Compare commits

...

102 Commits

Author SHA1 Message Date
Lance Release
392777952f [python] Bump version: 0.4.1 → 0.4.2 2023-12-29 00:19:21 +00:00
Chang She
7e75e50d3a chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2023-12-28 15:05:57 -08:00
Chang She
4b8af261a3 feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2023-12-28 11:02:56 -08:00
Chang She
c8728d4ca1 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-27 09:31:04 -08:00
Aidan
446f837335 fix: createIndex index cache size (#741) 2023-12-27 09:25:13 -08:00
Chang She
8f9ad978f5 feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2023-12-27 09:10:09 -08:00
Lance Release
0df38341d5 Updating package-lock.json 2023-12-26 17:21:51 +00:00
Lance Release
60260018cf [python] Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:16 +00:00
Lance Release
bb100c5c19 Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:09 +00:00
elliottRobinson
eab9072bb5 Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2023-12-26 19:24:22 +05:30
Will Jones
ee0f0611d9 docs: update node API reference (#734)
This command hasn't been run for a while...
2023-12-22 10:14:31 -08:00
Will Jones
34966312cb docs: enhance Update user guide (#735)
Closes #705
2023-12-22 10:14:21 -08:00
Bert
756188358c docs: fix JS api docs for update method (#738) 2023-12-21 13:48:00 -05:00
Weston Pace
dc5126d8d1 feat: add the ability to create scalar indices (#679)
This is a pretty direct binding to the underlying lance capability
2023-12-21 09:50:10 -08:00
Aidan
50c20af060 feat: node list tables pagination (#733) 2023-12-21 11:37:19 -05:00
Chang She
0965d7dd5a doc(javascript): minor improvement on docs for working with tables (#736)
Closes #639 
Closes #638
2023-12-20 20:05:22 -08:00
Chang She
7bbb2872de bug(python): fix path handling in windows (#724)
Use pathlib for local paths so that pathlib
can handle the correct separator on windows.

Closes #703

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 15:41:36 -08:00
Will Jones
e81d2975da chore: add issue templates (#732)
This PR adds issue templates, which help two recurring issues:

* Users forget to tell us whether they are using the Node or Python SDK
* Issues don't get appropriate tags

This doesn't force the use of the templates. Because we set
`blank_issues_enabled: true`, users can still create a custom issue.
2023-12-20 15:15:24 -08:00
Will Jones
2c7f96ba4f ci: check formatting and clippy (#730) 2023-12-20 13:37:51 -08:00
Will Jones
f9dd7a5d8a fix: prevent duplicate data in FTS index (#728)
This forces the user to replace the whole FTS directory when re-creating
the index, prevent duplicate data from being created. Previously, the
whole dataset was re-added to the existing index, duplicating existing
rows in the index.

This (in combination with lancedb/lance#1707) caused #726, since the
duplicate data emitted duplicate indices for `take()` and an upstream
issue caused those queries to fail.

This solution isn't ideal, since it makes the FTS index temporarily
unavailable while the index is built. In the future, we should have
multiple FTS index directories, which would allow atomic commits of new
indexes (as well as multiple indexes for different columns).

Fixes #498.
Fixes #726.

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2023-12-20 13:07:07 -08:00
Will Jones
1d4943688d upgrade lance to v0.9.1 (#727)
This brings in some important bugfixes related to take and aarch64
Linux. See changes at:
https://github.com/lancedb/lance/releases/tag/v0.9.1
2023-12-20 13:06:54 -08:00
Chang She
7856a94d2c feat(python): support nested reference for fts (#723)
https://github.com/lancedb/lance/issues/1739

Support nested field reference in full text search

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 12:28:53 -08:00
Chang She
371d2f979e feat(python): add option to flatten output in to_pandas (#722)
Closes https://github.com/lancedb/lance/issues/1738

We add a `flatten` parameter to the signature of `to_pandas`. By default
this is None and does nothing.
If set to True or -1, then LanceDB will flatten structs before
converting to a pandas dataframe. All nested structs are also flattened.
If set to any positive integer, then LanceDB will flatten structs up to
the specified level of nesting.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-12-20 12:23:07 -08:00
Aidan
fff8e399a3 feat: Node create index API (#720) 2023-12-20 15:22:35 -05:00
Aidan
73e4015797 feat: Node Schema API (#717) 2023-12-20 12:16:40 -05:00
Lance Release
5142a27482 Updating package-lock.json 2023-12-18 18:15:50 +00:00
Lance Release
81df2a524e Updating package-lock.json 2023-12-18 17:29:58 +00:00
Lance Release
40638e5515 Bump version: 0.3.11 → 0.4.0 2023-12-18 17:29:47 +00:00
Lance Release
018314a5c1 [python] Bump version: 0.3.6 → 0.4.0 2023-12-18 17:27:26 +00:00
Lei Xu
409eb30ea5 chore: bump lance version to 0.9 (#715) 2023-12-17 22:11:42 -05:00
Lance Release
ff9872fd44 Updating package-lock.json 2023-12-15 18:25:06 +00:00
Lance Release
a0608044a1 [python] Bump version: 0.3.5 → 0.3.6 2023-12-15 18:20:55 +00:00
Lance Release
2e4ea7d2bc Updating package-lock.json 2023-12-15 18:01:45 +00:00
Lance Release
57e5695a54 Bump version: 0.3.10 → 0.3.11 2023-12-15 18:01:34 +00:00
Bert
ce58ea7c38 chore: fix package lock (#711) 2023-12-15 11:49:16 -05:00
Bert
57207eff4a implement update for remote clients (#706) 2023-12-15 09:06:40 -05:00
Rob Meng
2d78bff120 feat: pass vector column name to remote backend (#710)
pass vector column name to remote as well.

`vector_column` is already part of `Query` just declearing it as part to
`remote.VectorQuery` as well
2023-12-15 00:19:08 -05:00
Rob Meng
7c09b9b9a9 feat: allow custom column name in query (#709) 2023-12-14 23:29:26 -05:00
Chang She
bd0034a157 feat: support nested pydantic schema (#707) 2023-12-14 18:20:45 -08:00
Will Jones
144b3b5d83 ci: fix broken npm publication (#704)
Most recent release failed because `release` depends on `node-macos`,
but we renamed `node-macos` to `node-macos-{x86,arm64}`. This fixes that
by consolidating them back to a single `node-macos` job, which also has
the side effect of making the file shorter.
2023-12-14 12:09:28 -08:00
Lance Release
b6f0a31686 Updating package-lock.json 2023-12-14 19:31:56 +00:00
Lance Release
9ec526f73f Bump version: 0.3.9 → 0.3.10 2023-12-14 19:31:41 +00:00
Lance Release
600bfd7237 [python] Bump version: 0.3.4 → 0.3.5 2023-12-14 19:31:22 +00:00
Will Jones
d087e7891d feat(python): add update query support for Python (#654)
Closes #69

Will not pass until https://github.com/lancedb/lance/pull/1585 is
released
2023-12-14 11:28:32 -08:00
Chang She
098e397cf0 feat: LocalTable for vectordb now supports filters without vector search (#693)
Note this currently the filter/where is only implemented for LocalTable
so that it requires an explicit cast to "enable" (see new unit test).
The alternative is to add it to the Table interface, but since it's not
available on RemoteTable this may cause some user experience issues.
2023-12-13 22:59:01 -08:00
Bert
63ee8fa6a1 Update in Node & Rust (#696)
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-13 14:53:06 -05:00
Ayush Chaurasia
693091db29 chore(python): Reduce posthog event count (#661)
- Register open_table as event 
- Because we're dropping 'seach' event currently, changed the name to
'search_table' and introduced throttling
- Throttled events will be counted once per time batch so that the user
is registered but event count doesn't go up by a lot
2023-12-08 11:00:51 -08:00
Ayush Chaurasia
dca4533dbe docs: Update roboflow tutorial position (#666) 2023-12-08 11:00:11 -08:00
QianZhu
f6bbe199dc Qian/minor fix doc (#695) 2023-12-08 09:58:53 -08:00
Kaushal Kumar Choudhary
366e522c2b docs: Add badges (#694)
adding some badges
added a gif to readme for the vectordb repo

---------

Co-authored-by: kaushal07wick <kaushalc6@gmail.com>
2023-12-08 20:55:04 +05:30
Chang She
244b6919cc chore: Use m1 runner for npm publish (#687)
We had some build issues with npm publish for cross-compiling arm64
macos on an x86 macos runner. Switching to m1 runner for now until
someone has time to deal with the feature flags.

follow-up tracked here: #688
2023-12-07 15:49:52 -08:00
QianZhu
aca785ff98 saas python sdk doc (#692)
<img width="256" alt="Screenshot 2023-12-07 at 11 55 41 AM"
src="https://github.com/lancedb/lancedb/assets/1305083/259bf234-9b3b-4c5d-af45-c7f3fada2cc7">
2023-12-07 14:47:56 -08:00
Chang She
bbdebf2c38 chore: update package lock (#689) 2023-12-06 17:14:56 -08:00
Chang She
1336cce0dc chore: set error handling to immediate (#686)
there's build failure for the rust artifact but the macos arm64 build
for npm publish still passed. So we had a silent failure for 2 releases.
By setting error to immediate this should cause fail immediately.
2023-12-06 14:20:46 -08:00
Lance Release
6c83b6a513 Updating package-lock.json 2023-12-04 18:34:43 +00:00
Lance Release
6bec4bec51 Updating package-lock.json 2023-12-04 17:02:48 +00:00
Lance Release
23d30dfc78 Bump version: 0.3.8 → 0.3.9 2023-12-04 17:02:35 +00:00
Rob Meng
94c8c50f96 fix: fix passing prefilter flag to remote client (#677)
was passing this at the wrong position
2023-12-04 12:01:16 -05:00
Rob Meng
72765d8e1a feat: enable prefilter in node js (#675)
enable prefiltering in node js, both native and remote
2023-12-01 16:49:10 -05:00
Rob Meng
a2a8f9615e chore: expose prefilter in lancedb rust (#674)
expose prefilter flag in vectordb rust code.
2023-12-01 00:44:14 -05:00
James
b085d9aaa1 (docs):Add CLIP image embedding example (#660)
In this PR, I add a guide that lets you use Roboflow Inference to
calculate CLIP embeddings for use in LanceDB. This post was reviewed by
@AyushExel.
2023-11-27 20:39:01 +05:30
Bert
6eb662de9b fix: python remote correct open_table error message (#659) 2023-11-24 19:28:33 -05:00
Lance Release
2bb2bb581a Updating package-lock.json 2023-11-19 00:45:51 +00:00
Lance Release
38321fa226 [python] Bump version: 0.3.3 → 0.3.4 2023-11-19 00:24:01 +00:00
Lance Release
22749c3fa2 Updating package-lock.json 2023-11-19 00:04:08 +00:00
Lance Release
123a49df77 Bump version: 0.3.7 → 0.3.8 2023-11-19 00:03:58 +00:00
Will Jones
a57aa4b142 chore: upgrade lance to v0.8.17 (#656)
Readying for the next Lance release.
2023-11-18 15:57:23 -08:00
Rok Mihevc
d8e3e54226 feat(python): expose index cache size (#655)
This is to enable https://github.com/lancedb/lancedb/issues/641.
Should be merged after https://github.com/lancedb/lance/pull/1587 is
released.
2023-11-18 14:17:40 -08:00
Ayush Chaurasia
ccfdf4853a [Docs]: Add Instructor embeddings and rate limit handler docs (#651) 2023-11-18 06:08:26 +05:30
Ayush Chaurasia
87e5d86e90 [Docs][SEO] Add sitemap and robots.txt (#645)
Sitemap improves SEO by ranking pages and tracking updates.
2023-11-18 06:08:13 +05:30
Aidan
1cf8a3e4e0 SaaS create_index API (#649) 2023-11-15 19:12:52 -05:00
Lance Release
5372843281 Updating package-lock.json 2023-11-15 03:15:10 +00:00
Lance Release
54677b8f0b Updating package-lock.json 2023-11-15 02:42:38 +00:00
Lance Release
ebcf9bf6ae Bump version: 0.3.6 → 0.3.7 2023-11-15 02:42:25 +00:00
Bert
797514bcbf fix: node remote implement table.countRows (#648) 2023-11-13 17:43:20 -05:00
Rok Mihevc
1c872ce501 feat: add RemoteTable.version in Python (#644)
Please note: this is not tested as we don't have a server here and
testing against a mock object wouldn't be that interesting.
2023-11-13 21:43:48 +01:00
Bert
479f471c14 fix: node send db header for GET requests (#646) 2023-11-11 16:33:25 -05:00
Ayush Chaurasia
ae0d2f2599 fix: Pydantic 1.x compat for weak_lru caching in embeddings API (#643)
Colab has pydantic 1.x by default and pydantic 1.x BaseModel objects
don't support weakref creation by default that we use to cache embedding
models
https://github.com/lancedb/lancedb/blob/main/python/lancedb/embeddings/utils.py#L206
. It needs to be added to slot.
2023-11-10 15:02:38 +05:30
Ayush Chaurasia
1e8678f11a Multi-task instructor model with quantization support & weak_lru cache for embedding function models (#612)
resolves #608
2023-11-09 12:34:18 +05:30
QianZhu
662968559d fix saas open_table and table_names issues (#640)
- added check whether a table exists in SaaS open_table
- remove prefilter not supported warning in SaaS search
- fixed issues for SaaS table_names
2023-11-07 17:34:38 -08:00
Rob Meng
9d895801f2 upgrade lance to 0.8.14 (#636)
upgrade lance
2023-11-07 19:01:29 -05:00
Rob Meng
80613a40fd skip missing file on mirrored dir when deleting (#635)
mirrored store is not garueeteed to have all the files. Ignore the ones
that doesn't exist.
2023-11-07 12:33:32 -05:00
Lei Xu
d43ef7f11e chore: apple silicon runner (#633)
Close #632
2023-11-06 21:04:32 -08:00
Lei Xu
554e068917 chore: improve create_table API consistency between local and remote SDK (#627) 2023-11-03 13:15:11 -07:00
Bert
567734dd6e fix: node remote connection handles non http errors (#624)
https://github.com/lancedb/lancedb/issues/623

