuestion: ${query}\nAnswer:`
return prompt
}

View File

@@ -0,0 +1,15 @@
{
"name": "vectordb-example-js-openai",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"vectordb": "file:../..",
"openai": "^3.2.1"
}
}

View File

@@ -1,8 +0,0 @@
import lancedb
uri = "sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])

284
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.1.3", "version": "0.1.5",
"lockfileVersion": 2, "lockfileVersion": 2,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.1.3", "version": "0.1.5",
"license": "Apache-2.0", "license": "Apache-2.0",
"dependencies": { "dependencies": {
"@apache-arrow/ts": "^12.0.0", "@apache-arrow/ts": "^12.0.0",
@@ -32,6 +32,8 @@
"temp": "^0.9.4", "temp": "^0.9.4",
"ts-node": "^10.9.1", "ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0", "ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*" "typescript": "*"
} }
}, },
@@ -642,6 +644,12 @@
"node": ">=8" "node": ">=8"
} }
}, },
"node_modules/ansi-sequence-parser": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/ansi-sequence-parser/-/ansi-sequence-parser-1.1.0.tgz",
"integrity": "sha512-lEm8mt52to2fT8GhciPCGeCXACSz2UwIN4X2e2LJSnZ5uAbn2/dsYdOmUXq0AtWS5cpAupysIneExOgH0Vd2TQ==",
"dev": true
},
"node_modules/ansi-styles": { "node_modules/ansi-styles": {
"version": "4.3.0", "version": "4.3.0",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
@@ -2284,6 +2292,27 @@
"integrity": "sha512-bzh50DW9kTPM00T8y4o8vQg89Di9oLJVLW/KaOGIXJWP/iqCN6WKYkbNOF04vFLJhwcpYUh9ydh/+5vpOqV4YQ==", "integrity": "sha512-bzh50DW9kTPM00T8y4o8vQg89Di9oLJVLW/KaOGIXJWP/iqCN6WKYkbNOF04vFLJhwcpYUh9ydh/+5vpOqV4YQ==",
"dev": true "dev": true
}, },
"node_modules/handlebars": {
"version": "4.7.7",
"resolved": "https://registry.npmjs.org/handlebars/-/handlebars-4.7.7.tgz",
"integrity": "sha512-aAcXm5OAfE/8IXkcZvCepKU3VzW1/39Fb5ZuqMtgI/hT8X2YgoMvBY5dLhq/cpOvw7Lk1nK/UF71aLG/ZnVYRA==",
"dev": true,
"dependencies": {
"minimist": "^1.2.5",
"neo-async": "^2.6.0",
"source-map": "^0.6.1",
"wordwrap": "^1.0.0"
},
"bin": {
"handlebars": "bin/handlebars"
},
"engines": {
"node": ">=0.4.7"
},
"optionalDependencies": {
"uglify-js": "^3.1.4"
}
},
"node_modules/has": { "node_modules/has": {
"version": "1.0.3", "version": "1.0.3",
"resolved": "https://registry.npmjs.org/has/-/has-1.0.3.tgz", "resolved": "https://registry.npmjs.org/has/-/has-1.0.3.tgz",
@@ -2782,6 +2811,12 @@
"json5": "lib/cli.js" "json5": "lib/cli.js"
} }
}, },
"node_modules/jsonc-parser": {
"version": "3.2.0",
"resolved": "https://registry.npmjs.org/jsonc-parser/-/jsonc-parser-3.2.0.tgz",
"integrity": "sha512-gfFQZrcTc8CnKXp6Y4/CBT3fTc0OVuDofpre4aEeEpSBPV5X5v4+Vmx+8snU7RLPrNHPKSgLxGo9YuQzz20o+w==",
"dev": true
},
"node_modules/just-extend": { "node_modules/just-extend": {
"version": "4.2.1", "version": "4.2.1",
"resolved": "https://registry.npmjs.org/just-extend/-/just-extend-4.2.1.tgz", "resolved": "https://registry.npmjs.org/just-extend/-/just-extend-4.2.1.tgz",
@@ -2870,12 +2905,30 @@
"node": ">=10" "node": ">=10"
} }
}, },
"node_modules/lunr": {
"version": "2.3.9",
"resolved": "https://registry.npmjs.org/lunr/-/lunr-2.3.9.tgz",
"integrity": "sha512-zTU3DaZaF3Rt9rhN3uBMGQD3dD2/vFQqnvZCDv4dl5iOzq2IZQqTxu90r4E5J+nP70J3ilqVCrbho2eWaeW8Ow==",
"dev": true
},
"node_modules/make-error": { "node_modules/make-error": {
"version": "1.3.6", "version": "1.3.6",
"resolved": "https://registry.npmjs.org/make-error/-/make-error-1.3.6.tgz", "resolved": "https://registry.npmjs.org/make-error/-/make-error-1.3.6.tgz",
"integrity": "sha512-s8UhlNe7vPKomQhC1qFelMokr/Sc3AgNbso3n74mVPA5LTZwkB9NlXf4XPamLxJE8h0gh73rM94xvwRT2CVInw==", "integrity": "sha512-s8UhlNe7vPKomQhC1qFelMokr/Sc3AgNbso3n74mVPA5LTZwkB9NlXf4XPamLxJE8h0gh73rM94xvwRT2CVInw==",
"dev": true "dev": true
}, },
"node_modules/marked": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/marked/-/marked-4.3.0.tgz",
"integrity": "sha512-PRsaiG84bK+AMvxziE/lCFss8juXjNaWzVbN5tXAm4XjeaS9NAHhop+PjQxz2A9h8Q4M/xGmzP8vqNwy6JeK0A==",
"dev": true,
"bin": {
"marked": "bin/marked.js"
},
"engines": {
"node": ">= 12"
}
},
"node_modules/merge2": { "node_modules/merge2": {
"version": "1.4.1", "version": "1.4.1",
"resolved": "https://registry.npmjs.org/merge2/-/merge2-1.4.1.tgz", "resolved": "https://registry.npmjs.org/merge2/-/merge2-1.4.1.tgz",
@@ -3096,6 +3149,12 @@
"integrity": "sha512-Tj+HTDSJJKaZnfiuw+iaF9skdPpTo2GtEly5JHnWV/hfv2Qj/9RKsGISQtLh2ox3l5EAGw487hnBee0sIJ6v2g==", "integrity": "sha512-Tj+HTDSJJKaZnfiuw+iaF9skdPpTo2GtEly5JHnWV/hfv2Qj/9RKsGISQtLh2ox3l5EAGw487hnBee0sIJ6v2g==",
"dev": true "dev": true
}, },
"node_modules/neo-async": {
"version": "2.6.2",
"resolved": "https://registry.npmjs.org/neo-async/-/neo-async-2.6.2.tgz",
"integrity": "sha512-Yd3UES5mWCSqR+qNT93S3UoYUkqAZ9lLg8a7g9rimsWmYGK8cVToA4/sF3RrshdyV3sAGMXVUmpMYOw+dLpOuw==",
"dev": true
},
"node_modules/nise": { "node_modules/nise": {
"version": "5.1.4", "version": "5.1.4",
"resolved": "https://registry.npmjs.org/nise/-/nise-5.1.4.tgz", "resolved": "https://registry.npmjs.org/nise/-/nise-5.1.4.tgz",
@@ -3604,6 +3663,18 @@
"node": ">=8" "node": ">=8"
} }
}, },
"node_modules/shiki": {
"version": "0.14.2",
"resolved": "https://registry.npmjs.org/shiki/-/shiki-0.14.2.tgz",
"integrity": "sha512-ltSZlSLOuSY0M0Y75KA+ieRaZ0Trf5Wl3gutE7jzLuIcWxLp5i/uEnLoQWNvgKXQ5OMpGkJnVMRLAuzjc0LJ2A==",
"dev": true,
"dependencies": {
"ansi-sequence-parser": "^1.1.0",
"jsonc-parser": "^3.2.0",
"vscode-oniguruma": "^1.7.0",
"vscode-textmate": "^8.0.0"
}
},
"node_modules/side-channel": { "node_modules/side-channel": {
"version": "1.0.4", "version": "1.0.4",
"resolved": "https://registry.npmjs.org/side-channel/-/side-channel-1.0.4.tgz", "resolved": "https://registry.npmjs.org/side-channel/-/side-channel-1.0.4.tgz",
@@ -4064,6 +4135,63 @@
"url": "https://github.com/sponsors/ljharb" "url": "https://github.com/sponsors/ljharb"
} }
}, },
"node_modules/typedoc": {
"version": "0.24.7",
"resolved": "https://registry.npmjs.org/typedoc/-/typedoc-0.24.7.tgz",
"integrity": "sha512-zzfKDFIZADA+XRIp2rMzLe9xZ6pt12yQOhCr7cD7/PBTjhPmMyMvGrkZ2lPNJitg3Hj1SeiYFNzCsSDrlpxpKw==",
