mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 05:19:58 +00:00
Compare commits
8 Commits
v0.2.6
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d326146a40 | ||
|
|
693bca1eba | ||
|
|
343e274ea5 | ||
|
|
a695fb8030 | ||
|
|
bc8670d7af | ||
|
|
74004161ff | ||
|
|
34ddb1de6d | ||
|
|
1029fc9cb0 |
74
node/package-lock.json
generated
74
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.2.5",
|
||||
"version": "0.2.6",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.2.5",
|
||||
"version": "0.2.6",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -53,11 +53,11 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.2.5",
|
||||
"@lancedb/vectordb-darwin-x64": "0.2.5",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.2.5",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.2.5",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.2.5"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.2.6",
|
||||
"@lancedb/vectordb-darwin-x64": "0.2.6",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.2.6",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.2.6",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.2.6"
|
||||
}
|
||||
},
|
||||
"node_modules/@apache-arrow/ts": {
|
||||
@@ -317,9 +317,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.2.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.5.tgz",
|
||||
"integrity": "sha512-V4206SajkMN3o+bBFBAYJq5emlrjevitP0g8RFfVlmj/LS38i8k4uvSe1bICQ2amUrYkL/Jw4ktYn19NRfTU+g==",
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.6.tgz",
|
||||
"integrity": "sha512-9KCUvDmhVMuGIhleib/Gq43QhrRXjy2QJz21S85HDwL3DTH4J9n00A0V6eyLTBUyctnvMTcp3XZijosYUy1A8Q==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -329,9 +329,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.2.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.5.tgz",
|
||||
"integrity": "sha512-orePizgXCbTJbDJ4bMMnYh/4OgmWDBbHShNxHKQobcX+NgWTexmR0lV1WNOG+DtczBiGH422e3gHJ+xhTO13vg==",
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.6.tgz",
|
||||
"integrity": "sha512-WCYRFV9w13STgVYn4WSYne39mp+g8ET6TgMLvSSQBYJKp3xEggpSCtACetaDfmNpkml9DK/b5R95Jc7PBbmYgA==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -341,9 +341,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.2.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.5.tgz",
|
||||
"integrity": "sha512-xIMNwsFGOHeY9EUWCHhUAcA2sCHZ5Lim0sc42uuUOeWayyH+HeR6ZWReptDQRuAoJHqQeag9qcqteE0AZPDTEw==",
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.6.tgz",
|
||||
"integrity": "sha512-SE9OUgsOT6dG1q9v3nFr9ew+kwPTA4ktvNiHiyQstNz9BniuLNldF/Wtxzk/Z7DhbkPci4MfkR6RdsPTHBatHg==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -353,9 +353,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.2.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.5.tgz",
|
||||
"integrity": "sha512-Qr8dbHavtE+Zfd45kEORJQe01kRWhMF703gk8zhtZhskDUBCfqm3ap22JIux58tASxVcBqY8EtUFojfYGnQVvA==",
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.6.tgz",
|
||||
"integrity": "sha512-hvUsRQbaJiQnSjjKHIRhJM/eObJOqDJUXcpzz1fWw/MMSoy/CFaQwf9Uen2IWTgcngGkJAkeEKG7N5GxQxVbBQ==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -365,9 +365,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.2.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.5.tgz",
|
||||
"integrity": "sha512-jTqkR9HRfbjxhUrlTfveNkJ78tlpVXeNn3BS4wBm4VIsPd75jminKBRYtrlQCWyHusqrUQedKny4hhG1CuNUkg==",
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.6.tgz",
|
||||
"integrity": "sha512-XPIzbBPt28nsAa7INuyvYMZyJ78bgLfxjSyazlydzO10orIBHvR+sjcrdnCK4l48YmvPXcSYnKxlKMa1oUeIWQ==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -4869,33 +4869,33 @@
|
||||
}
|
||||
},
|
||||
"@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.2.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.5.tgz",
|
||||
"integrity": "sha512-V4206SajkMN3o+bBFBAYJq5emlrjevitP0g8RFfVlmj/LS38i8k4uvSe1bICQ2amUrYkL/Jw4ktYn19NRfTU+g==",