Fixes issue trying to print response status when using remote client. If
the error is not an HTTP error (e.g. dns/network failure), there won't
be a response.
2023-11-03 10:24:56 -04:00
Ayush Chaurasia
1589499f89 Exponential standoff retry support for handling rate limited embedding functions (#614)
Users ingesting data using rate limited apis don't need to manually make
the process sleep for counter rate limits
resolves #579
2023-11-02 19:20:10 +05:30
Lance Release
682e95fa83 Updating package-lock.json 2023-11-01 22:20:49 +00:00
Lance Release
1ad5e7f2f0 Updating package-lock.json 2023-11-01 21:16:20 +00:00
Lance Release
ddb3ef4ce5 Bump version: 0.3.5 → 0.3.6 2023-11-01 21:16:06 +00:00
Lance Release
ef20b2a138 [python] Bump version: 0.3.2 → 0.3.3 2023-11-01 21:15:55 +00:00
Lei Xu
2e0f251bfd chore: bump lance to 8.10 (#622) 2023-11-01 14:14:38 -07:00
Ayush Chaurasia
2cb91e818d Disable posthog on docs & reduce sentry trace factor (#607)
- posthog charges per event and docs events are registered very
frequently. We can keep tracking them on GA
- Reduced sentry trace factor
2023-11-02 01:13:16 +05:30
Chang She
2835c76336 doc: node sdk now supports windows (#616) 2023-11-01 10:04:18 -07:00
Bert
8068a2bbc3 ci: cancel in progress runs on new push (#620) 2023-11-01 11:33:48 -04:00
Bert
24111d543a fix!: sort table names (#619)
https://github.com/lancedb/lance/issues/1385
2023-11-01 10:50:09 -04:00
QianZhu
7eec2b8f9a Qian/query option doc (#615)
- API documentation improvement for queries (table.search)
- a small bug fix for the remote API on create_table

![image](https://github.com/lancedb/lancedb/assets/1305083/712e9bd3-deb8-4d81-8cd0-d8e98ef68f4e)

![image](https://github.com/lancedb/lancedb/assets/1305083/ba22125a-8c36-4e34-a07f-e39f0136e62c)
2023-10-31 19:50:05 -07:00
Will Jones
b2b70ea399 increment pylance (#618) 2023-10-31 18:07:03 -07:00
Bert
e50a3c1783 added api docs for prefilter flag (#617)
Added the prefilter flag argument to the `LanceQueryBuilder.where`.

This should make it display here:

https://lancedb.github.io/lancedb/python/python/#lancedb.query.LanceQueryBuilder.select

And also in intellisense like this:
<img width="848" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/e0c53f4f-96bc-411b-9159-680a6c4d0070">

Also adds some improved documentation about the `where` argument to this
method.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-10-31 16:39:32 -04:00
Weston Pace
b517134309 feat: allow prefiltering with index (#610)
Support for prefiltering with an index was added in lance version 0.8.7.
We can remove the lancedb check that prevents this. Closes #261
2023-10-31 13:11:03 -07:00
Lei Xu
6fb539b5bf doc: add doc to use GPU for indexing (#611) 2023-10-30 15:25:00 -07:00
Lance Release
f37fe120fd Updating package-lock.json 2023-10-26 22:30:16 +00:00
Lance Release
2e115acb9a Updating package-lock.json 2023-10-26 21:48:01 +00:00
110 changed files with 5120 additions and 785 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.3.5 current_version = 0.4.1
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True

33
.github/ISSUE_TEMPLATE/bug-node.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Bug Report - Node / Typescript
description: File a bug report
title: "bug(node): "
labels: [bug, typescript]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: input
id: version
attributes:
label: LanceDB version
description: What version of LanceDB are you using? `npm list | grep vectordb`.
placeholder: v0.3.2
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
validations:
required: true
- type: textarea
id: reproduction
attributes:
label: Are there known steps to reproduce?
description: |
Let us know how to reproduce the bug and we may be able to fix it more
quickly. This is not required, but it is helpful.
validations:
required: false

33
.github/ISSUE_TEMPLATE/bug-python.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Bug Report - Python
description: File a bug report
title: "bug(python): "
labels: [bug, python]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: input
id: version
attributes:
label: LanceDB version
description: What version of LanceDB are you using? `python -c "import lancedb; print(lancedb.__version__)"`.
placeholder: v0.3.2
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
validations:
required: true
- type: textarea
id: reproduction
attributes:
label: Are there known steps to reproduce?
description: |
Let us know how to reproduce the bug and we may be able to fix it more
quickly. This is not required, but it is helpful.
validations:
required: false

5
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,5 @@
blank_issues_enabled: true
contact_links:
- name: Discord Community Support
url: https://discord.com/invite/zMM32dvNtd
about: Please ask and answer questions here.

View File

@@ -0,0 +1,23 @@
name: 'Documentation improvement'
description: Report an issue with the documentation.
labels: [documentation]
body:
- type: textarea
id: description
attributes:
label: Description
description: >
Describe the issue with the documentation and how it can be fixed or improved.
validations:
required: true
- type: input
id: link
attributes:
label: Link
description: >
Provide a link to the existing documentation, if applicable.
placeholder: ex. https://lancedb.github.io/lancedb/guides/tables/...
validations:
required: false

31
.github/ISSUE_TEMPLATE/feature.yml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: Feature suggestion
description: Suggestion a new feature for LanceDB
title: "Feature: "
labels: [enhancement]
body:
- type: markdown
attributes:
value: |
Share a new idea for a feature or improvement. Be sure to search existing
issues first to avoid duplicates.
- type: dropdown
id: sdk
attributes:
label: SDK
description: Which SDK are you using? This helps us prioritize.
options:
- Python
- Node
- Rust
default: 0
validations:
required: false
- type: textarea
id: description
attributes:
label: Description
description: |
Describe the feature and why it would be useful. If applicable, consider
providing a code example of what it might be like to use the feature.
validations:
required: true

View File

@@ -11,6 +11,10 @@ on:
- .github/workflows/node.yml - .github/workflows/node.yml
- docker-compose.yml - docker-compose.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env: env:
# Disable full debug symbol generation to speed up CI build and keep memory down # Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks. # "1" means line tables only, which is useful for panic tracebacks.

View File

@@ -38,13 +38,17 @@ jobs:
node/vectordb-*.tgz node/vectordb-*.tgz
node-macos: node-macos:
runs-on: macos-12 strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-13-xlarge
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v3
@@ -54,17 +58,15 @@ jobs:
run: | run: |
cd node cd node
npm ci npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules - name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }} run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts - name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v3
with: with:
name: native-darwin name: native-darwin
path: | path: |
node/dist/lancedb-vectordb-darwin*.tgz node/dist/lancedb-vectordb-darwin*.tgz
node-linux: node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu

View File

@@ -8,6 +8,11 @@ on:
paths: paths:
- python/** - python/**
- .github/workflows/python.yml - .github/workflows/python.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs: jobs:
linux: linux:
timeout-minutes: 30 timeout-minutes: 30
@@ -32,18 +37,26 @@ jobs:
run: | run: |
pip install -e .[tests] pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort pip install pytest pytest-mock ruff
- name: Black - name: Lint
run: black --check --diff --no-color --quiet . run: ruff format --check .
- name: isort
run: isort --check --diff --quiet .
- name: Run tests - name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest - name: doctest
run: pytest --doctest-modules lancedb run: pytest --doctest-modules lancedb
mac: platform:
name: "Platform: ${{ matrix.config.name }}"
timeout-minutes: 30 timeout-minutes: 30
runs-on: "macos-12" strategy:
matrix:
config:
- name: x86 Mac
runner: macos-13
- name: Arm Mac
runner: macos-13-xlarge
- name: x86 Windows
runner: windows-latest
runs-on: "${{ matrix.config.runner }}"
defaults: defaults:
run: run:
shell: bash shell: bash
@@ -62,8 +75,6 @@ jobs:
pip install -e .[tests] pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black pip install pytest pytest-mock black
- name: Black
run: black --check --diff --no-color --quiet .
- name: Run tests - name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
pydantic1x: pydantic1x:
@@ -87,12 +98,8 @@ jobs:
pip install "pydantic<2" pip install "pydantic<2"
pip install -e .[tests] pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort pip install pytest pytest-mock
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
- name: Run tests - name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest - name: doctest
run: pytest --doctest-modules lancedb run: pytest --doctest-modules lancedb

View File

@@ -10,6 +10,10 @@ on:
- rust/** - rust/**
- .github/workflows/rust.yml - .github/workflows/rust.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env: env:
# This env var is used by Swatinem/rust-cache@v2 for the cache # This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent. # key, so we set it to make sure it is always consistent.
@@ -20,6 +24,29 @@ env:
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:
lint:
timeout-minutes: 30
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --all --all-features -- -D warnings
linux: linux:
timeout-minutes: 30 timeout-minutes: 30
runs-on: ubuntu-22.04 runs-on: ubuntu-22.04
@@ -44,8 +71,11 @@ jobs:
- name: Run tests - name: Run tests
run: cargo test --all-features run: cargo test --all-features
macos: macos:
runs-on: macos-12
timeout-minutes: 30 timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ]
runs-on: "${{ matrix.mac-runner }}"
defaults: defaults:
run: run:
shell: bash shell: bash

View File

@@ -5,23 +5,24 @@ exclude = ["python"]
resolver = "2" resolver = "2"
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.8.8", "features" = ["dynamodb"] } lance = { "version" = "=0.9.1", "features" = ["dynamodb"] }
lance-linalg = { "version" = "=0.8.8" } lance-index = { "version" = "=0.9.1" }
lance-testing = { "version" = "=0.8.8" } lance-linalg = { "version" = "=0.9.1" }
lance-testing = { "version" = "=0.9.1" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "47.0.0", optional = false } arrow = { version = "49.0.0", optional = false }
arrow-array = "47.0" arrow-array = "49.0"
arrow-data = "47.0" arrow-data = "49.0"
arrow-ipc = "47.0" arrow-ipc = "49.0"
arrow-ord = "47.0" arrow-ord = "49.0"
arrow-schema = "47.0" arrow-schema = "49.0"
arrow-arith = "47.0" arrow-arith = "49.0"
arrow-cast = "47.0" arrow-cast = "49.0"
chrono = "0.4.23" chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [ half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits", "num-traits",
] } ] }
log = "0.4" log = "0.4"
object_store = "0.7.1" object_store = "0.8.0"
snafu = "0.7.4" snafu = "0.7.4"
url = "2" url = "2"

View File

@@ -5,10 +5,11 @@
**Developer-friendly, serverless vector database for AI applications** **Developer-friendly, serverless vector database for AI applications**
<a href="https://lancedb.github.io/lancedb/">Documentation</a> <a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href="https://blog.lancedb.com/">Blog</a> <a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href="https://discord.gg/zMM32dvNtd">Discord</a> [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/)
<a href="https://twitter.com/lancedb">Twitter</a> [![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
</p> </p>

View File

@@ -1,6 +1,7 @@
# Builds the macOS artifacts (node binaries). # Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target] # Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin # Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() { prebuild_rust() {
# Building here for the sake of easier debugging. # Building here for the sake of easier debugging.