"dev": true,
"dependencies": {
"lunr": "^2.3.9",
"marked": "^4.3.0",
"minimatch": "^9.0.0",
"shiki": "^0.14.1"
},
"bin": {
"typedoc": "bin/typedoc"
},
"engines": {
"node": ">= 14.14"
},
"peerDependencies": {
"typescript": "4.6.x || 4.7.x || 4.8.x || 4.9.x || 5.0.x"
}
},
"node_modules/typedoc-plugin-markdown": {
"version": "3.15.3",
"resolved": "https://registry.npmjs.org/typedoc-plugin-markdown/-/typedoc-plugin-markdown-3.15.3.tgz",
"integrity": "sha512-idntFYu3vfaY3eaD+w9DeRd0PmNGqGuNLKihPU9poxFGnATJYGn9dPtEhn2QrTdishFMg7jPXAhos+2T6YCWRQ==",
"dev": true,
"dependencies": {
"handlebars": "^4.7.7"
},
"peerDependencies": {
"typedoc": ">=0.24.0"
}
},
"node_modules/typedoc/node_modules/brace-expansion": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.1.tgz",
"integrity": "sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA==",
"dev": true,
"dependencies": {
"balanced-match": "^1.0.0"
}
},
"node_modules/typedoc/node_modules/minimatch": {
"version": "9.0.1",
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.1.tgz",
"integrity": "sha512-0jWhJpD/MdhPXwPuiRkCbfYfSKp2qnn2eOc279qI7f+osl/l+prKSrvhg157zSYvx/1nmgn2NqdT6k2Z7zSH9w==",
"dev": true,
"dependencies": {
"brace-expansion": "^2.0.1"
},
"engines": {
"node": ">=16 || 14 >=14.17"
},
"funding": {
"url": "https://github.com/sponsors/isaacs"
}
},
"node_modules/typescript": { "node_modules/typescript": {
"version": "5.0.4", "version": "5.0.4",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.0.4.tgz", "resolved": "https://registry.npmjs.org/typescript/-/typescript-5.0.4.tgz",
@@ -4085,6 +4213,19 @@
"node": ">=8" "node": ">=8"
} }
}, },
"node_modules/uglify-js": {
"version": "3.17.4",
"resolved": "https://registry.npmjs.org/uglify-js/-/uglify-js-3.17.4.tgz",
"integrity": "sha512-T9q82TJI9e/C1TAxYvfb16xO120tMVFZrGA3f9/P4424DNu6ypK103y0GPFVa17yotwSyZW5iYXgjYHkGrJW/g==",
"dev": true,
"optional": true,
"bin": {
"uglifyjs": "bin/uglifyjs"
},
"engines": {
"node": ">=0.8.0"
}
},
"node_modules/unbox-primitive": { "node_modules/unbox-primitive": {
"version": "1.0.2", "version": "1.0.2",
"resolved": "https://registry.npmjs.org/unbox-primitive/-/unbox-primitive-1.0.2.tgz", "resolved": "https://registry.npmjs.org/unbox-primitive/-/unbox-primitive-1.0.2.tgz",
@@ -4115,6 +4256,18 @@
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==", "integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true "dev": true
}, },
"node_modules/vscode-oniguruma": {
"version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",
"integrity": "sha512-L9WMGRfrjOhgHSdOYgCt/yRMsXzLDJSL7BPrOZt73gU0iWO4mpqzqQzOz5srxqTvMBaR0XZTSrVWo4j55Rc6cA==",
"dev": true
},
"node_modules/vscode-textmate": {
"version": "8.0.0",
"resolved": "https://registry.npmjs.org/vscode-textmate/-/vscode-textmate-8.0.0.tgz",
"integrity": "sha512-AFbieoL7a5LMqcnOF04ji+rpXadgOXnZsxQr//r83kLPr7biP7am3g9zbaZIaBGwBRWeSvoMD4mgPdX3e4NWBg==",
"dev": true
},
"node_modules/which": { "node_modules/which": {
"version": "2.0.2", "version": "2.0.2",
"resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz", "resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz",
@@ -4175,6 +4328,12 @@
"node": ">=0.10.0" "node": ">=0.10.0"
} }
}, },
"node_modules/wordwrap": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/wordwrap/-/wordwrap-1.0.0.tgz",
"integrity": "sha512-gvVzJFlPycKc5dZN4yPkP8w7Dc37BtP1yczEneOb4uq34pXZcvrtRTmWV8W+Ume+XCxKgbjM+nevkyFPMybd4Q==",
"dev": true
},
"node_modules/wordwrapjs": { "node_modules/wordwrapjs": {
"version": "4.0.1", "version": "4.0.1",
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz", "resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz",
@@ -4767,6 +4926,12 @@
"integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==", "integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==",
"dev": true "dev": true
}, },
"ansi-sequence-parser": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/ansi-sequence-parser/-/ansi-sequence-parser-1.1.0.tgz",
"integrity": "sha512-lEm8mt52to2fT8GhciPCGeCXACSz2UwIN4X2e2LJSnZ5uAbn2/dsYdOmUXq0AtWS5cpAupysIneExOgH0Vd2TQ==",
"dev": true
},
"ansi-styles": { "ansi-styles": {
"version": "4.3.0", "version": "4.3.0",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
@@ -5983,6 +6148,19 @@
"integrity": "sha512-bzh50DW9kTPM00T8y4o8vQg89Di9oLJVLW/KaOGIXJWP/iqCN6WKYkbNOF04vFLJhwcpYUh9ydh/+5vpOqV4YQ==", "integrity": "sha512-bzh50DW9kTPM00T8y4o8vQg89Di9oLJVLW/KaOGIXJWP/iqCN6WKYkbNOF04vFLJhwcpYUh9ydh/+5vpOqV4YQ==",
"dev": true "dev": true
}, },
"handlebars": {
"version": "4.7.7",
"resolved": "https://registry.npmjs.org/handlebars/-/handlebars-4.7.7.tgz",
"integrity": "sha512-aAcXm5OAfE/8IXkcZvCepKU3VzW1/39Fb5ZuqMtgI/hT8X2YgoMvBY5dLhq/cpOvw7Lk1nK/UF71aLG/ZnVYRA==",
"dev": true,
"requires": {
"minimist": "^1.2.5",
"neo-async": "^2.6.0",
"source-map": "^0.6.1",
"uglify-js": "^3.1.4",
"wordwrap": "^1.0.0"
}
},
"has": { "has": {
"version": "1.0.3", "version": "1.0.3",
"resolved": "https://registry.npmjs.org/has/-/has-1.0.3.tgz", "resolved": "https://registry.npmjs.org/has/-/has-1.0.3.tgz",
@@ -6324,6 +6502,12 @@
"minimist": "^1.2.0" "minimist": "^1.2.0"
} }
}, },
"jsonc-parser": {
"version": "3.2.0",
"resolved": "https://registry.npmjs.org/jsonc-parser/-/jsonc-parser-3.2.0.tgz",
"integrity": "sha512-gfFQZrcTc8CnKXp6Y4/CBT3fTc0OVuDofpre4aEeEpSBPV5X5v4+Vmx+8snU7RLPrNHPKSgLxGo9YuQzz20o+w==",
"dev": true
},
"just-extend": { "just-extend": {
"version": "4.2.1", "version": "4.2.1",
"resolved": "https://registry.npmjs.org/just-extend/-/just-extend-4.2.1.tgz", "resolved": "https://registry.npmjs.org/just-extend/-/just-extend-4.2.1.tgz",
@@ -6394,12 +6578,24 @@
"yallist": "^4.0.0" "yallist": "^4.0.0"
} }
}, },
"lunr": {
"version": "2.3.9",
"resolved": "https://registry.npmjs.org/lunr/-/lunr-2.3.9.tgz",
"integrity": "sha512-zTU3DaZaF3Rt9rhN3uBMGQD3dD2/vFQqnvZCDv4dl5iOzq2IZQqTxu90r4E5J+nP70J3ilqVCrbho2eWaeW8Ow==",
"dev": true
},
"make-error": { "make-error": {
"version": "1.3.6", "version": "1.3.6",
"resolved": "https://registry.npmjs.org/make-error/-/make-error-1.3.6.tgz", "resolved": "https://registry.npmjs.org/make-error/-/make-error-1.3.6.tgz",