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.6.tgz",
|
||||
"integrity": "sha512-9KCUvDmhVMuGIhleib/Gq43QhrRXjy2QJz21S85HDwL3DTH4J9n00A0V6eyLTBUyctnvMTcp3XZijosYUy1A8Q==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.2.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.5.tgz",
|
||||
"integrity": "sha512-orePizgXCbTJbDJ4bMMnYh/4OgmWDBbHShNxHKQobcX+NgWTexmR0lV1WNOG+DtczBiGH422e3gHJ+xhTO13vg==",
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.6.tgz",
|
||||
"integrity": "sha512-WCYRFV9w13STgVYn4WSYne39mp+g8ET6TgMLvSSQBYJKp3xEggpSCtACetaDfmNpkml9DK/b5R95Jc7PBbmYgA==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.2.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.5.tgz",
|
||||
"integrity": "sha512-xIMNwsFGOHeY9EUWCHhUAcA2sCHZ5Lim0sc42uuUOeWayyH+HeR6ZWReptDQRuAoJHqQeag9qcqteE0AZPDTEw==",
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.6.tgz",
|
||||
"integrity": "sha512-SE9OUgsOT6dG1q9v3nFr9ew+kwPTA4ktvNiHiyQstNz9BniuLNldF/Wtxzk/Z7DhbkPci4MfkR6RdsPTHBatHg==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.2.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.5.tgz",
|
||||
"integrity": "sha512-Qr8dbHavtE+Zfd45kEORJQe01kRWhMF703gk8zhtZhskDUBCfqm3ap22JIux58tASxVcBqY8EtUFojfYGnQVvA==",
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.6.tgz",
|
||||
"integrity": "sha512-hvUsRQbaJiQnSjjKHIRhJM/eObJOqDJUXcpzz1fWw/MMSoy/CFaQwf9Uen2IWTgcngGkJAkeEKG7N5GxQxVbBQ==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.2.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.5.tgz",
|
||||
"integrity": "sha512-jTqkR9HRfbjxhUrlTfveNkJ78tlpVXeNn3BS4wBm4VIsPd75jminKBRYtrlQCWyHusqrUQedKny4hhG1CuNUkg==",
|
||||
"version": "0.2.6",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.6.tgz",
|
||||
"integrity": "sha512-XPIzbBPt28nsAa7INuyvYMZyJ78bgLfxjSyazlydzO10orIBHvR+sjcrdnCK4l48YmvPXcSYnKxlKMa1oUeIWQ==",
|
||||
"optional": true
|
||||
},
|
||||
"@neon-rs/cli": {
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.2.4
|
||||
current_version = 0.2.6
|
||||
commit = True
|
||||
message = [python] Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
@@ -26,6 +26,7 @@ import numpy as np
|
||||
import pyarrow as pa
|
||||
from cachetools import cached
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class EmbeddingFunctionRegistry:
|
||||
@@ -514,7 +515,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
|
||||
executor.submit(self.generate_image_embedding, image)
|
||||
for image in images
|
||||
]
|
||||
return [future.result() for future in futures]
|
||||
return [future.result() for future in tqdm(futures)]
|
||||
|
||||
def generate_image_embedding(
|
||||
self, image: Union[str, bytes, "PIL.Image.Image"]
|
||||
@@ -557,7 +558,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
|
||||
"""
|
||||
encode a single image tensor and optionally normalize the output
|
||||
"""
|
||||
image_features = self._model.encode_image(image_tensor)
|
||||
image_features = self._model.encode_image(image_tensor.to(self.device))
|
||||
if self.normalize:
|
||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||
return image_features.cpu().numpy().squeeze()
|
||||
|
||||
@@ -38,6 +38,9 @@ class Query(pydantic.BaseModel):
|
||||
# sql filter to refine the query with
|
||||
filter: Optional[str] = None
|
||||
|
||||
# if True then apply the filter before vector search
|
||||
prefilter: bool = False
|
||||
|
||||
# top k results to return
|
||||
k: int
|
||||
|
||||
@@ -162,7 +165,7 @@ class LanceQueryBuilder(ABC):
|
||||
for row in self.to_arrow().to_pylist()
|
||||
]
|
||||
|
||||
def limit(self, limit: int) -> LanceVectorQueryBuilder:
|
||||
def limit(self, limit: int) -> LanceQueryBuilder:
|
||||
"""Set the maximum number of results to return.
|
||||
|
||||
Parameters
|
||||
@@ -172,13 +175,13 @@ class LanceQueryBuilder(ABC):
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceVectorQueryBuilder
|
||||
LanceQueryBuilder
|
||||
The LanceQueryBuilder object.