View File

@@ -1,4 +1,5 @@
site_name: LanceDB Docs site_name: LanceDB Docs
site_url: https://lancedb.github.io/lancedb/
repo_url: https://github.com/lancedb/lancedb repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb repo_name: lancedb/lancedb
@@ -97,6 +98,7 @@ nav:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb - YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb - Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb - Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md - Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 🌐 Javascript examples: - 🌐 Javascript examples:
@@ -144,14 +146,13 @@ nav:
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md - Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API references: - API references:
- Python API: python/python.md - OSS Python API: python/python.md
- SaaS Python API: python/saas-python.md
- Javascript API: javascript/modules.md - Javascript API: javascript/modules.md
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms - LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms
extra_css: extra_css:
- styles/global.css - styles/global.css
extra_javascript:
- scripts/posthog.js
extra: extra:
analytics: analytics:

View File

@@ -2,3 +2,4 @@ mkdocs==1.4.2
mkdocs-jupyter==0.24.1 mkdocs-jupyter==0.24.1
mkdocs-material==9.1.3 mkdocs-material==9.1.3
mkdocstrings[python]==0.20.0 mkdocstrings[python]==0.20.0
pydantic

View File

@@ -71,9 +71,41 @@ a single PQ code.
### Use GPU to build vector index ### Use GPU to build vector index
Lance Python SDK has experimental GPU support for creating IVF index. Lance Python SDK has experimental GPU support for creating IVF index.
Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being installed.
You can specify the GPU device to train IVF partitions via You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to `"cuda"`` to enable GPU training. - **accelerator**: Specify to ``cuda`` or ``mps`` (on Apple Silicon) to enable GPU training.
=== "Linux"
<!-- skip-test -->
``` { .python .copy }
# Create index using CUDA on Nvidia GPUs.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="cuda"
)
```
=== "Macos"
<!-- skip-test -->
```python
# Create index using MPS on Apple Silicon.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="mps"
)
```
Trouble shootings:
If you see ``AssertionError: Torch not compiled with CUDA enabled``, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
## Querying an ANN Index ## Querying an ANN Index

View File

@@ -64,18 +64,26 @@ We'll cover the basics of using LanceDB on your local machine in this section.
tbl = db.create_table("table_from_df", data=df) tbl = db.create_table("table_from_df", data=df)
``` ```
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
=== "Javascript" === "Javascript"
```javascript ```javascript
const tb = await db.createTable("my_table", const tb = await db.createTable(
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, "myTable",
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) [{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
``` ```
!!! warning
If the table already exists, LanceDB will raise an error by default. !!! warning
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function. If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `"overwrite"`
to the `createTable` function like this: `await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })`
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)." ??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
@@ -108,7 +116,7 @@ Once created, you can open a table using the following code:
=== "Javascript" === "Javascript"
```javascript ```javascript
const tbl = await db.openTable("my_table"); const tbl = await db.openTable("myTable");
``` ```
If you forget the name of your table, you can always get a listing of all table names: If you forget the name of your table, you can always get a listing of all table names:
@@ -194,10 +202,17 @@ Use the `drop_table()` method on the database to remove a table.
db.drop_table("my_table") db.drop_table("my_table")
``` ```
This permanently removes the table and is not recoverable, unlike deleting rows. This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this, By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`. you can pass in `ignore_missing=True`.
=== "JavaScript"
```javascript
await db.dropTable('myTable')
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## What's next ## What's next

View File

@@ -1,7 +1,9 @@
There are various Embedding functions available out of the box with lancedb. We're working on supporting other popular embedding APIs. There are various Embedding functions available out of the box with LanceDB. We're working on supporting other popular embedding APIs.
## Text Embedding Functions ## Text Embedding Functions
Here are the text embedding functions registered by default Here are the text embedding functions registered by default.
Embedding functions have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential standoff.
Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
### Sentence Transformers ### Sentence Transformers
Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values: Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values:
@@ -66,11 +68,61 @@ actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text) print(actual.text)
``` ```
### Instructor Embeddings
Instructor is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found here - https://github.com/xlang-ai/instructor-embedding
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```
## Multi-modal embedding functions ## Multi-modal embedding functions
Multi-modal embedding functions allow you query your table using both images and text. Multi-modal embedding functions allow you to query your table using both images and text.
### OpenClipEmbeddings ### OpenClipEmbeddings
We support CLIP model embeddings using the open souce alternbative, open-clip which support various customizations. It is registered as `open-clip` and supports following customizations. We support CLIP model embeddings using the open source alternative, open-clip which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description | | Parameter | Type | Default Value | Description |
@@ -153,4 +205,4 @@ print(actual.label)
``` ```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue. If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue.

View File

@@ -57,6 +57,19 @@ query_image = Image.open(p)
table.search(query_image) table.search(query_image)
``` ```
### Rate limit Handling
`EmbeddingFunction` class wraps the calls for source and query embedding generation inside a rate limit handler that retries the requests with exponential backoff after successive failures. By default the maximum retires is set to 7. You can tune it by setting it to a different number or disable it by setting it to 0.
Example
----
```python
clip = registry.get("open-clip").create() # Defaults to 7 max retries
clip = registry.get("open-clip").create(max_retries=10) # Increase max retries to 10
clip = registry.get("open-clip").create(max_retries=0) # Retries disabled
````
NOTE:
Embedding functions can also fail due to other errors that have nothing to do with rate limits. This is why the error is also logged.
### A little fun with PyDantic ### A little fun with PyDantic
LanceDB is integrated with PyDantic. Infact we've used the integration in the above example to define the schema. It is also being used behing the scene by the embdding function API to ingest useful information as table metadata. LanceDB is integrated with PyDantic. Infact we've used the integration in the above example to define the schema. It is also being used behing the scene by the embdding function API to ingest useful information as table metadata.

View File

@@ -0,0 +1,165 @@
# How to Load Image Embeddings into LanceDB
With the rise of Large Multimodal Models (LMMs) such as [GPT-4 Vision](https://blog.roboflow.com/gpt-4-vision/), the need for storing image embeddings is growing. The most effective way to store text and image embeddings is in a vector database such as LanceDB. Vector databases are a special kind of data store that enables efficient search over stored embeddings.
[CLIP](https://blog.roboflow.com/openai-clip/), a multimodal model developed by OpenAI, is commonly used to calculate image embeddings. These embeddings can then be used with a vector database to build a semantic search engine that you can query using images or text. For example, you could use LanceDB and CLIP embeddings to build a search engine for a database of folders.
In this guide, we are going to show you how to use Roboflow Inference to load image embeddings into LanceDB. Without further ado, lets get started!
## Step #1: Install Roboflow Inference
[Roboflow Inference](https://inference.roboflow.com) enables you to run state-of-the-art computer vision models with minimal configuration. Inference supports a range of models, from fine-tuned object detection, classification, and segmentation models to foundation models like CLIP. We will use Inference to calculate CLIP image embeddings.
Inference provides a HTTP API through which you can run vision models.
Inference powers the Roboflow hosted API, and is available as an open source utility. In this guide, we are going to run Inference locally, which enables you to calculate CLIP embeddings on your own hardware. We will also show you how to use the hosted Roboflow CLIP API, which is ideal if you need to scale and do not want to manage a system for calculating embeddings.
To get started, first install the Inference CLI:
```
pip install inference-cli
```
Next, install Docker. Refer to the official Docker installation instructions for your operating system to get Docker set up. Once Docker is ready, you can start Inference using the following command:
```
inference server start
```
An Inference server will start running at http://localhost:9001.
## Step #2: Set Up a LanceDB Vector Database
Now that we have Inference running, we can set up a LanceDB vector database. You can run LanceDB in JavaScript and Python. For this guide, we will use the Python API. But, you can take the HTTP requests we make below and change them to JavaScript if required.
For this guide, we are going to search the [COCO 128 dataset](https://universe.roboflow.com/team-roboflow/coco-128), which contains a wide range of objects. The variability in objects present in this dataset makes it a good dataset to demonstrate the capabilities of vector search. If you want to use this dataset, you can download [COCO 128 from Roboflow Universe](https://universe.roboflow.com/team-roboflow/coco-128). With that said, you can search whatever folder of images you want.
Once you have a dataset ready, install LanceDB with the following command:
```
pip install lancedb
```
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
```
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
```
Create a new Python file and add the following code:
```python
import cv2
import supervision as sv
import requests
import lancedb
db = lancedb.connect("./embeddings")
IMAGE_DIR = "images/"
API_KEY = os.environ.get("ROBOFLOW_API_KEY")
SERVER_URL = "http://localhost:9001"
results = []
for i, image in enumerate(os.listdir(IMAGE_DIR)):
infer_clip_payload = {
#Images can be provided as urls or as base64 encoded strings
"image": {
"type": "base64",
"value": base64.b64encode(open(IMAGE_DIR + image, "rb").read()).decode("utf-8"),
},
}
res = requests.post(
f"{SERVER_URL}/clip/embed_image?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
print("Calculated embedding for image: ", image)
image = {"vector": embeddings[0], "name": os.path.join(IMAGE_DIR, image)}
results.append(image)
tbl = db.create_table("images", data=results)
tbl.create_fts_index("name")
```
To use the code above, you will need a Roboflow API key. [Learn how to retrieve a Roboflow API key](https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key). Run the following command to set up your API key in your environment:
```
export ROBOFLOW_API_KEY=""
```
Replace the `IMAGE_DIR` value with the folder in which you are storing the images for which you want to calculate embeddings. If you want to use the Roboflow CLIP API to calculate embeddings, replace the `SERVER_URL` value with `https://infer.roboflow.com`.
Run the script above to create a new LanceDB database. This database will be stored on your local machine. The database will be called `embeddings` and the table will be called `images`.
The script above calculates all embeddings for a folder then creates a new table. To add additional images, use the following code:
```python
def make_batches():
for i in range(5):
yield [
{"vector": [3.1, 4.1], "name": "image1.png"},
{"vector": [5.9, 26.5], "name": "image2.png"}
]
tbl = db.open_table("images")
tbl.add(make_batches())
```
Replacing the `make_batches()` function with code to load embeddings for images.
## Step #3: Run a Search Query
We are now ready to run a search query. To run a search query, we need a text embedding that represents a text query. We can use this embedding to search our LanceDB database for an entry.
Lets calculate a text embedding for the query “cat”, then run a search query:
```python
infer_clip_payload = {
"text": "cat",
}
res = requests.post(
f"{SERVER_URL}/clip/embed_text?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
df = tbl.search(embeddings[0]).limit(3).to_list()
print("Results:")
for i in df:
print(i["name"])
```
This code will search for the three images most closely related to the prompt “cat”. The names of the most similar three images will be printed to the console. Here are the three top results:
```
dataset/images/train/000000000650_jpg.rf.1b74ba165c5a3513a3211d4a80b69e1c.jpg
dataset/images/train/000000000138_jpg.rf.af439ef1c55dd8a4e4b142d186b9c957.jpg
dataset/images/train/000000000165_jpg.rf.eae14d5509bf0c9ceccddbb53a5f0c66.jpg
```
Lets open the top image:
![Cat](https://media.roboflow.com/cat_lancedb.jpg)
The top image was a cat. Our search was successful.
## Conclusion
LanceDB is a vector database that you can use to store and efficiently search your image embeddings. You can use Roboflow Inference, a scalable computer vision inference server, to calculate CLIP embeddings that you can store in LanceDB.
You can use Inference and LanceDB together to build a range of applications with image embeddings, from a media search engine to a retrieval-augmented generation pipeline for use with LMMs.
To learn more about Inference and its capabilities, refer to the Inference documentation.