"integrity": "sha512-s8UhlNe7vPKomQhC1qFelMokr/Sc3AgNbso3n74mVPA5LTZwkB9NlXf4XPamLxJE8h0gh73rM94xvwRT2CVInw==", "integrity": "sha512-s8UhlNe7vPKomQhC1qFelMokr/Sc3AgNbso3n74mVPA5LTZwkB9NlXf4XPamLxJE8h0gh73rM94xvwRT2CVInw==",
"dev": true "dev": true
}, },
"marked": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/marked/-/marked-4.3.0.tgz",
"integrity": "sha512-PRsaiG84bK+AMvxziE/lCFss8juXjNaWzVbN5tXAm4XjeaS9NAHhop+PjQxz2A9h8Q4M/xGmzP8vqNwy6JeK0A==",
"dev": true
},
"merge2": { "merge2": {
"version": "1.4.1", "version": "1.4.1",
"resolved": "https://registry.npmjs.org/merge2/-/merge2-1.4.1.tgz", "resolved": "https://registry.npmjs.org/merge2/-/merge2-1.4.1.tgz",
@@ -6564,6 +6760,12 @@
"integrity": "sha512-Tj+HTDSJJKaZnfiuw+iaF9skdPpTo2GtEly5JHnWV/hfv2Qj/9RKsGISQtLh2ox3l5EAGw487hnBee0sIJ6v2g==", "integrity": "sha512-Tj+HTDSJJKaZnfiuw+iaF9skdPpTo2GtEly5JHnWV/hfv2Qj/9RKsGISQtLh2ox3l5EAGw487hnBee0sIJ6v2g==",
"dev": true "dev": true
}, },
"neo-async": {
"version": "2.6.2",
"resolved": "https://registry.npmjs.org/neo-async/-/neo-async-2.6.2.tgz",
"integrity": "sha512-Yd3UES5mWCSqR+qNT93S3UoYUkqAZ9lLg8a7g9rimsWmYGK8cVToA4/sF3RrshdyV3sAGMXVUmpMYOw+dLpOuw==",
"dev": true
},
"nise": { "nise": {
"version": "5.1.4", "version": "5.1.4",
"resolved": "https://registry.npmjs.org/nise/-/nise-5.1.4.tgz", "resolved": "https://registry.npmjs.org/nise/-/nise-5.1.4.tgz",
@@ -6908,6 +7110,18 @@
"integrity": "sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A==", "integrity": "sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A==",
"dev": true "dev": true
}, },
"shiki": {
"version": "0.14.2",
"resolved": "https://registry.npmjs.org/shiki/-/shiki-0.14.2.tgz",
"integrity": "sha512-ltSZlSLOuSY0M0Y75KA+ieRaZ0Trf5Wl3gutE7jzLuIcWxLp5i/uEnLoQWNvgKXQ5OMpGkJnVMRLAuzjc0LJ2A==",
"dev": true,
"requires": {
"ansi-sequence-parser": "^1.1.0",
"jsonc-parser": "^3.2.0",
"vscode-oniguruma": "^1.7.0",
"vscode-textmate": "^8.0.0"
}
},
"side-channel": { "side-channel": {
"version": "1.0.4", "version": "1.0.4",
"resolved": "https://registry.npmjs.org/side-channel/-/side-channel-1.0.4.tgz", "resolved": "https://registry.npmjs.org/side-channel/-/side-channel-1.0.4.tgz",
@@ -7236,6 +7450,47 @@
"is-typed-array": "^1.1.9" "is-typed-array": "^1.1.9"
} }
}, },
"typedoc": {
"version": "0.24.7",
"resolved": "https://registry.npmjs.org/typedoc/-/typedoc-0.24.7.tgz",
"integrity": "sha512-zzfKDFIZADA+XRIp2rMzLe9xZ6pt12yQOhCr7cD7/PBTjhPmMyMvGrkZ2lPNJitg3Hj1SeiYFNzCsSDrlpxpKw==",
"dev": true,
"requires": {
"lunr": "^2.3.9",
"marked": "^4.3.0",
"minimatch": "^9.0.0",
"shiki": "^0.14.1"
},
"dependencies": {
"brace-expansion": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.1.tgz",
"integrity": "sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA==",
"dev": true,
"requires": {
"balanced-match": "^1.0.0"
}
},
"minimatch": {
"version": "9.0.1",
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.1.tgz",
"integrity": "sha512-0jWhJpD/MdhPXwPuiRkCbfYfSKp2qnn2eOc279qI7f+osl/l+prKSrvhg157zSYvx/1nmgn2NqdT6k2Z7zSH9w==",
"dev": true,
"requires": {
"brace-expansion": "^2.0.1"
}
}
}
},
"typedoc-plugin-markdown": {
"version": "3.15.3",
"resolved": "https://registry.npmjs.org/typedoc-plugin-markdown/-/typedoc-plugin-markdown-3.15.3.tgz",
"integrity": "sha512-idntFYu3vfaY3eaD+w9DeRd0PmNGqGuNLKihPU9poxFGnATJYGn9dPtEhn2QrTdishFMg7jPXAhos+2T6YCWRQ==",
"dev": true,
"requires": {
"handlebars": "^4.7.7"
}
},
"typescript": { "typescript": {
"version": "5.0.4", "version": "5.0.4",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.0.4.tgz", "resolved": "https://registry.npmjs.org/typescript/-/typescript-5.0.4.tgz",
@@ -7247,6 +7502,13 @@
"resolved": "https://registry.npmjs.org/typical/-/typical-4.0.0.tgz", "resolved": "https://registry.npmjs.org/typical/-/typical-4.0.0.tgz",
"integrity": "sha512-VAH4IvQ7BDFYglMd7BPRDfLgxZZX4O4TFcRDA6EN5X7erNJJq+McIEp8np9aVtxrCJ6qx4GTYVfOWNjcqwZgRw==" "integrity": "sha512-VAH4IvQ7BDFYglMd7BPRDfLgxZZX4O4TFcRDA6EN5X7erNJJq+McIEp8np9aVtxrCJ6qx4GTYVfOWNjcqwZgRw=="
}, },
"uglify-js": {
"version": "3.17.4",
"resolved": "https://registry.npmjs.org/uglify-js/-/uglify-js-3.17.4.tgz",
"integrity": "sha512-T9q82TJI9e/C1TAxYvfb16xO120tMVFZrGA3f9/P4424DNu6ypK103y0GPFVa17yotwSyZW5iYXgjYHkGrJW/g==",
"dev": true,
"optional": true
},
"unbox-primitive": { "unbox-primitive": {
"version": "1.0.2", "version": "1.0.2",
"resolved": "https://registry.npmjs.org/unbox-primitive/-/unbox-primitive-1.0.2.tgz", "resolved": "https://registry.npmjs.org/unbox-primitive/-/unbox-primitive-1.0.2.tgz",
@@ -7274,6 +7536,18 @@
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==", "integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true "dev": true
}, },
"vscode-oniguruma": {
"version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",
"integrity": "sha512-L9WMGRfrjOhgHSdOYgCt/yRMsXzLDJSL7BPrOZt73gU0iWO4mpqzqQzOz5srxqTvMBaR0XZTSrVWo4j55Rc6cA==",
"dev": true
},
"vscode-textmate": {
"version": "8.0.0",
"resolved": "https://registry.npmjs.org/vscode-textmate/-/vscode-textmate-8.0.0.tgz",
"integrity": "sha512-AFbieoL7a5LMqcnOF04ji+rpXadgOXnZsxQr//r83kLPr7biP7am3g9zbaZIaBGwBRWeSvoMD4mgPdX3e4NWBg==",
"dev": true
},
"which": { "which": {
"version": "2.0.2", "version": "2.0.2",
"resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz", "resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz",
@@ -7316,6 +7590,12 @@
"integrity": "sha512-Hz/mrNwitNRh/HUAtM/VT/5VH+ygD6DV7mYKZAtHOrbs8U7lvPS6xf7EJKMF0uW1KJCl0H701g3ZGus+muE5vQ==", "integrity": "sha512-Hz/mrNwitNRh/HUAtM/VT/5VH+ygD6DV7mYKZAtHOrbs8U7lvPS6xf7EJKMF0uW1KJCl0H701g3ZGus+muE5vQ==",
"dev": true "dev": true
}, },
"wordwrap": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/wordwrap/-/wordwrap-1.0.0.tgz",
"integrity": "sha512-gvVzJFlPycKc5dZN4yPkP8w7Dc37BtP1yczEneOb4uq34pXZcvrtRTmWV8W+Ume+XCxKgbjM+nevkyFPMybd4Q==",
"dev": true
},
"wordwrapjs": { "wordwrapjs": {
"version": "4.0.1", "version": "4.0.1",
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz", "resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz",