|
||||
"""
|
||||
self._limit = limit
|
||||
return self
|
||||
|
||||
def select(self, columns: list) -> LanceVectorQueryBuilder:
|
||||
def select(self, columns: list) -> LanceQueryBuilder:
|
||||
"""Set the columns to return.
|
||||
|
||||
Parameters
|
||||
@@ -188,13 +191,13 @@ class LanceQueryBuilder(ABC):
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceVectorQueryBuilder
|
||||
LanceQueryBuilder
|
||||
The LanceQueryBuilder object.
|
||||
"""
|
||||
self._columns = columns
|
||||
return self
|
||||
|
||||
def where(self, where: str) -> LanceVectorQueryBuilder:
|
||||
def where(self, where) -> LanceQueryBuilder:
|
||||
"""Set the where clause.
|
||||
|
||||
Parameters
|
||||
@@ -204,7 +207,7 @@ class LanceQueryBuilder(ABC):
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceVectorQueryBuilder
|
||||
LanceQueryBuilder
|
||||
The LanceQueryBuilder object.
|
||||
"""
|
||||
self._where = where
|
||||
@@ -246,6 +249,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
self._nprobes = 20
|
||||
self._refine_factor = None
|
||||
self._vector_column = vector_column
|
||||
self._prefilter = False
|
||||
|
||||
def metric(self, metric: Literal["L2", "cosine"]) -> LanceVectorQueryBuilder:
|
||||
"""Set the distance metric to use.
|
||||
@@ -320,6 +324,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
query = Query(
|
||||
vector=vector,
|
||||
filter=self._where,
|
||||
prefilter=self._prefilter,
|
||||
k=self._limit,
|
||||
metric=self._metric,
|
||||
columns=self._columns,
|
||||
@@ -329,6 +334,30 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
)
|
||||
return self._table._execute_query(query)
|
||||
|
||||
def where(self, where: str, prefilter: bool = False) -> LanceVectorQueryBuilder:
|
||||
"""Set the where clause.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
where: str
|
||||
The where clause.
|
||||
prefilter: bool, default False
|
||||
If True, apply the filter before vector search, otherwise the
|
||||
filter is applied on the result of vector search.
|
||||
This feature is **EXPERIMENTAL** and may be removed and modified
|
||||
without warning in the future. Currently this is only supported
|
||||
in OSS and can only be used with a table that does not have an ANN
|
||||
index.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceQueryBuilder
|
||||
The LanceQueryBuilder object.
|
||||
"""
|
||||
self._where = where
|
||||
self._prefilter = prefilter
|
||||
return self
|
||||
|
||||
|
||||
class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
def __init__(self, table: "lancedb.table.Table", query: str):
|
||||
|
||||
@@ -14,7 +14,7 @@
|
||||
import abc
|
||||
from typing import List, Optional
|
||||
|
||||
import attr
|
||||
import attrs
|
||||
import pyarrow as pa
|
||||
from pydantic import BaseModel
|
||||
|
||||
@@ -44,7 +44,7 @@ class VectorQuery(BaseModel):
|
||||
refine_factor: Optional[int] = None
|
||||
|
||||
|
||||
@attr.define
|
||||
@attrs.define
|
||||
class VectorQueryResult:
|
||||
# for now the response is directly seralized into a pandas dataframe
|
||||
tbl: pa.Table
|
||||
|
||||
@@ -16,7 +16,7 @@ import functools
|
||||
from typing import Any, Callable, Dict, Optional, Union
|
||||
|
||||
import aiohttp
|
||||
import attr
|
||||
import attrs
|
||||
import pyarrow as pa
|
||||
from pydantic import BaseModel
|
||||
|
||||
@@ -43,14 +43,14 @@ async def _read_ipc(resp: aiohttp.ClientResponse) -> pa.Table:
|
||||
return reader.read_all()
|
||||
|
||||
|
||||
@attr.define(slots=False)
|
||||
@attrs.define(slots=False)
|
||||
class RestfulLanceDBClient:
|
||||
db_name: str
|
||||
region: str
|
||||
api_key: Credential
|
||||
host_override: Optional[str] = attr.field(default=None)
|
||||
host_override: Optional[str] = attrs.field(default=None)
|
||||
|
||||
closed: bool = attr.field(default=False, init=False)
|
||||
closed: bool = attrs.field(default=False, init=False)
|
||||
|
||||
@functools.cached_property
|
||||
def session(self) -> aiohttp.ClientSession:
|
||||
|
||||
@@ -98,6 +98,8 @@ class RemoteTable(Table):
|
||||
return LanceVectorQueryBuilder(self, query, vector_column_name)
|
||||
|
||||
def _execute_query(self, query: Query) -> pa.Table:
|
||||
if query.prefilter:
|
||||
raise NotImplementedError("Cloud support for prefiltering is coming soon")
|
||||
result = self._conn._client.query(self._name, query)
|
||||
return self._conn._loop.run_until_complete(result).to_arrow()
|
||||
|
||||
|
||||
@@ -844,9 +844,16 @@ class LanceTable(Table):
|
||||
|
||||
def _execute_query(self, query: Query) -> pa.Table:
|
||||
ds = self.to_lance()
|
||||
if query.prefilter:
|
||||
for idx in ds.list_indices():
|
||||
if query.vector_column in idx["fields"]:
|
||||
raise NotImplementedError(
|
||||
"Prefiltering for indexed vector column is coming soon."