View File

@@ -29,8 +29,9 @@ uri = "data/sample-lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
table = db.create_table("my_table", table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}, data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy", "meta": "foo"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"}]) {"vector": [5.9, 26.5], "text": "Sam was a loyal puppy", "meta": "bar"},
{"vector": [15.9, 6.5], "text": "There are several kittens playing"}])
``` ```
@@ -64,10 +65,23 @@ table.create_fts_index(["text1", "text2"])
Note that the search API call does not change - you can search over all indexed columns at once. Note that the search API call does not change - you can search over all indexed columns at once.
## Filtering
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
applied on top of the full text search results. This can be invoked via the familiar
`where` syntax:
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
## Current limitations ## Current limitations
1. Currently we do not yet support incremental writes. 1. Currently we do not yet support incremental writes.
If you add data after fts index creation, it won't be reflected If you add data after fts index creation, it won't be reflected
in search results until you do a full reindex. in search results until you do a full reindex.
2. We currently only support local filesystem paths for the fts index.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it.
2. We currently only support local filesystem paths for the fts index.

View File

@@ -1,5 +1,7 @@
<a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/> <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
A Table is a collection of Records in a LanceDB Database. You can follow along on colab! A Table is a collection of Records in a LanceDB Database. Tables in Lance have a schema that defines the columns and their types. These schemas can include nested columns and can evolve over time.
This guide will show how to create tables, insert data into them, and update the data. You can follow along on colab!
## Creating a LanceDB Table ## Creating a LanceDB Table
@@ -116,6 +118,84 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
table = db.create_table(table_name, schema=Content) table = db.create_table(table_name, schema=Content)
``` ```
#### Nested schemas
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
```python
class Document(BaseModel):
content: str
source: str
```
This can be used as the type of a LanceDB table column:
```python
class NestedSchema(LanceModel):
id: str
vector: Vector(1536)
document: Document
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
This creates a struct column called "document" that has two subfields
called "content" and "source":
```
In [28]: tbl.schema
Out[28]:
id: string not null
vector: fixed_size_list<item: float>[1536] not null
child 0, item: float
document: struct<content: string not null, source: string not null> not null
child 0, content: string not null
child 1, source: string not null
```
#### Validators
Note that neither pydantic nor pyarrow automatically validates that input data
is of the *correct* timezone, but this is easy to add as a custom field validator:
```python
from datetime import datetime
from zoneinfo import ZoneInfo
from lancedb.pydantic import LanceModel
from pydantic import Field, field_validator, ValidationError, ValidationInfo
tzname = "America/New_York"
tz = ZoneInfo(tzname)
class TestModel(LanceModel):
dt_with_tz: datetime = Field(json_schema_extra={"tz": tzname})
@field_validator('dt_with_tz')
@classmethod
def tz_must_match(cls, dt: datetime) -> datetime:
assert dt.tzinfo == tz
return dt
ok = TestModel(dt_with_tz=datetime.now(tz))
try:
TestModel(dt_with_tz=datetime.now(ZoneInfo("Asia/Shanghai")))
assert 0 == 1, "this should raise ValidationError"
except ValidationError:
print("A ValidationError was raised.")
pass
```
When you run this code it should print "A ValidationError was raised."
#### Pydantic custom types
LanceDB does NOT yet support converting pydantic custom types. If this is something you need,
please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new).
### Using Iterators / Writing Large Datasets ### Using Iterators / Writing Large Datasets
It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()` It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
@@ -151,7 +231,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
You can also use iterators of other types like Pandas dataframe or Pylists directly in the above example. You can also use iterators of other types like Pandas dataframe or Pylists directly in the above example.
## Creating Empty Table ## Creating Empty Table
You can also create empty tables in python. Initialize it with schema and later ingest data into it. You can create empty tables in python. Initialize it with schema and later ingest data into it.
```python ```python
import lancedb import lancedb
@@ -201,8 +281,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```javascript ```javascript
data data
const tb = await db.createTable("my_table", const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, [{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
``` ```
!!! info "Note" !!! info "Note"
@@ -361,19 +441,28 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
await tbl.countRows() // Returns 1 await tbl.countRows() // Returns 1
``` ```
### Updating a Table [Experimental] ## Updating a Table
EXPERIMENTAL: Update rows in the table (not threadsafe).
This can be used to update zero to all rows depending on how many rows match the where clause. This can be used to update zero to all rows depending on how many rows match the where clause. The update queries follow the form of a SQL UPDATE statement. The `where` parameter is a SQL filter that matches on the metadata columns. The `values` or `values_sql` parameters are used to provide the new values for the columns.
| Parameter | Type | Description | | Parameter | Type | Description |
|---|---|---| |---|---|---|
| `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. | | `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. |
| `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. | | `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. |
| `values_sql` | `dict` | The values to update. The keys are the column names and the values are the SQL expressions to set. For example, `{'x': 'x + 1'}` will increment the value of the `x` column by 1. |
!!! info "SQL syntax"
See [SQL filters](sql.md) for more information on the supported SQL syntax.
!!! warning "Warning"
Updating nested columns is not yet supported.
=== "Python" === "Python"
API Reference: [lancedb.table.Table.update][]
```python ```python
import lancedb import lancedb
import pandas as pd import pandas as pd
@@ -403,6 +492,55 @@ This can be used to update zero to all rows depending on how many rows match the
2 2 [10.0, 10.0] 2 2 [10.0, 10.0]
``` ```
=== "Javascript/Typescript"
API Reference: [vectordb.Table.update](../../javascript/interfaces/Table/#update)
```javascript
const lancedb = require("vectordb");
const db = await lancedb.connect("./.lancedb");
const data = [
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
```
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python"
```python
# Update the table where x = 2
table.update(valuesSql={"x": "x + 1"})
print(table.to_pandas())
```
Output
```shell
x vector
0 2 [1.0, 2.0]
1 4 [5.0, 6.0]
2 3 [10.0, 10.0]
```
=== "Javascript/Typescript"
```javascript
await tbl.update({ valuesSql: { x: "x + 1" } })
```
!!! info "Note"
When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards.
## What's Next? ## What's Next?
Learn how to Query your tables and create indices Learn how to Query your tables and create indices