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.1.3", "version": "0.1.5",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
@@ -9,7 +9,8 @@
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json-render-diagnostics", "build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json-render-diagnostics",
"build-release": "npm run build -- --release", "build-release": "npm run build -- --release",
"test": "mocha -recursive dist/test", "test": "mocha -recursive dist/test",
"lint": "eslint src --ext .js,.ts" "lint": "eslint src --ext .js,.ts",
"clean": "rm -rf node_modules *.node dist/"
}, },
"repository": { "repository": {
"type": "git", "type": "git",
@@ -38,11 +39,13 @@
"eslint-plugin-n": "^15.7.0", "eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1", "eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0", "mocha": "^10.2.0",
"sinon": "^15.1.0",
"openai": "^3.2.1", "openai": "^3.2.1",
"sinon": "^15.1.0",
"temp": "^0.9.4", "temp": "^0.9.4",
"ts-node": "^10.9.1", "ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0", "ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*" "typescript": "*"
}, },
"dependencies": { "dependencies": {

View File

@@ -168,9 +168,16 @@ export class Table<T = number[]> {
* *
* @param indexParams The parameters of this Index, @see VectorIndexParams. * @param indexParams The parameters of this Index, @see VectorIndexParams.
*/ */
async create_index (indexParams: VectorIndexParams): Promise<any> { async createIndex (indexParams: VectorIndexParams): Promise<any> {
return tableCreateVectorIndex.call(this._tbl, indexParams) return tableCreateVectorIndex.call(this._tbl, indexParams)
} }
/**
* @deprecated Use [Table.createIndex]
*/
async create_index (indexParams: VectorIndexParams): Promise<any> {
return await this.createIndex(indexParams)
}
} }
interface IvfPQIndexConfig { interface IvfPQIndexConfig {
@@ -233,7 +240,7 @@ export class Query<T = number[]> {
private _limit: number private _limit: number
private _refineFactor?: number private _refineFactor?: number
private _nprobes: number private _nprobes: number
private readonly _columns?: string[] private _select?: string[]
private _filter?: string private _filter?: string
private _metricType?: MetricType private _metricType?: MetricType
private readonly _embeddings?: EmbeddingFunction<T> private readonly _embeddings?: EmbeddingFunction<T>
@@ -244,7 +251,7 @@ export class Query<T = number[]> {
this._limit = 10 this._limit = 10
this._nprobes = 20 this._nprobes = 20
this._refineFactor = undefined this._refineFactor = undefined
this._columns = undefined this._select = undefined
this._filter = undefined this._filter = undefined
this._metricType = undefined this._metricType = undefined
this._embeddings = embeddings this._embeddings = embeddings
@@ -286,6 +293,15 @@ export class Query<T = number[]> {
return this return this
} }
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.
*/
select (value: string[]): Query<T> {
this._select = value
return this
}
/** /**
* The MetricType used for this Query. * The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options * @param value The metric to the. @see MetricType for the different options