|
||||
)
|
||||
return ds.to_table(
|
||||
columns=query.columns,
|
||||
filter=query.filter,
|
||||
prefilter=query.prefilter,
|
||||
nearest={
|
||||
"column": query.vector_column,
|
||||
"q": query.vector,
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
[project]
|
||||
name = "lancedb"
|
||||
version = "0.2.4"
|
||||
version = "0.2.6"
|
||||
dependencies = [
|
||||
"pylance==0.7.4",
|
||||
"ratelimiter",
|
||||
"retry",
|
||||
"tqdm",
|
||||
"pylance==0.8.0",
|
||||
"ratelimiter~=1.0",
|
||||
"retry>=0.9.2",
|
||||
"tqdm>=4.1.0",
|
||||
"aiohttp",
|
||||
"pydantic",
|
||||
"attr",
|
||||
"pydantic>=1.10",
|
||||
"attrs>=21.3.0",
|
||||
"semver>=3.0",
|
||||
"cachetools"
|
||||
]
|
||||
@@ -62,4 +62,4 @@ addopts = "--strict-markers"
|
||||
markers = [
|
||||
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
|
||||
"asyncio"
|
||||
]
|
||||
]
|
||||
|
||||
@@ -38,6 +38,7 @@ class MockTable:
|
||||
return ds.to_table(
|
||||
columns=query.columns,
|
||||
filter=query.filter,
|
||||
prefilter=query.prefilter,
|
||||
nearest={
|
||||
"column": query.vector_column,
|
||||
"q": query.vector,
|
||||
@@ -97,6 +98,25 @@ def test_query_builder_with_filter(table):
|
||||
assert all(df["vector"].values[0] == [3, 4])
|
||||
|
||||
|
||||
def test_query_builder_with_prefilter(table):
|
||||
df = (
|
||||
LanceVectorQueryBuilder(table, [0, 0], "vector")
|
||||
.where("id = 2")
|
||||
.limit(1)
|
||||
.to_df()
|
||||
)
|
||||
assert len(df) == 0
|
||||
|
||||
df = (
|
||||
LanceVectorQueryBuilder(table, [0, 0], "vector")
|
||||
.where("id = 2", prefilter=True)
|
||||
.limit(1)
|
||||
.to_df()
|
||||
)
|
||||
assert df["id"].values[0] == 2
|
||||
assert all(df["vector"].values[0] == [3, 4])
|
||||
|
||||
|
||||
def test_query_builder_with_metric(table):
|
||||
query = [4, 8]
|
||||
vector_column_name = "vector"
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import attr
|
||||
import attrs
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
@@ -21,10 +21,10 @@ from aiohttp import web
|
||||
from lancedb.remote.client import RestfulLanceDBClient, VectorQuery
|
||||
|
||||
|
||||
@attr.define
|
||||
@attrs.define
|
||||
class MockLanceDBServer:
|
||||
runner: web.AppRunner = attr.field(init=False)
|
||||
site: web.TCPSite = attr.field(init=False)
|
||||
runner: web.AppRunner = attrs.field(init=False)
|
||||
site: web.TCPSite = attrs.field(init=False)
|
||||
|
||||
async def query_handler(self, request: web.Request) -> web.Response:
|
||||
table_name = request.match_info["table_name"]
|
||||
|
||||
Reference in New Issue
Block a user