View File

@@ -11,8 +11,13 @@ npm install vectordb
``` ```
This will download the appropriate native library for your platform. We currently This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not support:
yet support Windows or musl-based Linux (such as Alpine Linux).
* Linux (x86_64 and aarch64)
* MacOS (Intel and ARM/M1/M2)
* Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage ## Usage

View File

@@ -0,0 +1,41 @@
[vectordb](../README.md) / [Exports](../modules.md) / DefaultWriteOptions
# Class: DefaultWriteOptions
Write options when creating a Table.
## Implements
- [`WriteOptions`](../interfaces/WriteOptions.md)
## Table of contents
### Constructors
- [constructor](DefaultWriteOptions.md#constructor)
### Properties
- [writeMode](DefaultWriteOptions.md#writemode)
## Constructors
### constructor
**new DefaultWriteOptions**()
## Properties
### writeMode
**writeMode**: [`WriteMode`](../enums/WriteMode.md) = `WriteMode.Create`
A [WriteMode](../enums/WriteMode.md) to use on this operation
#### Implementation of
[WriteOptions](../interfaces/WriteOptions.md).[writeMode](../interfaces/WriteOptions.md#writemode)
#### Defined in
[index.ts:778](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L778)

View File

@@ -26,7 +26,7 @@ A connection to a LanceDB database.
### Methods ### Methods
- [createTable](LocalConnection.md#createtable) - [createTable](LocalConnection.md#createtable)
- [createTableArrow](LocalConnection.md#createtablearrow) - [createTableImpl](LocalConnection.md#createtableimpl)
- [dropTable](LocalConnection.md#droptable) - [dropTable](LocalConnection.md#droptable)
- [openTable](LocalConnection.md#opentable) - [openTable](LocalConnection.md#opentable)
- [tableNames](LocalConnection.md#tablenames) - [tableNames](LocalConnection.md#tablenames)
@@ -46,7 +46,7 @@ A connection to a LanceDB database.
#### Defined in #### Defined in
[index.ts:184](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L184) [index.ts:355](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L355)
## Properties ## Properties
@@ -56,17 +56,25 @@ A connection to a LanceDB database.
#### Defined in #### Defined in
[index.ts:182](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L182) [index.ts:353](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L353)
___ ___
### \_options ### \_options
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md) `Private` `Readonly` **\_options**: () => [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Type declaration
▸ (): [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
##### Returns
[`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in #### Defined in
[index.ts:181](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L181) [index.ts:352](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L352)
## Accessors ## Accessors
@@ -84,27 +92,34 @@ ___
#### Defined in #### Defined in
[index.ts:189](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L189) [index.ts:360](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L360)
## Methods ## Methods
### createTable ### createTable
**createTable**(`name`, `data`, `mode?`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> **createTable**\<`T`\>(`name`, `data?`, `optsOrEmbedding?`, `opt?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
Creates a new Table and initialize it with new data. Creates a new Table, optionally initializing it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters #### Parameters
| Name | Type | Description | | Name | Type |
| :------ | :------ | :------ | | :------ | :------ |
| `name` | `string` | The name of the table. | | `name` | `string` \| [`CreateTableOptions`](../interfaces/CreateTableOptions.md)\<`T`\> |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table | | `data?` | `Record`\<`string`, `unknown`\>[] |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. | | `optsOrEmbedding?` | [`WriteOptions`](../interfaces/WriteOptions.md) \| [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
| `opt?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of #### Implementation of
@@ -112,120 +127,44 @@ Creates a new Table and initialize it with new data.
#### Defined in #### Defined in
[index.ts:230](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L230) [index.ts:395](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L395)
**createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
Creates a new Table and initialize it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `mode` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:241](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L241)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:242](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L242)
___ ___
### createTableArrow ### createTableImpl
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> `Private` **createTableImpl**\<`T`\>(`«destructured»`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters #### Parameters
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `name` | `string` | | `«destructured»` | `Object` |
| `table` | `Table`<`any`\> | |  `data?` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] |
|  `embeddingFunction?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|  `name` | `string` |
|  `schema?` | `Schema`\<`any`\> |
|  `writeOptions?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[createTableArrow](../interfaces/Connection.md#createtablearrow)
#### Defined in #### Defined in
[index.ts:266](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L266) [index.ts:413](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L413)
___ ___
### dropTable ### dropTable
**dropTable**(`name`): `Promise`<`void`\> **dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table. Drop an existing table.
@@ -237,7 +176,7 @@ Drop an existing table.
#### Returns #### Returns
`Promise`<`void`\> `Promise`\<`void`\>
#### Implementation of #### Implementation of
@@ -245,13 +184,13 @@ Drop an existing table.
#### Defined in #### Defined in
[index.ts:276](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L276) [index.ts:453](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L453)
___ ___
### openTable ### openTable
**openTable**(`name`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> **openTable**(`name`): `Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
Open a table in the database. Open a table in the database.
@@ -263,7 +202,7 @@ Open a table in the database.
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
#### Implementation of #### Implementation of
@@ -271,9 +210,9 @@ Open a table in the database.
#### Defined in #### Defined in
[index.ts:205](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L205) [index.ts:376](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L376)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> **openTable**\<`T`\>(`name`, `embeddings`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
Open a table in the database. Open a table in the database.
@@ -288,11 +227,11 @@ Open a table in the database.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `name` | `string` | The name of the table. | | `name` | `string` | The name of the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table | | `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> | An embedding function to use on this Table |
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of #### Implementation of
@@ -300,9 +239,9 @@ Connection.openTable
#### Defined in #### Defined in
[index.ts:212](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L212) [index.ts:384](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L384)
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> **openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Type parameters #### Type parameters
@@ -315,11 +254,11 @@ Connection.openTable
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `name` | `string` | | `name` | `string` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | | `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of #### Implementation of
@@ -327,19 +266,19 @@ Connection.openTable
#### Defined in #### Defined in
[index.ts:213](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L213) [index.ts:385](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L385)
___ ___
### tableNames ### tableNames
**tableNames**(): `Promise`<`string`[]\> **tableNames**(): `Promise`\<`string`[]\>
Get the names of all tables in the database. Get the names of all tables in the database.
#### Returns #### Returns
`Promise`<`string`[]\> `Promise`\<`string`[]\>
#### Implementation of #### Implementation of
@@ -347,4 +286,4 @@ Get the names of all tables in the database.
#### Defined in #### Defined in
[index.ts:196](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L196) [index.ts:367](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L367)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / LocalTable [vectordb](../README.md) / [Exports](../modules.md) / LocalTable
# Class: LocalTable<T\> # Class: LocalTable\<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields. A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
@@ -12,7 +12,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
## Implements ## Implements
- [`Table`](../interfaces/Table.md)<`T`\> - [`Table`](../interfaces/Table.md)\<`T`\>
## Table of contents ## Table of contents
@@ -26,6 +26,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [\_name](LocalTable.md#_name) - [\_name](LocalTable.md#_name)
- [\_options](LocalTable.md#_options) - [\_options](LocalTable.md#_options)
- [\_tbl](LocalTable.md#_tbl) - [\_tbl](LocalTable.md#_tbl)
- [where](LocalTable.md#where)
### Accessors ### Accessors
@@ -34,17 +35,23 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
### Methods ### Methods
- [add](LocalTable.md#add) - [add](LocalTable.md#add)
- [cleanupOldVersions](LocalTable.md#cleanupoldversions)
- [compactFiles](LocalTable.md#compactfiles)
- [countRows](LocalTable.md#countrows) - [countRows](LocalTable.md#countrows)
- [createIndex](LocalTable.md#createindex) - [createIndex](LocalTable.md#createindex)
- [delete](LocalTable.md#delete) - [delete](LocalTable.md#delete)
- [filter](LocalTable.md#filter)
- [indexStats](LocalTable.md#indexstats)
- [listIndices](LocalTable.md#listindices)
- [overwrite](LocalTable.md#overwrite) - [overwrite](LocalTable.md#overwrite)
- [search](LocalTable.md#search) - [search](LocalTable.md#search)
- [update](LocalTable.md#update)
## Constructors ## Constructors
### constructor ### constructor
**new LocalTable**<`T`\>(`tbl`, `name`, `options`) **new LocalTable**\<`T`\>(`tbl`, `name`, `options`)
#### Type parameters #### Type parameters
@@ -62,9 +69,9 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in #### Defined in
[index.ts:287](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L287) [index.ts:464](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L464)
**new LocalTable**<`T`\>(`tbl`, `name`, `options`, `embeddings`) **new LocalTable**\<`T`\>(`tbl`, `name`, `options`, `embeddings`)
#### Type parameters #### Type parameters
@@ -79,21 +86,21 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
| `tbl` | `any` | | | `tbl` | `any` | |
| `name` | `string` | | | `name` | `string` | |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | | | `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table | | `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> | An embedding function to use when interacting with this table |
#### Defined in #### Defined in
[index.ts:294](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L294) [index.ts:471](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L471)
## Properties ## Properties
### \_embeddings ### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:284](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L284) [index.ts:461](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L461)
___ ___
@@ -103,27 +110,61 @@ ___
#### Defined in #### Defined in
[index.ts:283](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L283) [index.ts:460](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L460)
___ ___
### \_options ### \_options
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md) `Private` `Readonly` **\_options**: () => [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Type declaration
▸ (): [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
##### Returns
[`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in #### Defined in
[index.ts:285](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L285) [index.ts:462](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L462)
___ ___
### \_tbl ### \_tbl
`Private` `Readonly` **\_tbl**: `any` `Private` **\_tbl**: `any`
#### Defined in #### Defined in
[index.ts:282](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L282) [index.ts:459](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L459)
___
### where
**where**: (`value`: `string`) => [`Query`](Query.md)\<`T`\>
#### Type declaration
▸ (`value`): [`Query`](Query.md)\<`T`\>
Creates a filter query to find all rows matching the specified criteria
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | The filter criteria (like SQL where clause syntax) |
##### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:499](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L499)
## Accessors ## Accessors
@@ -141,13 +182,13 @@ ___
#### Defined in #### Defined in
[index.ts:302](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L302) [index.ts:479](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L479)
## Methods ## Methods
### add ### add
**add**(`data`): `Promise`<`number`\> **add**(`data`): `Promise`\<`number`\>
Insert records into this Table. Insert records into this Table.
@@ -155,11 +196,11 @@ Insert records into this Table.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table | | `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns #### Returns
`Promise`<`number`\> `Promise`\<`number`\>
The number of rows added to the table The number of rows added to the table
@@ -169,19 +210,69 @@ The number of rows added to the table
#### Defined in #### Defined in
[index.ts:320](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L320) [index.ts:507](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L507)
___
### cleanupOldVersions
**cleanupOldVersions**(`olderThan?`, `deleteUnverified?`): `Promise`\<[`CleanupStats`](../interfaces/CleanupStats.md)\>
Clean up old versions of the table, freeing disk space.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `olderThan?` | `number` | The minimum age in minutes of the versions to delete. If not provided, defaults to two weeks. |
| `deleteUnverified?` | `boolean` | Because they may be part of an in-progress transaction, uncommitted files newer than 7 days old are not deleted by default. This means that failed transactions can leave around data that takes up disk space for up to 7 days. You can override this safety mechanism by setting this option to `true`, only if you promise there are no in progress writes while you run this operation. Failure to uphold this promise can lead to corrupted tables. |
#### Returns
`Promise`\<[`CleanupStats`](../interfaces/CleanupStats.md)\>
#### Defined in
[index.ts:596](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L596)
___
### compactFiles
**compactFiles**(`options?`): `Promise`\<[`CompactionMetrics`](../interfaces/CompactionMetrics.md)\>
Run the compaction process on the table.
This can be run after making several small appends to optimize the table
for faster reads.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `options?` | [`CompactionOptions`](../interfaces/CompactionOptions.md) | Advanced options configuring compaction. In most cases, you can omit this arguments, as the default options are sensible for most tables. |
#### Returns
`Promise`\<[`CompactionMetrics`](../interfaces/CompactionMetrics.md)\>
Metrics about the compaction operation.
#### Defined in
[index.ts:615](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L615)
___ ___
### countRows ### countRows
**countRows**(): `Promise`<`number`\> **countRows**(): `Promise`\<`number`\>
Returns the number of rows in this table. Returns the number of rows in this table.
#### Returns #### Returns
`Promise`<`number`\> `Promise`\<`number`\>
#### Implementation of #### Implementation of
@@ -189,20 +280,16 @@ Returns the number of rows in this table.
#### Defined in #### Defined in
[index.ts:362](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L362) [index.ts:543](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L543)
___ ___
### createIndex ### createIndex
**createIndex**(`indexParams`): `Promise`<`any`\> **createIndex**(`indexParams`): `Promise`\<`any`\>
Create an ANN index on this Table vector index. Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
#### Parameters #### Parameters
| Name | Type | Description | | Name | Type | Description |
@@ -211,7 +298,11 @@ VectorIndexParams.
#### Returns #### Returns
`Promise`<`any`\> `Promise`\<`any`\>
**`See`**
VectorIndexParams.
#### Implementation of #### Implementation of
@@ -219,13 +310,13 @@ VectorIndexParams.
#### Defined in #### Defined in
[index.ts:355](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L355) [index.ts:536](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L536)
___ ___
### delete ### delete
**delete**(`filter`): `Promise`<`void`\> **delete**(`filter`): `Promise`\<`void`\>
Delete rows from this table. Delete rows from this table.