View File

@@ -72,6 +72,22 @@ describe('LanceDB client', function () {
assert.equal(results.length, 1) assert.equal(results.length, 1)
assert.equal(results[0].id, 2) assert.equal(results[0].id, 2)
}) })
it('select only a subset of columns', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
assert.equal(results.length, 2)
// vector and score are always returned
assert.isDefined(results[0].vector)
assert.isDefined(results[0].score)
assert.isDefined(results[0].is_active)
assert.isUndefined(results[0].id)
assert.isUndefined(results[0].name)
assert.isUndefined(results[0].price)
})
}) })
describe('when creating a new dataset', function () { describe('when creating a new dataset', function () {
@@ -137,7 +153,7 @@ describe('LanceDB client', function () {
const uri = await createTestDB(32, 300) const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
const table = await con.openTable('vectors') const table = await con.openTable('vectors')
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 }) await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 })
}).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow }).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow
}) })
@@ -181,11 +197,13 @@ describe('Query object', function () {
.limit(1) .limit(1)
.metricType(MetricType.Cosine) .metricType(MetricType.Cosine)
.refineFactor(100) .refineFactor(100)
.select(['a', 'b'])
.nprobes(20) as Record<string, any> .nprobes(20) as Record<string, any>
assert.equal(query._limit, 1) assert.equal(query._limit, 1)
assert.equal(query._metricType, MetricType.Cosine) assert.equal(query._metricType, MetricType.Cosine)
assert.equal(query._refineFactor, 100) assert.equal(query._refineFactor, 100)
assert.equal(query._nprobes, 20) assert.equal(query._nprobes, 20)
assert.deepEqual(query._select, ['a', 'b'])
}) })
}) })

8
python/.bumpversion.cfg Normal file
View File

@@ -0,0 +1,8 @@
[bumpversion]
current_version = 0.1.8
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True
tag_name = python-v{new_version}
[bumpversion:file:pyproject.toml]

View File

@@ -22,8 +22,21 @@ def connect(uri: URI) -> LanceDBConnection:
uri: str or Path uri: str or Path
The uri of the database. The uri of the database.
Examples
--------
For a local directory, provide a path for the database:
>>> import lancedb
>>> db = lancedb.connect("~/.lancedb")
For object storage, use a URI prefix:
>>> db = lancedb.connect("s3://my-bucket/lancedb")
Returns Returns
------- -------
A connection to a LanceDB database. conn : LanceDBConnection
A connection to a LanceDB database.
""" """
return LanceDBConnection(uri) return LanceDBConnection(uri)

View File

@@ -0,0 +1,18 @@
import builtins
import os
import pytest
# import lancedb so we don't have to in every example
import lancedb
@pytest.fixture(autouse=True)
def doctest_setup(monkeypatch, tmpdir):
# disable color for doctests so we don't have to include
# escape codes in docstrings
monkeypatch.setitem(os.environ, "NO_COLOR", "1")
# Explicitly set the column width
monkeypatch.setitem(os.environ, "COLUMNS", "80")
# Work in a temporary directory
monkeypatch.chdir(tmpdir)

View File

@@ -13,16 +13,80 @@
from __future__ import annotations from __future__ import annotations
import pandas as pd import pandas as pd
from .exceptions import MissingValueError, MissingColumnError
def contextualize(raw_df: pd.DataFrame) -> Contextualizer: def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
"""Create a Contextualizer object for the given DataFrame. """Create a Contextualizer object for the given DataFrame.
Used to create context windows.
Used to create context windows. Context windows are rolling subsets of text
data.
The input text column should already be separated into rows that will be the
unit of the window. So to create a context window over tokens, start with
a DataFrame with one token per row. To create a context window over sentences,
start with a DataFrame with one sentence per row.
Examples
--------
>>> from lancedb.context import contextualize
>>> import pandas as pd
>>> data = pd.DataFrame({
... 'token': ['The', 'quick', 'brown', 'fox', 'jumped', 'over',
... 'the', 'lazy', 'dog', 'I', 'love', 'sandwiches'],
... 'document_id': [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2]
... })
``window`` determines how many rows to include in each window. In our case
this how many tokens, but depending on the input data, it could be sentences,
paragraphs, messages, etc.
>>> contextualize(data).window(3).stride(1).text_col('token').to_df()
token document_id
0 The quick brown 1
1 quick brown fox 1
2 brown fox jumped 1
3 fox jumped over 1
4 jumped over the 1
5 over the lazy 1
6 the lazy dog 1
7 lazy dog I 1
8 dog I love 1
>>> contextualize(data).window(7).stride(1).text_col('token').to_df()
token document_id
0 The quick brown fox jumped over the 1
1 quick brown fox jumped over the lazy 1
2 brown fox jumped over the lazy dog 1
3 fox jumped over the lazy dog I 1
4 jumped over the lazy dog I love 1
``stride`` determines how many rows to skip between each window start. This can
be used to reduce the total number of windows generated.
>>> contextualize(data).window(4).stride(2).text_col('token').to_df()
token document_id
0 The quick brown fox 1
2 brown fox jumped over 1
4 jumped over the lazy 1
6 the lazy dog I 1
``groupby`` determines how to group the rows. For example, we would like to have
context windows that don't cross document boundaries. In this case, we can
pass ``document_id`` as the group by.
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_df()
token document_id
0 The quick brown fox 1
2 brown fox jumped over 1
4 jumped over the lazy 1
""" """
return Contextualizer(raw_df) return Contextualizer(raw_df)
class Contextualizer: class Contextualizer:
"""Create context windows from a DataFrame. See [lancedb.context.contextualize][]."""
def __init__(self, raw_df): def __init__(self, raw_df):
self._text_col = None self._text_col = None
self._groupby = None self._groupby = None
@@ -78,6 +142,21 @@ class Contextualizer:
def to_df(self) -> pd.DataFrame: def to_df(self) -> pd.DataFrame:
"""Create the context windows and return a DataFrame.""" """Create the context windows and return a DataFrame."""
if self._text_col not in self._raw_df.columns.tolist():
raise MissingColumnError(self._text_col)
if self._window is None or self._window < 1:
raise MissingValueError(
"The value of window is None or less than 1. Specify the "
"window size (number of rows to include in each window)"
)
if self._stride is None or self._stride < 1:
raise MissingValueError(
"The value of stride is None or less than 1. Specify the "
"stride (number of rows to skip between each window)"
)
def process_group(grp): def process_group(grp):
# For each group, create the text rolling window # For each group, create the text rolling window
text = grp[self._text_col].values text = grp[self._text_col].values