@@ -237,7 +328,7 @@ Delete rows from this table.
#### Returns #### Returns
`Promise`<`void`\> `Promise`\<`void`\>
#### Implementation of #### Implementation of
@@ -245,13 +336,81 @@ Delete rows from this table.
#### Defined in #### Defined in
[index.ts:371](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L371) [index.ts:552](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L552)
___
### filter
**filter**(`value`): [`Query`](Query.md)\<`T`\>
Creates a filter query to find all rows matching the specified criteria
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | The filter criteria (like SQL where clause syntax) |
#### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:495](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L495)
___
### indexStats
**indexStats**(`indexUuid`): `Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
Get statistics about an index.
#### Parameters
| Name | Type |
| :------ | :------ |
| `indexUuid` | `string` |
#### Returns
`Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
#### Implementation of
[Table](../interfaces/Table.md).[indexStats](../interfaces/Table.md#indexstats)
#### Defined in
[index.ts:628](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L628)
___
### listIndices
**listIndices**(): `Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
List the indicies on this table.
#### Returns
`Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
#### Implementation of
[Table](../interfaces/Table.md).[listIndices](../interfaces/Table.md#listindices)
#### Defined in
[index.ts:624](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L624)
___ ___
### overwrite ### overwrite
**overwrite**(`data`): `Promise`<`number`\> **overwrite**(`data`): `Promise`\<`number`\>
Insert records into this Table, replacing its contents. Insert records into this Table, replacing its contents.
@@ -259,11 +418,11 @@ Insert records into this Table, replacing its contents.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table | | `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns #### Returns
`Promise`<`number`\> `Promise`\<`number`\>
The number of rows added to the table The number of rows added to the table
@@ -273,13 +432,13 @@ The number of rows added to the table
#### Defined in #### Defined in
[index.ts:338](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L338) [index.ts:522](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L522)
___ ___
### search ### search
**search**(`query`): [`Query`](Query.md)<`T`\> **search**(`query`): [`Query`](Query.md)\<`T`\>
Creates a search query to find the nearest neighbors of the given search term Creates a search query to find the nearest neighbors of the given search term
@@ -291,7 +450,7 @@ Creates a search query to find the nearest neighbors of the given search term
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Implementation of #### Implementation of
@@ -299,4 +458,30 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in #### Defined in
[index.ts:310](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L310) [index.ts:487](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L487)
___
### update
**update**(`args`): `Promise`\<`void`\>
Update rows in this table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `args` | [`UpdateArgs`](../interfaces/UpdateArgs.md) \| [`UpdateSqlArgs`](../interfaces/UpdateSqlArgs.md) | see [UpdateArgs](../interfaces/UpdateArgs.md) and [UpdateSqlArgs](../interfaces/UpdateSqlArgs.md) for more details |
#### Returns
`Promise`\<`void`\>
#### Implementation of
[Table](../interfaces/Table.md).[update](../interfaces/Table.md#update)
#### Defined in
[index.ts:563](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L563)

View File

@@ -6,7 +6,7 @@ An embedding function that automatically creates vector representation for a giv
## Implements ## Implements
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`string`\> - [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`string`\>
## Table of contents ## Table of contents
@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in #### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L21) [embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L21)
## Properties ## Properties
@@ -50,7 +50,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in #### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L19) [embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L19)
___ ___
@@ -60,7 +60,7 @@ ___
#### Defined in #### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L18) [embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L18)
___ ___
@@ -76,13 +76,13 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in #### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L50) [embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L50)
## Methods ## Methods
### embed ### embed
**embed**(`data`): `Promise`<`number`[][]\> **embed**(`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values. Creates a vector representation for the given values.
@@ -94,7 +94,7 @@ Creates a vector representation for the given values.
#### Returns #### Returns
`Promise`<`number`[][]\> `Promise`\<`number`[][]\>
#### Implementation of #### Implementation of
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
#### Defined in #### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L38) [embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L38)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / Query [vectordb](../README.md) / [Exports](../modules.md) / Query
# Class: Query<T\> # Class: Query\<T\>
A builder for nearest neighbor queries for LanceDB. A builder for nearest neighbor queries for LanceDB.
@@ -23,6 +23,7 @@ A builder for nearest neighbor queries for LanceDB.
- [\_limit](Query.md#_limit) - [\_limit](Query.md#_limit)
- [\_metricType](Query.md#_metrictype) - [\_metricType](Query.md#_metrictype)
- [\_nprobes](Query.md#_nprobes) - [\_nprobes](Query.md#_nprobes)
- [\_prefilter](Query.md#_prefilter)
- [\_query](Query.md#_query) - [\_query](Query.md#_query)
- [\_queryVector](Query.md#_queryvector) - [\_queryVector](Query.md#_queryvector)
- [\_refineFactor](Query.md#_refinefactor) - [\_refineFactor](Query.md#_refinefactor)
@@ -34,9 +35,11 @@ A builder for nearest neighbor queries for LanceDB.
- [execute](Query.md#execute) - [execute](Query.md#execute)
- [filter](Query.md#filter) - [filter](Query.md#filter)
- [isElectron](Query.md#iselectron)
- [limit](Query.md#limit) - [limit](Query.md#limit)
- [metricType](Query.md#metrictype) - [metricType](Query.md#metrictype)
- [nprobes](Query.md#nprobes) - [nprobes](Query.md#nprobes)
- [prefilter](Query.md#prefilter)
- [refineFactor](Query.md#refinefactor) - [refineFactor](Query.md#refinefactor)
- [select](Query.md#select) - [select](Query.md#select)
@@ -44,7 +47,7 @@ A builder for nearest neighbor queries for LanceDB.
### constructor ### constructor
**new Query**<`T`\>(`tbl`, `query`, `embeddings?`) **new Query**\<`T`\>(`query?`, `tbl?`, `embeddings?`)
#### Type parameters #### Type parameters
@@ -56,23 +59,23 @@ A builder for nearest neighbor queries for LanceDB.
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `tbl` | `any` | | `query?` | `T` |
| `query` | `T` | | `tbl?` | `any` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | | `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
#### Defined in #### Defined in
[index.ts:448](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L448) [query.ts:38](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L38)
## Properties ## Properties
### \_embeddings ### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> `Protected` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:446](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L446) [query.ts:36](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L36)
___ ___
@@ -82,17 +85,17 @@ ___
#### Defined in #### Defined in
[index.ts:444](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L444) [query.ts:33](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L33)
___ ___
### \_limit ### \_limit
`Private` **\_limit**: `number` `Private` `Optional` **\_limit**: `number`
#### Defined in #### Defined in
[index.ts:440](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L440) [query.ts:29](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L29)
___ ___
@@ -102,7 +105,7 @@ ___
#### Defined in #### Defined in
[index.ts:445](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L445) [query.ts:34](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L34)
___ ___
@@ -112,17 +115,27 @@ ___
#### Defined in #### Defined in
[index.ts:442](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L442) [query.ts:31](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L31)
___
### \_prefilter
`Private` **\_prefilter**: `boolean`
#### Defined in
[query.ts:35](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L35)
___ ___
### \_query ### \_query
`Private` `Readonly` **\_query**: `T` `Private` `Optional` `Readonly` **\_query**: `T`
#### Defined in #### Defined in
[index.ts:438](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L438) [query.ts:26](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L26)
___ ___
@@ -132,7 +145,7 @@ ___
#### Defined in #### Defined in
[index.ts:439](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L439) [query.ts:28](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L28)
___ ___
@@ -142,7 +155,7 @@ ___
#### Defined in #### Defined in
[index.ts:441](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L441) [query.ts:30](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L30)
___ ___
@@ -152,27 +165,27 @@ ___
#### Defined in #### Defined in
[index.ts:443](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L443) [query.ts:32](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L32)
___ ___
### \_tbl ### \_tbl
`Private` `Readonly` **\_tbl**: `any` `Private` `Optional` `Readonly` **\_tbl**: `any`
#### Defined in #### Defined in
[index.ts:437](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L437) [query.ts:27](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L27)
___ ___
### where ### where
**where**: (`value`: `string`) => [`Query`](Query.md)<`T`\> **where**: (`value`: `string`) => [`Query`](Query.md)\<`T`\>
#### Type declaration #### Type declaration
▸ (`value`): [`Query`](Query.md)<`T`\> ▸ (`value`): [`Query`](Query.md)\<`T`\>
A filter statement to be applied to this query. A filter statement to be applied to this query.
@@ -184,17 +197,17 @@ A filter statement to be applied to this query.
##### Returns ##### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:496](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L496) [query.ts:87](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L87)
## Methods ## Methods
### execute ### execute
**execute**<`T`\>(): `Promise`<`T`[]\> **execute**\<`T`\>(): `Promise`\<`T`[]\>
Execute the query and return the results as an Array of Objects Execute the query and return the results as an Array of Objects
@@ -202,21 +215,21 @@ Execute the query and return the results as an Array of Objects
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `T` | `Record`<`string`, `unknown`\> | | `T` | `Record`\<`string`, `unknown`\> |
#### Returns #### Returns
`Promise`<`T`[]\> `Promise`\<`T`[]\>
#### Defined in #### Defined in
[index.ts:519](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L519) [query.ts:115](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L115)
___ ___
### filter ### filter
**filter**(`value`): [`Query`](Query.md)<`T`\> **filter**(`value`): [`Query`](Query.md)\<`T`\>
A filter statement to be applied to this query. A filter statement to be applied to this query.
@@ -228,17 +241,31 @@ A filter statement to be applied to this query.
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:491](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L491) [query.ts:82](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L82)
___
### isElectron
`Private` **isElectron**(): `boolean`
#### Returns
`boolean`
#### Defined in
[query.ts:142](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L142)
___ ___
### limit ### limit
**limit**(`value`): [`Query`](Query.md)<`T`\> **limit**(`value`): [`Query`](Query.md)\<`T`\>
Sets the number of results that will be returned Sets the number of results that will be returned
@@ -250,24 +277,20 @@ Sets the number of results that will be returned
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:464](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L464) [query.ts:55](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L55)
___ ___
### metricType ### metricType
**metricType**(`value`): [`Query`](Query.md)<`T`\> **metricType**(`value`): [`Query`](Query.md)\<`T`\>
The MetricType used for this Query. The MetricType used for this Query.
**`See`**
MetricType for the different options
#### Parameters #### Parameters
| Name | Type | Description | | Name | Type | Description |
@@ -276,17 +299,21 @@ MetricType for the different options
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
**`See`**
MetricType for the different options
#### Defined in #### Defined in
[index.ts:511](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L511) [query.ts:102](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L102)
___ ___
### nprobes ### nprobes
**nprobes**(`value`): [`Query`](Query.md)<`T`\> **nprobes**(`value`): [`Query`](Query.md)\<`T`\>
The number of probes used. A higher number makes search more accurate but also slower. The number of probes used. A higher number makes search more accurate but also slower.
@@ -298,17 +325,37 @@ The number of probes used. A higher number makes search more accurate but also s
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:482](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L482) [query.ts:73](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L73)
___
### prefilter
**prefilter**(`value`): [`Query`](Query.md)\<`T`\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `boolean` |
#### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[query.ts:107](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L107)
___ ___
### refineFactor ### refineFactor
**refineFactor**(`value`): [`Query`](Query.md)<`T`\> **refineFactor**(`value`): [`Query`](Query.md)\<`T`\>
Refine the results by reading extra elements and re-ranking them in memory. Refine the results by reading extra elements and re-ranking them in memory.
@@ -320,17 +367,17 @@ Refine the results by reading extra elements and re-ranking them in memory.
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:473](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L473) [query.ts:64](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L64)
___ ___
### select ### select
**select**(`value`): [`Query`](Query.md)<`T`\> **select**(`value`): [`Query`](Query.md)\<`T`\>
Return only the specified columns. Return only the specified columns.
@@ -342,8 +389,8 @@ Return only the specified columns.
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:502](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L502) [query.ts:93](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L93)

View File

@@ -22,7 +22,7 @@ Cosine distance
#### Defined in #### Defined in
[index.ts:567](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L567) [index.ts:798](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L798)
___ ___
@@ -34,7 +34,7 @@ Dot product
#### Defined in #### Defined in
[index.ts:572](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L572) [index.ts:803](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L803)
___ ___
@@ -46,4 +46,4 @@ Euclidean distance
#### Defined in #### Defined in
[index.ts:562](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L562) [index.ts:793](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L793)

View File

@@ -22,7 +22,7 @@ Append new data to the table.
#### Defined in #### Defined in
[index.ts:552](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L552) [index.ts:766](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L766)
___ ___
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
#### Defined in #### Defined in
[index.ts:548](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L548) [index.ts:762](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L762)
___ ___
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
#### Defined in #### Defined in
[index.ts:550](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L550) [index.ts:764](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L764)

View File

@@ -18,7 +18,7 @@
#### Defined in #### Defined in
[index.ts:31](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L31) [index.ts:34](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L34)
___ ___
@@ -28,7 +28,7 @@ ___
#### Defined in #### Defined in
[index.ts:33](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L33) [index.ts:36](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L36)
___ ___
@@ -38,4 +38,4 @@ ___
#### Defined in #### Defined in
[index.ts:35](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L35) [index.ts:38](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L38)

View File

@@ -0,0 +1,34 @@
[vectordb](../README.md) / [Exports](../modules.md) / CleanupStats
# Interface: CleanupStats
## Table of contents
### Properties
- [bytesRemoved](CleanupStats.md#bytesremoved)
- [oldVersions](CleanupStats.md#oldversions)
## Properties
### bytesRemoved
**bytesRemoved**: `number`
The number of bytes removed from disk.