View File

@@ -28,6 +28,31 @@ from .util import get_uri_scheme, get_uri_location
class LanceDBConnection: class LanceDBConnection:
""" """
A connection to a LanceDB database. A connection to a LanceDB database.
Parameters
----------
uri: str or Path
The root uri of the database.
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4}])
LanceTable(my_table)
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
LanceTable(another_table)
>>> db.table_names()
['another_table', 'my_table']
>>> len(db)
2
>>> db["my_table"]
LanceTable(my_table)
>>> "my_table" in db
True
>>> db.drop_table("my_table")
>>> db.drop_table("another_table")
""" """
def __init__(self, uri: URI): def __init__(self, uri: URI):
@@ -48,21 +73,26 @@ class LanceDBConnection:
Returns Returns
------- -------
A list of table names. list of str
A list of table names.
""" """
try: try:
filesystem, path = fs.FileSystem.from_uri(self.uri) filesystem, path = fs.FileSystem.from_uri(self.uri)
except pa.ArrowInvalid: except pa.ArrowInvalid:
raise NotImplementedError( raise NotImplementedError("Unsupported scheme: " + self.uri)
"Unsupported scheme: " + self.uri
)
try: try:
paths = filesystem.get_file_info(fs.FileSelector(get_uri_location(self.uri))) paths = filesystem.get_file_info(
fs.FileSelector(get_uri_location(self.uri))
)
except FileNotFoundError: except FileNotFoundError:
# It is ok if the file does not exist since it will be created # It is ok if the file does not exist since it will be created
paths = [] paths = []
tables = [os.path.splitext(file_info.base_name)[0] for file_info in paths if file_info.extension == 'lance'] tables = [
os.path.splitext(file_info.base_name)[0]
for file_info in paths
if file_info.extension == "lance"
]
return tables return tables
def __len__(self) -> int: def __len__(self) -> int:
@@ -103,7 +133,73 @@ class LanceDBConnection:
Returns Returns
------- -------
A LanceTable object representing the table. LanceTable
A reference to the newly created table.
Examples
--------
Can create with list of tuples or dictionaries:
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data)
LanceTable(my_table)
>>> db["my_table"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
lat: double
long: double
----
vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]]
long: [[-122.7,-74.1]]
You can also pass a pandas DataFrame:
>>> import pandas as pd
>>> data = pd.DataFrame({
... "vector": [[1.1, 1.2], [0.2, 1.8]],
... "lat": [45.5, 40.1],
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data)
LanceTable(table2)
>>> db["table2"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
lat: double
long: double
----
vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]]
long: [[-122.7,-74.1]]
Data is converted to Arrow before being written to disk. For maximum
control over how data is saved, either provide the PyArrow schema to
convert to or else provide a PyArrow table directly.
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema)
LanceTable(table3)
>>> db["table3"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
lat: float
long: float
----
vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]]
long: [[-122.7,-74.1]]
""" """
if data is not None: if data is not None:
tbl = LanceTable.create(self, name, data, schema, mode=mode) tbl = LanceTable.create(self, name, data, schema, mode=mode)

View File

@@ -29,7 +29,31 @@ def with_embeddings(
wrap_api: bool = True, wrap_api: bool = True,
show_progress: bool = False, show_progress: bool = False,
batch_size: int = 1000, batch_size: int = 1000,
): ) -> pa.Table:
"""Add a vector column to a table using the given embedding function.
The new columns will be called "vector".
Parameters
----------
func : Callable
A function that takes a list of strings and returns a list of vectors.
data : pa.Table or pd.DataFrame
The data to add an embedding column to.
column : str, default "text"
The name of the column to use as input to the embedding function.
wrap_api : bool, default True
Whether to wrap the embedding function in a retry and rate limiter.
show_progress : bool, default False
Whether to show a progress bar.
batch_size : int, default 1000
The number of row values to pass to each call of the embedding function.
Returns
-------
pa.Table
The input table with a new column called "vector" containing the embeddings.
"""
func = EmbeddingFunction(func) func = EmbeddingFunction(func)
if wrap_api: if wrap_api:
func = func.retry().rate_limit() func = func.retry().rate_limit()

View File

@@ -0,0 +1,22 @@
"""Custom exception handling"""
class MissingValueError(ValueError):
"""Exception raised when a required value is missing."""
pass
class MissingColumnError(KeyError):
"""
Exception raised when a column name specified is not in
the DataFrame object
"""
def __init__(self, column_name):
self.column_name = column_name
def __str__(self):
return (
f"Error: Column '{self.column_name}' does not exist in the DataFrame object"
)

View File

@@ -68,6 +68,11 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
The table to index The table to index
fields : List[str] fields : List[str]
List of fields to index List of fields to index
Returns
-------
int
The number of rows indexed
""" """
# first check the fields exist and are string or large string type # first check the fields exist and are string or large string type
for name in fields: for name in fields:
@@ -118,6 +123,8 @@ def search_index(
query = index.parse_query(query) query = index.parse_query(query)
# get top results # get top results
results = searcher.search(query, limit) results = searcher.search(query, limit)
if results.count == 0:
return tuple(), tuple()
return tuple( return tuple(
zip( zip(
*[ *[