#### Defined in
[index.ts:637](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L637)
___
### oldVersions
**oldVersions**: `number`
The number of old table versions removed.
#### Defined in
[index.ts:641](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L641)

View File

@@ -0,0 +1,62 @@
[vectordb](../README.md) / [Exports](../modules.md) / CompactionMetrics
# Interface: CompactionMetrics
## Table of contents
### Properties
- [filesAdded](CompactionMetrics.md#filesadded)
- [filesRemoved](CompactionMetrics.md#filesremoved)
- [fragmentsAdded](CompactionMetrics.md#fragmentsadded)
- [fragmentsRemoved](CompactionMetrics.md#fragmentsremoved)
## Properties
### filesAdded
**filesAdded**: `number`
The number of files added. This is typically equal to the number of
fragments added.
#### Defined in
[index.ts:692](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L692)
___
### filesRemoved
**filesRemoved**: `number`
The number of files that were removed. Each fragment may have more than one
file.
#### Defined in
[index.ts:687](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L687)
___
### fragmentsAdded
**fragmentsAdded**: `number`
The number of new fragments that were created.
#### Defined in
[index.ts:682](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L682)
___
### fragmentsRemoved
**fragmentsRemoved**: `number`
The number of fragments that were removed.
#### Defined in
[index.ts:678](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L678)

View File

@@ -0,0 +1,80 @@
[vectordb](../README.md) / [Exports](../modules.md) / CompactionOptions
# Interface: CompactionOptions
## Table of contents
### Properties
- [materializeDeletions](CompactionOptions.md#materializedeletions)
- [materializeDeletionsThreshold](CompactionOptions.md#materializedeletionsthreshold)
- [maxRowsPerGroup](CompactionOptions.md#maxrowspergroup)
- [numThreads](CompactionOptions.md#numthreads)
- [targetRowsPerFragment](CompactionOptions.md#targetrowsperfragment)
## Properties
### materializeDeletions
`Optional` **materializeDeletions**: `boolean`
If true, fragments that have rows that are deleted may be compacted to
remove the deleted rows. This can improve the performance of queries.
Default is true.
#### Defined in
[index.ts:660](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L660)
___
### materializeDeletionsThreshold
`Optional` **materializeDeletionsThreshold**: `number`
A number between 0 and 1, representing the proportion of rows that must be
marked deleted before a fragment is a candidate for compaction to remove
the deleted rows. Default is 10%.
#### Defined in
[index.ts:666](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L666)
___
### maxRowsPerGroup
`Optional` **maxRowsPerGroup**: `number`
The maximum number of rows per group. Defaults to 1024.
#### Defined in
[index.ts:654](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L654)
___
### numThreads
`Optional` **numThreads**: `number`
The number of threads to use for compaction. If not provided, defaults to
the number of cores on the machine.
#### Defined in
[index.ts:671](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L671)
___
### targetRowsPerFragment
`Optional` **targetRowsPerFragment**: `number`
The number of rows per fragment to target. Fragments that have fewer rows
will be compacted into adjacent fragments to produce larger fragments.
Defaults to 1024 * 1024.
#### Defined in
[index.ts:650](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L650)

View File

@@ -19,7 +19,6 @@ Connection could be local against filesystem or remote against a server.
### Methods ### Methods
- [createTable](Connection.md#createtable) - [createTable](Connection.md#createtable)
- [createTableArrow](Connection.md#createtablearrow)
- [dropTable](Connection.md#droptable) - [dropTable](Connection.md#droptable)
- [openTable](Connection.md#opentable) - [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames) - [tableNames](Connection.md#tablenames)
@@ -32,13 +31,76 @@ Connection could be local against filesystem or remote against a server.
#### Defined in #### Defined in
[index.ts:70](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L70) [index.ts:125](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L125)
## Methods ## Methods
### createTable ### createTable
**createTable**<`T`\>(`name`, `data`, `mode?`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\> **createTable**\<`T`\>(`«destructured»`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
Creates a new Table, optionally initializing it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `«destructured»` | [`CreateTableOptions`](CreateTableOptions.md)\<`T`\> |
#### Returns
`Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in
[index.ts:146](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L146)
**createTable**(`name`, `data`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
#### Returns
`Promise`\<[`Table`](Table.md)\<`number`[]\>\>
#### Defined in
[index.ts:154](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L154)
**createTable**(`name`, `data`, `options`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
#### Returns
`Promise`\<[`Table`](Table.md)\<`number`[]\>\>
#### Defined in
[index.ts:163](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L163)
**createTable**\<`T`\>(`name`, `data`, `embeddings`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
Creates a new Table and initialize it with new data. Creates a new Table and initialize it with new data.
@@ -53,44 +115,49 @@ Creates a new Table and initialize it with new data.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `name` | `string` | The name of the table. | | `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table | | `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. | | `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
#### Returns #### Returns
`Promise`<[`Table`](Table.md)<`T`\>\> `Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in #### Defined in
[index.ts:90](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L90) [index.ts:172](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L172)
___ **createTable**\<`T`\>(`name`, `data`, `embeddings`, `options`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
### createTableArrow Creates a new Table and initialize it with new data.
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\> #### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters #### Parameters
| Name | Type | | Name | Type | Description |
| :------ | :------ | | :------ | :------ | :------ |
| `name` | `string` | | `name` | `string` | The name of the table. |
| `table` | `Table`<`any`\> | | `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
#### Returns #### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\> `Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in #### Defined in
[index.ts:92](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L92) [index.ts:181](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L181)
___ ___
### dropTable ### dropTable
**dropTable**(`name`): `Promise`<`void`\> **dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table. Drop an existing table.
@@ -102,17 +169,17 @@ Drop an existing table.
#### Returns #### Returns
`Promise`<`void`\> `Promise`\<`void`\>
#### Defined in #### Defined in
[index.ts:98](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L98) [index.ts:187](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L187)
___ ___
### openTable ### openTable
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\> **openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
Open a table in the database. Open a table in the database.
@@ -127,26 +194,26 @@ Open a table in the database.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `name` | `string` | The name of the table. | | `name` | `string` | The name of the table. |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table | | `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
#### Returns #### Returns
`Promise`<[`Table`](Table.md)<`T`\>\> `Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in #### Defined in
[index.ts:80](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L80) [index.ts:135](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L135)
___ ___
### tableNames ### tableNames
**tableNames**(): `Promise`<`string`[]\> **tableNames**(): `Promise`\<`string`[]\>
#### Returns #### Returns
`Promise`<`string`[]\> `Promise`\<`string`[]\>
#### Defined in #### Defined in
[index.ts:72](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L72) [index.ts:127](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L127)

View File

@@ -6,18 +6,62 @@
### Properties ### Properties
- [apiKey](ConnectionOptions.md#apikey)
- [awsCredentials](ConnectionOptions.md#awscredentials) - [awsCredentials](ConnectionOptions.md#awscredentials)
- [awsRegion](ConnectionOptions.md#awsregion)
- [hostOverride](ConnectionOptions.md#hostoverride)
- [region](ConnectionOptions.md#region)
- [uri](ConnectionOptions.md#uri) - [uri](ConnectionOptions.md#uri)
## Properties ## Properties
### apiKey
`Optional` **apiKey**: `string`
#### Defined in
[index.ts:49](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L49)
___
### awsCredentials ### awsCredentials
`Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md) `Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md)
#### Defined in #### Defined in
[index.ts:40](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L40) [index.ts:44](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L44)
___
### awsRegion
`Optional` **awsRegion**: `string`
#### Defined in
[index.ts:46](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L46)
___
### hostOverride
`Optional` **hostOverride**: `string`
#### Defined in
[index.ts:54](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L54)
___
### region
`Optional` **region**: `string`
#### Defined in
[index.ts:51](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L51)
___ ___
@@ -27,4 +71,4 @@ ___
#### Defined in #### Defined in
[index.ts:39](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L39) [index.ts:42](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L42)

View File

@@ -0,0 +1,69 @@
[vectordb](../README.md) / [Exports](../modules.md) / CreateTableOptions
# Interface: CreateTableOptions\<T\>
## Type parameters
| Name |
| :------ |
| `T` |
## Table of contents
### Properties
- [data](CreateTableOptions.md#data)
- [embeddingFunction](CreateTableOptions.md#embeddingfunction)
- [name](CreateTableOptions.md#name)
- [schema](CreateTableOptions.md#schema)
- [writeOptions](CreateTableOptions.md#writeoptions)
## Properties
### data
`Optional` **data**: `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[]
#### Defined in
[index.ts:79](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L79)
___
### embeddingFunction
`Optional` **embeddingFunction**: [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\>
#### Defined in
[index.ts:85](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L85)
___
### name
**name**: `string`
#### Defined in
[index.ts:76](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L76)
___
### schema
`Optional` **schema**: `Schema`\<`any`\>
#### Defined in
[index.ts:82](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L82)
___
### writeOptions
`Optional` **writeOptions**: [`WriteOptions`](WriteOptions.md)
#### Defined in
[index.ts:88](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L88)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction [vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
# Interface: EmbeddingFunction<T\> # Interface: EmbeddingFunction\<T\>
An embedding function that automatically creates vector representation for a given column. An embedding function that automatically creates vector representation for a given column.
@@ -25,11 +25,11 @@ An embedding function that automatically creates vector representation for a giv
### embed ### embed
**embed**: (`data`: `T`[]) => `Promise`<`number`[][]\> **embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
#### Type declaration #### Type declaration
▸ (`data`): `Promise`<`number`[][]\> ▸ (`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values. Creates a vector representation for the given values.
@@ -41,11 +41,11 @@ Creates a vector representation for the given values.
##### Returns ##### Returns
`Promise`<`number`[][]\> `Promise`\<`number`[][]\>
#### Defined in #### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L27) [embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/embedding_function.ts#L27)
___ ___
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in #### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L22) [embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/embedding_function.ts#L22)

View File

@@ -0,0 +1,30 @@
[vectordb](../README.md) / [Exports](../modules.md) / IndexStats
# Interface: IndexStats
## Table of contents
### Properties
- [numIndexedRows](IndexStats.md#numindexedrows)
- [numUnindexedRows](IndexStats.md#numunindexedrows)
## Properties
### numIndexedRows
**numIndexedRows**: ``null`` \| `number`
#### Defined in
[index.ts:344](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L344)
___
### numUnindexedRows
• **numUnindexedRows**: ``null`` \| `number`
#### Defined in
[index.ts:345](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L345)

View File

@@ -7,6 +7,7 @@
### Properties ### Properties
- [column](IvfPQIndexConfig.md#column) - [column](IvfPQIndexConfig.md#column)
- [index\_cache\_size](IvfPQIndexConfig.md#index_cache_size)
- [index\_name](IvfPQIndexConfig.md#index_name) - [index\_name](IvfPQIndexConfig.md#index_name)
- [max\_iters](IvfPQIndexConfig.md#max_iters) - [max\_iters](IvfPQIndexConfig.md#max_iters)
- [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters) - [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters)
@@ -28,7 +29,19 @@ The column to be indexed
#### Defined in #### Defined in
[index.ts:382](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L382) [index.ts:701](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L701)
___
### index\_cache\_size
`Optional` **index\_cache\_size**: `number`
Cache size of the index
#### Defined in
[index.ts:750](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L750)
___ ___
@@ -40,7 +53,7 @@ A unique name for the index
#### Defined in #### Defined in
[index.ts:387](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L387) [index.ts:706](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L706)
___ ___
@@ -52,7 +65,7 @@ The max number of iterations for kmeans training.
#### Defined in #### Defined in
[index.ts:402](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L402) [index.ts:721](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L721)
___ ___
@@ -64,7 +77,7 @@ Max number of iterations to train OPQ, if `use_opq` is true.
#### Defined in #### Defined in
[index.ts:421](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L421) [index.ts:740](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L740)
___ ___
@@ -76,7 +89,7 @@ Metric type, L2 or Cosine
#### Defined in #### Defined in
[index.ts:392](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L392) [index.ts:711](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L711)
___ ___
@@ -88,7 +101,7 @@ The number of bits to present one PQ centroid.
#### Defined in #### Defined in
[index.ts:416](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L416) [index.ts:735](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L735)
___ ___
@@ -100,7 +113,7 @@ The number of partitions this index
#### Defined in #### Defined in
[index.ts:397](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L397) [index.ts:716](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L716)
___ ___
@@ -112,7 +125,7 @@ Number of subvectors to build PQ code
#### Defined in #### Defined in
[index.ts:412](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L412) [index.ts:731](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L731)
___ ___
@@ -124,7 +137,7 @@ Replace an existing index with the same name if it exists.
#### Defined in #### Defined in
[index.ts:426](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L426) [index.ts:745](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L745)
___ ___
@@ -134,7 +147,7 @@ ___
#### Defined in #### Defined in
[index.ts:428](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L428) [index.ts:752](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L752)
___ ___
@@ -146,4 +159,4 @@ Train as optimized product quantization.
#### Defined in #### Defined in
[index.ts:407](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L407) [index.ts:726](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L726)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / Table [vectordb](../README.md) / [Exports](../modules.md) / Table
# Interface: Table<T\> # Interface: Table\<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields. A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
@@ -22,19 +22,22 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [countRows](Table.md#countrows) - [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex) - [createIndex](Table.md#createindex)
- [delete](Table.md#delete) - [delete](Table.md#delete)
- [indexStats](Table.md#indexstats)
- [listIndices](Table.md#listindices)
- [name](Table.md#name) - [name](Table.md#name)
- [overwrite](Table.md#overwrite) - [overwrite](Table.md#overwrite)
- [search](Table.md#search) - [search](Table.md#search)
- [update](Table.md#update)