View File

@@ -11,6 +11,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import annotations from __future__ import annotations
from typing import Literal
import numpy as np import numpy as np
import pandas as pd import pandas as pd
@@ -22,6 +23,24 @@ from .common import VECTOR_COLUMN_NAME
class LanceQueryBuilder: class LanceQueryBuilder:
""" """
A builder for nearest neighbor queries for LanceDB. A builder for nearest neighbor queries for LanceDB.
Examples
--------
>>> import lancedb
>>> data = [{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4},
... {"vector": [0.4, 0.4], "b": 6},
... {"vector": [0.4, 0.4], "b": 10}]
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data=data)
>>> (table.search([0.4, 0.4])
... .metric("cosine")
... .where("b < 10")
... .select(["b"])
... .limit(2)
... .to_df())
b vector score
0 6 [0.4, 0.4] 0.0
""" """
def __init__(self, table: "lancedb.table.LanceTable", query: np.ndarray): def __init__(self, table: "lancedb.table.LanceTable", query: np.ndarray):
@@ -44,7 +63,8 @@ class LanceQueryBuilder:
Returns Returns
------- -------
The LanceQueryBuilder object. LanceQueryBuilder
The LanceQueryBuilder object.
""" """
self._limit = limit self._limit = limit
return self return self
@@ -59,7 +79,8 @@ class LanceQueryBuilder:
Returns Returns
------- -------
The LanceQueryBuilder object. LanceQueryBuilder
The LanceQueryBuilder object.
""" """
self._columns = columns self._columns = columns
return self return self
@@ -74,22 +95,24 @@ class LanceQueryBuilder:
Returns Returns
------- -------
The LanceQueryBuilder object. LanceQueryBuilder
The LanceQueryBuilder object.
""" """
self._where = where self._where = where
return self return self
def metric(self, metric: str) -> LanceQueryBuilder: def metric(self, metric: Literal["L2", "cosine"]) -> LanceQueryBuilder:
"""Set the distance metric to use. """Set the distance metric to use.
Parameters Parameters
---------- ----------
metric: str metric: "L2" or "cosine"
The distance metric to use. By default "l2" is used. The distance metric to use. By default "L2" is used.
Returns Returns
------- -------
The LanceQueryBuilder object. LanceQueryBuilder
The LanceQueryBuilder object.
""" """
self._metric = metric self._metric = metric
return self return self
@@ -97,6 +120,12 @@ class LanceQueryBuilder:
def nprobes(self, nprobes: int) -> LanceQueryBuilder: def nprobes(self, nprobes: int) -> LanceQueryBuilder:
"""Set the number of probes to use. """Set the number of probes to use.
Higher values will yield better recall (more likely to find vectors if
they exist) at the expense of latency.
See discussion in [Querying an ANN Index][../querying-an-ann-index] for
tuning advice.
Parameters Parameters
---------- ----------
nprobes: int nprobes: int
@@ -104,13 +133,20 @@ class LanceQueryBuilder:
Returns Returns
------- -------
The LanceQueryBuilder object. LanceQueryBuilder
The LanceQueryBuilder object.
""" """
self._nprobes = nprobes self._nprobes = nprobes
return self return self
def refine_factor(self, refine_factor: int) -> LanceQueryBuilder: def refine_factor(self, refine_factor: int) -> LanceQueryBuilder:
"""Set the refine factor to use. """Set the refine factor to use, increasing the number of vectors sampled.
As an example, a refine factor of 2 will sample 2x as many vectors as
requested, re-ranks them, and returns the top half most relevant results.
See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice.
Parameters Parameters
---------- ----------
@@ -119,7 +155,8 @@ class LanceQueryBuilder:
Returns Returns
------- -------
The LanceQueryBuilder object. LanceQueryBuilder
The LanceQueryBuilder object.
""" """
self._refine_factor = refine_factor self._refine_factor = refine_factor
return self return self
@@ -164,6 +201,8 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
index = tantivy.Index.open(index_path) index = tantivy.Index.open(index_path)
# get the scores and doc ids # get the scores and doc ids
row_ids, scores = search_index(index, self._query, self._limit) row_ids, scores = search_index(index, self._query, self._limit)
if len(row_ids) == 0:
return pd.DataFrame()
scores = pa.array(scores) scores = pa.array(scores)
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns) output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
output_tbl = output_tbl.append_column("score", scores) output_tbl = output_tbl.append_column("score", scores)

View File

@@ -47,6 +47,40 @@ def _sanitize_data(data, schema):
class LanceTable: class LanceTable:
""" """
A table in a LanceDB database. A table in a LanceDB database.
Examples
--------
Create using [LanceDBConnection.create_table][lancedb.LanceDBConnection.create_table]
(more examples in that method's documentation).
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2}])
>>> table.head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
b: int64
----
vector: [[[1.1,1.2]]]
b: [[2]]
Can append new data with [LanceTable.add][lancedb.table.LanceTable.add].
>>> table.add([{"vector": [0.5, 1.3], "b": 4}])
2
Can query the table with [LanceTable.search][lancedb.table.LanceTable.search].
>>> table.search([0.4, 0.4]).select(["b"]).to_df()
b vector score
0 4 [0.5, 1.3] 0.82
1 2 [1.1, 1.2] 1.13
Search queries are much faster when an index is created. See
[LanceTable.create_index][lancedb.table.LanceTable.create_index].
""" """
def __init__( def __init__(
@@ -64,7 +98,12 @@ class LanceTable:
@property @property
def schema(self) -> pa.Schema: def schema(self) -> pa.Schema:
"""Return the schema of the table.""" """Return the schema of the table.
Returns
-------
pa.Schema
A PyArrow schema object."""
return self._dataset.schema return self._dataset.schema
def list_versions(self): def list_versions(self):
@@ -72,12 +111,39 @@ class LanceTable:
return self._dataset.versions() return self._dataset.versions()
@property @property
def version(self): def version(self) -> int:
"""Get the current version of the table""" """Get the current version of the table"""
return self._dataset.version return self._dataset.version
def checkout(self, version: int): def checkout(self, version: int):
"""Checkout a version of the table""" """Checkout a version of the table. This is an in-place operation.
This allows viewing previous versions of the table.
Parameters
----------
version : int
The version to checkout.
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}])
>>> table.version
1
>>> table.to_pandas()
vector type
0 [1.1, 0.9] vector
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
2
>>> table.version
2
>>> table.checkout(1)
>>> table.to_pandas()
vector type
0 [1.1, 0.9] vector
"""
max_ver = max([v["version"] for v in self._dataset.versions()]) max_ver = max([v["version"] for v in self._dataset.versions()])
if version < 1 or version > max_ver: if version < 1 or version > max_ver:
raise ValueError(f"Invalid version {version}") raise ValueError(f"Invalid version {version}")
@@ -98,11 +164,20 @@ class LanceTable:
return self._dataset.head(n) return self._dataset.head(n)
def to_pandas(self) -> pd.DataFrame: def to_pandas(self) -> pd.DataFrame:
"""Return the table as a pandas DataFrame.""" """Return the table as a pandas DataFrame.
Returns
-------
pd.DataFrame
"""
return self.to_arrow().to_pandas() return self.to_arrow().to_pandas()
def to_arrow(self) -> pa.Table: def to_arrow(self) -> pa.Table:
"""Return the table as a pyarrow Table.""" """Return the table as a pyarrow Table.
Returns
-------
pa.Table"""
return self._dataset.to_table() return self._dataset.to_table()
@property @property
@@ -175,7 +250,8 @@ class LanceTable:
Returns Returns
------- -------
The number of vectors added to the table. int
The number of vectors in the table.
""" """
data = _sanitize_data(data, self.schema) data = _sanitize_data(data, self.schema)
lance.write_dataset(data, self._dataset_uri, mode=mode) lance.write_dataset(data, self._dataset_uri, mode=mode)
@@ -193,10 +269,11 @@ class LanceTable:
Returns Returns
------- -------
A LanceQueryBuilder object representing the query. LanceQueryBuilder
Once executed, the query returns selected columns, the vector, A query builder object representing the query.
and also the "score" column which is the distance between the query Once executed, the query returns selected columns, the vector,
vector and the returned vector. and also the "score" column which is the distance between the query
vector and the returned vector.
""" """
if isinstance(query, str): if isinstance(query, str):
# fts # fts
@@ -265,4 +342,6 @@ def _sanitize_vector_column(data: pa.Table, vector_column_name: str) -> pa.Table
values = values.cast(pa.float32()) values = values.cast(pa.float32())
list_size = len(values) / len(data) list_size = len(values) / len(data)
vec_arr = pa.FixedSizeListArray.from_arrays(values, list_size) vec_arr = pa.FixedSizeListArray.from_arrays(values, list_size)
return data.set_column(data.column_names.index(vector_column_name), vector_column_name, vec_arr) return data.set_column(
data.column_names.index(vector_column_name), vector_column_name, vec_arr
)

View File

@@ -1,7 +1,7 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.1.5" version = "0.1.8"
dependencies = ["pylance>=0.4.17", "ratelimiter", "retry", "tqdm"] dependencies = ["pylance>=0.4.20", "ratelimiter", "retry", "tqdm"]
description = "lancedb" description = "lancedb"
authors = [ authors = [
{ name = "LanceDB Devs", email = "dev@lancedb.com" }, { name = "LanceDB Devs", email = "dev@lancedb.com" },
@@ -33,11 +33,11 @@ classifiers = [
] ]
[project.urls] [project.urls]
repository = "https://github.com/eto-ai/lancedb" repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies] [project.optional-dependencies]
tests = [ tests = [
"pytest" "pytest", "pytest-mock", "doctest"
] ]
dev = [ dev = [
"ruff", "pre-commit", "black" "ruff", "pre-commit", "black"

View File

@@ -82,3 +82,10 @@ def test_create_index_multiple_columns(tmp_path, table):
assert len(df) == 10 assert len(df) == 10
assert "text" in df.columns assert "text" in df.columns
assert "text2" in df.columns assert "text2" in df.columns
def test_empty_rs(tmp_path, table, mocker):
table.create_fts_index(["text", "text2"])
mocker.patch("lancedb.fts.search_index", return_value=([], []))
df = table.search("puppy").limit(10).to_df()
assert len(df) == 0

View File

@@ -19,6 +19,7 @@ import lancedb
# You need to setup AWS credentials an a base path to run this test. Example # You need to setup AWS credentials an a base path to run this test. Example
# AWS_PROFILE=default TEST_S3_BASE_URL=s3://my_bucket/dataset pytest tests/test_io.py # AWS_PROFILE=default TEST_S3_BASE_URL=s3://my_bucket/dataset pytest tests/test_io.py
@pytest.mark.skipif( @pytest.mark.skipif(
(os.environ.get("TEST_S3_BASE_URL") is None), (os.environ.get("TEST_S3_BASE_URL") is None),
reason="please setup s3 base url", reason="please setup s3 base url",

View File

@@ -30,23 +30,17 @@ class MockTable:
@pytest.fixture @pytest.fixture
def table(tmp_path) -> MockTable: def table(tmp_path) -> MockTable:
df = pd.DataFrame( df = pa.table(
{ {
"vector": [[1, 2], [3, 4]], "vector": pa.array(
"id": [1, 2], [[1, 2], [3, 4]], type=pa.list_(pa.float32(), list_size=2)
"str_field": ["a", "b"], ),
"float_field": [1.0, 2.0], "id": pa.array([1, 2]),
"str_field": pa.array(["a", "b"]),
"float_field": pa.array([1.0, 2.0]),
} }
) )
schema = pa.schema( lance.write_dataset(df, tmp_path)
[
pa.field("vector", pa.list_(pa.float32(), list_size=2)),
pa.field("id", pa.int32()),
pa.field("str_field", pa.string()),
pa.field("float_field", pa.float64()),
]
)
lance.write_dataset(df, tmp_path, schema)
return MockTable(tmp_path) return MockTable(tmp_path)
@@ -65,7 +59,7 @@ def test_query_builder_with_filter(table):
def test_query_builder_with_metric(table): def test_query_builder_with_metric(table):
query = [4, 8] query = [4, 8]
df_default = LanceQueryBuilder(table, query).to_df() df_default = LanceQueryBuilder(table, query).to_df()
df_l2 = LanceQueryBuilder(table, query).metric("l2").to_df() df_l2 = LanceQueryBuilder(table, query).metric("L2").to_df()
tm.assert_frame_equal(df_default, df_l2) tm.assert_frame_equal(df_default, df_l2)
df_cosine = LanceQueryBuilder(table, query).metric("cosine").limit(1).to_df() df_cosine = LanceQueryBuilder(table, query).metric("cosine").limit(1).to_df()

View File

@@ -129,6 +129,17 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
let limit = query_obj let limit = query_obj
.get::<JsNumber, _, _>(&mut cx, "_limit")? .get::<JsNumber, _, _>(&mut cx, "_limit")?
.value(&mut cx); .value(&mut cx);
let select = query_obj
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
.map(|arr| {
let js_array = arr.deref();
let mut projection_vec: Vec<String> = Vec::new();
for i in 0..js_array.len(&mut cx) {
let entry: Handle<JsString> = js_array.get(&mut cx, i).unwrap();
projection_vec.push(entry.value(&mut cx));
}
projection_vec
});
let filter = query_obj let filter = query_obj
.get_opt::<JsString, _, _>(&mut cx, "_filter")? .get_opt::<JsString, _, _>(&mut cx, "_filter")?
.map(|s| s.value(&mut cx)); .map(|s| s.value(&mut cx));
@@ -161,7 +172,8 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
.refine_factor(refine_factor) .refine_factor(refine_factor)
.nprobes(nprobes) .nprobes(nprobes)
.filter(filter) .filter(filter)
.metric_type(metric_type); .metric_type(metric_type)
.select(select);
let record_batch_stream = builder.execute(); let record_batch_stream = builder.execute();
let results = record_batch_stream let results = record_batch_stream
.and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from)) .and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from))

View File

@@ -27,6 +27,7 @@ pub struct Query {
pub query_vector: Float32Array, pub query_vector: Float32Array,
pub limit: usize, pub limit: usize,
pub filter: Option<String>, pub filter: Option<String>,
pub select: Option<Vec<String>>,
pub nprobes: usize, pub nprobes: usize,
pub refine_factor: Option<u32>, pub refine_factor: Option<u32>,
pub metric_type: Option<MetricType>, pub metric_type: Option<MetricType>,
@@ -54,6 +55,7 @@ impl Query {
metric_type: None, metric_type: None,
use_index: false, use_index: false,
filter: None, filter: None,
select: None,
} }
} }
@@ -72,6 +74,9 @@ impl Query {
)?; )?;
scanner.nprobs(self.nprobes); scanner.nprobs(self.nprobes);
scanner.use_index(self.use_index); scanner.use_index(self.use_index);
self.select
.as_ref()
.map(|p| scanner.project(p.as_slice()));
self.filter.as_ref().map(|f| scanner.filter(f)); self.filter.as_ref().map(|f| scanner.filter(f));
self.refine_factor.map(|rf| scanner.refine(rf)); self.refine_factor.map(|rf| scanner.refine(rf));
self.metric_type.map(|mt| scanner.distance_metric(mt)); self.metric_type.map(|mt| scanner.distance_metric(mt));
@@ -138,10 +143,23 @@ impl Query {
self self
} }
/// A filter statement to be applied to this query.
///
/// # Arguments
///
/// * `filter` - value A filter in the same format used by a sql WHERE clause.
pub fn filter(mut self, filter: Option<String>) -> Query { pub fn filter(mut self, filter: Option<String>) -> Query {
self.filter = filter; self.filter = filter;
self self
} }
/// Return only the specified columns.
///
/// Only select the specified columns. If not specified, all columns will be returned.
pub fn select(mut self, columns: Option<Vec<String>>) -> Query {
self.select = columns;
self
}
} }
#[cfg(test)] #[cfg(test)]