## Properties ## Properties
### add ### add
**add**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\> **add**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
#### Type declaration #### Type declaration
▸ (`data`): `Promise`<`number`\> ▸ (`data`): `Promise`\<`number`\>
Insert records into this Table. Insert records into this Table.
@@ -42,54 +45,50 @@ Insert records into this Table.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table | | `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns ##### Returns
`Promise`<`number`\> `Promise`\<`number`\>
The number of rows added to the table The number of rows added to the table
#### Defined in #### Defined in
[index.ts:120](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L120) [index.ts:209](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L209)
___ ___
### countRows ### countRows
**countRows**: () => `Promise`<`number`\> **countRows**: () => `Promise`\<`number`\>
#### Type declaration #### Type declaration
▸ (): `Promise`<`number`\> ▸ (): `Promise`\<`number`\>
Returns the number of rows in this table. Returns the number of rows in this table.
##### Returns ##### Returns
`Promise`<`number`\> `Promise`\<`number`\>
#### Defined in #### Defined in
[index.ts:140](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L140) [index.ts:229](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L229)
___ ___
### createIndex ### createIndex
**createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`<`any`\> **createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`\<`any`\>
#### Type declaration #### Type declaration
▸ (`indexParams`): `Promise`<`any`\> ▸ (`indexParams`): `Promise`\<`any`\>
Create an ANN index on this Table vector index. Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
##### Parameters ##### Parameters
| Name | Type | Description | | Name | Type | Description |
@@ -98,27 +97,41 @@ VectorIndexParams.
##### Returns ##### Returns
`Promise`<`any`\> `Promise`\<`any`\>
**`See`**
VectorIndexParams.
#### Defined in #### Defined in
[index.ts:135](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L135) [index.ts:224](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L224)
___ ___
### delete ### delete
**delete**: (`filter`: `string`) => `Promise`<`void`\> **delete**: (`filter`: `string`) => `Promise`\<`void`\>
#### Type declaration #### Type declaration
▸ (`filter`): `Promise`<`void`\> ▸ (`filter`): `Promise`\<`void`\>
Delete rows from this table. Delete rows from this table.
This can be used to delete a single row, many rows, all rows, or This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing). sometimes no rows (if your predicate matches nothing).
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
##### Returns
`Promise`\<`void`\>
**`Examples`** **`Examples`**
```ts ```ts
@@ -142,19 +155,55 @@ await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1 await tbl.countRows() // Returns 1
``` ```
#### Defined in
[index.ts:263](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L263)
___
### indexStats
**indexStats**: (`indexUuid`: `string`) => `Promise`\<[`IndexStats`](IndexStats.md)\>
#### Type declaration
▸ (`indexUuid`): `Promise`\<[`IndexStats`](IndexStats.md)\>
Get statistics about an index.
##### Parameters ##### Parameters
| Name | Type | Description | | Name | Type |
| :------ | :------ | :------ | | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. | | `indexUuid` | `string` |
##### Returns ##### Returns
`Promise`<`void`\> `Promise`\<[`IndexStats`](IndexStats.md)\>
#### Defined in #### Defined in
[index.ts:174](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L174) [index.ts:306](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L306)
___
### listIndices
**listIndices**: () => `Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
#### Type declaration
▸ (): `Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
List the indicies on this table.
##### Returns
`Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
#### Defined in
[index.ts:301](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L301)
___ ___
@@ -164,17 +213,17 @@ ___
#### Defined in #### Defined in
[index.ts:106](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L106) [index.ts:195](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L195)
___ ___
### overwrite ### overwrite
**overwrite**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\> **overwrite**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
#### Type declaration #### Type declaration
▸ (`data`): `Promise`<`number`\> ▸ (`data`): `Promise`\<`number`\>
Insert records into this Table, replacing its contents. Insert records into this Table, replacing its contents.
@@ -182,27 +231,27 @@ Insert records into this Table, replacing its contents.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table | | `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns ##### Returns
`Promise`<`number`\> `Promise`\<`number`\>
The number of rows added to the table The number of rows added to the table
#### Defined in #### Defined in
[index.ts:128](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L128) [index.ts:217](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L217)
___ ___
### search ### search
**search**: (`query`: `T`) => [`Query`](../classes/Query.md)<`T`\> **search**: (`query`: `T`) => [`Query`](../classes/Query.md)\<`T`\>
#### Type declaration #### Type declaration
▸ (`query`): [`Query`](../classes/Query.md)<`T`\> ▸ (`query`): [`Query`](../classes/Query.md)\<`T`\>
Creates a search query to find the nearest neighbors of the given search term Creates a search query to find the nearest neighbors of the given search term
@@ -214,8 +263,59 @@ Creates a search query to find the nearest neighbors of the given search term
##### Returns ##### Returns
[`Query`](../classes/Query.md)<`T`\> [`Query`](../classes/Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:112](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L112) [index.ts:201](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L201)
___
### update
**update**: (`args`: [`UpdateArgs`](UpdateArgs.md) \| [`UpdateSqlArgs`](UpdateSqlArgs.md)) => `Promise`\<`void`\>
#### Type declaration
▸ (`args`): `Promise`\<`void`\>
Update rows in this table.
This can be used to update a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `args` | [`UpdateArgs`](UpdateArgs.md) \| [`UpdateSqlArgs`](UpdateSqlArgs.md) | see [UpdateArgs](UpdateArgs.md) and [UpdateSqlArgs](UpdateSqlArgs.md) for more details |
##### Returns
`Promise`\<`void`\>
**`Examples`**
```ts
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [3, 3], name: 'Ye'},
{id: 2, vector: [4, 4], name: 'Mike'},
];
const tbl = await con.createTable("my_table", data)
await tbl.update({
filter: "id = 2",
updates: { vector: [2, 2], name: "Michael" },
})
let results = await tbl.search([1, 1]).execute();
// Returns [
// {id: 2, vector: [2, 2], name: 'Michael'}
// {id: 1, vector: [3, 3], name: 'Ye'}
// ]
```
#### Defined in
[index.ts:296](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L296)

View File

@@ -0,0 +1,36 @@
[vectordb](../README.md) / [Exports](../modules.md) / UpdateArgs
# Interface: UpdateArgs
## Table of contents
### Properties
- [values](UpdateArgs.md#values)
- [where](UpdateArgs.md#where)
## Properties
### values
**values**: `Record`\<`string`, `Literal`\>
A key-value map of updates. The keys are the column names, and the values are the
new values to set
#### Defined in
[index.ts:320](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L320)
___
### where
`Optional` **where**: `string`
A filter in the same format used by a sql WHERE clause. The filter may be empty,
in which case all rows will be updated.
#### Defined in
[index.ts:314](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L314)

View File

@@ -0,0 +1,36 @@
[vectordb](../README.md) / [Exports](../modules.md) / UpdateSqlArgs
# Interface: UpdateSqlArgs
## Table of contents
### Properties
- [valuesSql](UpdateSqlArgs.md#valuessql)
- [where](UpdateSqlArgs.md#where)
## Properties
### valuesSql
**valuesSql**: `Record`\<`string`, `string`\>
A key-value map of updates. The keys are the column names, and the values are the
new values to set as SQL expressions.
#### Defined in
[index.ts:334](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L334)
___
### where
`Optional` **where**: `string`
A filter in the same format used by a sql WHERE clause. The filter may be empty,
in which case all rows will be updated.
#### Defined in
[index.ts:328](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L328)

View File

@@ -0,0 +1,41 @@
[vectordb](../README.md) / [Exports](../modules.md) / VectorIndex
# Interface: VectorIndex
## Table of contents
### Properties
- [columns](VectorIndex.md#columns)
- [name](VectorIndex.md#name)
- [uuid](VectorIndex.md#uuid)
## Properties
### columns
**columns**: `string`[]
#### Defined in
[index.ts:338](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L338)
___
### name
**name**: `string`
#### Defined in
[index.ts:339](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L339)
___
### uuid
**uuid**: `string`
#### Defined in
[index.ts:340](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L340)

View File

@@ -0,0 +1,27 @@
[vectordb](../README.md) / [Exports](../modules.md) / WriteOptions
# Interface: WriteOptions
Write options when creating a Table.
## Implemented by
- [`DefaultWriteOptions`](../classes/DefaultWriteOptions.md)
## Table of contents
### Properties
- [writeMode](WriteOptions.md#writemode)
## Properties
### writeMode
`Optional` **writeMode**: [`WriteMode`](../enums/WriteMode.md)
A [WriteMode](../enums/WriteMode.md) to use on this operation
#### Defined in
[index.ts:774](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L774)

View File

@@ -11,6 +11,7 @@
### Classes ### Classes
- [DefaultWriteOptions](classes/DefaultWriteOptions.md)
- [LocalConnection](classes/LocalConnection.md) - [LocalConnection](classes/LocalConnection.md)
- [LocalTable](classes/LocalTable.md) - [LocalTable](classes/LocalTable.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md) - [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
@@ -19,11 +20,20 @@
### Interfaces ### Interfaces
- [AwsCredentials](interfaces/AwsCredentials.md) - [AwsCredentials](interfaces/AwsCredentials.md)
- [CleanupStats](interfaces/CleanupStats.md)
- [CompactionMetrics](interfaces/CompactionMetrics.md)
- [CompactionOptions](interfaces/CompactionOptions.md)
- [Connection](interfaces/Connection.md) - [Connection](interfaces/Connection.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md) - [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [EmbeddingFunction](interfaces/EmbeddingFunction.md) - [EmbeddingFunction](interfaces/EmbeddingFunction.md)
- [IndexStats](interfaces/IndexStats.md)
- [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md) - [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md)
- [Table](interfaces/Table.md) - [Table](interfaces/Table.md)
- [UpdateArgs](interfaces/UpdateArgs.md)
- [UpdateSqlArgs](interfaces/UpdateSqlArgs.md)
- [VectorIndex](interfaces/VectorIndex.md)
- [WriteOptions](interfaces/WriteOptions.md)
### Type Aliases ### Type Aliases
@@ -32,6 +42,7 @@
### Functions ### Functions
- [connect](modules.md#connect) - [connect](modules.md#connect)
- [isWriteOptions](modules.md#iswriteoptions)
## Type Aliases ## Type Aliases
@@ -41,13 +52,13 @@
#### Defined in #### Defined in
[index.ts:431](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L431) [index.ts:755](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L755)
## Functions ## Functions
### connect ### connect
**connect**(`uri`): `Promise`<[`Connection`](interfaces/Connection.md)\> **connect**(`uri`): `Promise`\<[`Connection`](interfaces/Connection.md)\>
Connect to a LanceDB instance at the given URI Connect to a LanceDB instance at the given URI
@@ -59,24 +70,44 @@ Connect to a LanceDB instance at the given URI
#### Returns #### Returns
`Promise`<[`Connection`](interfaces/Connection.md)\> `Promise`\<[`Connection`](interfaces/Connection.md)\>
#### Defined in #### Defined in
[index.ts:47](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L47) [index.ts:95](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L95)
**connect**(`opts`): `Promise`<[`Connection`](interfaces/Connection.md)\> **connect**(`opts`): `Promise`\<[`Connection`](interfaces/Connection.md)\>
#### Parameters #### Parameters
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `opts` | `Partial`<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> | | `opts` | `Partial`\<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> |
#### Returns #### Returns
`Promise`<[`Connection`](interfaces/Connection.md)\> `Promise`\<[`Connection`](interfaces/Connection.md)\>
#### Defined in #### Defined in
[index.ts:48](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L48) [index.ts:96](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L96)
___
### isWriteOptions
**isWriteOptions**(`value`): value is WriteOptions
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `any` |
#### Returns
value is WriteOptions
#### Defined in
[index.ts:781](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L781)

View File

@@ -22,8 +22,6 @@ pip install lancedb
::: lancedb.query.LanceQueryBuilder ::: lancedb.query.LanceQueryBuilder
::: lancedb.query.LanceFtsQueryBuilder
## Embeddings ## Embeddings
::: lancedb.embeddings.registry.EmbeddingFunctionRegistry ::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
@@ -56,7 +54,7 @@ pip install lancedb
## Utilities ## Utilities
::: lancedb.vector ::: lancedb.schema.vector
## Integrations ## Integrations

View File

@@ -0,0 +1,18 @@
# LanceDB Python API Reference
## Installation
```shell
pip install lancedb
```
## Connection
::: lancedb.connect
::: lancedb.remote.db.RemoteDBConnection
## Table
::: lancedb.remote.table.RemoteTable

1
docs/src/robots.txt Normal file
View File

@@ -0,0 +1 @@
User-agent: *

View File

@@ -118,4 +118,101 @@ However, fast vector search using indices often entails making a trade-off with
This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN) This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN)
always returns 100% recall. always returns 100% recall.
See [ANN Index](ann_indexes.md) for more details. See [ANN Index](ann_indexes.md) for more details.
### Output formats
LanceDB returns results in many different formats commonly used in python.
Let's create a LanceDB table with a nested schema:
```python
from datetime import datetime
import lancedb
from lancedb.pydantic import LanceModel, Vector
import numpy as np
from pydantic import BaseModel
uri = "data/sample-lancedb-nested"
class Metadata(BaseModel):
source: str
timestamp: datetime
class Document(BaseModel):
content: str
meta: Metadata
class LanceSchema(LanceModel):
id: str
vector: Vector(1536)
payload: Document
# Let's add 100 sample rows to our dataset
data = [LanceSchema(
id=f"id{i}",
vector=np.random.randn(1536),
payload=Document(
content=f"document{i}", meta=Metadata(source=f"source{i%10}", timestamp=datetime.now())
),
) for i in range(100)]
tbl = db.create_table("documents", data=data)
```
#### As a pyarrow table
Using `to_arrow()` we can get the results back as a pyarrow Table.
This result table has the same columns as the LanceDB table, with
the addition of an `_distance` column for vector search or a `score`
column for full text search.
```python
tbl.search(np.random.randn(1536)).to_arrow()
```
#### As a pandas dataframe
You can also get the results as a pandas dataframe.
```python
tbl.search(np.random.randn(1536)).to_pandas()
```
While other formats like Arrow/Pydantic/Python dicts have a natural
way to handle nested schemas, pandas can only store nested data as a
python dict column, which makes it difficult to support nested references.
So for convenience, you can also tell LanceDB to flatten a nested schema
when creating the pandas dataframe.
```python
tbl.search(np.random.randn(1536)).to_pandas(flatten=True)
```
If your table has a deeply nested struct, you can control how many levels
of nesting to flatten by passing in a positive integer.
```python
tbl.search(np.random.randn(1536)).to_pandas(flatten=1)
```
#### As a list of python dicts
You can of course return results as a list of python dicts.
```python
tbl.search(np.random.randn(1536)).to_list()
```
#### As a list of pydantic models
We can add data using pydantic models, and we can certainly
retrieve results as pydantic models
```python
tbl.search(np.random.randn(1536)).to_pydantic(LanceSchema)
```
Note that in this case the extra `_distance` field is discarded since
it's not part of the LanceSchema.

View File

@@ -1,7 +1,7 @@
# SQL filters # SQL filters
LanceDB embraces the utilization of standard SQL expressions as predicates for hybrid LanceDB embraces the utilization of standard SQL expressions as predicates for hybrid
filters. It can be used during hybrid vector search and deletion operations. filters. It can be used during hybrid vector search, update, and deletion operations.
Currently, Lance supports a growing list of expressions. Currently, Lance supports a growing list of expressions.
@@ -22,7 +22,7 @@ import numpy as np
uri = "data/sample-lancedb" uri = "data/sample-lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
data = [{"vector": row, "item": f"item {i}"} data = [{"vector": row, "item": f"item {i}", "id": i}
for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))] for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))]
tbl = db.create_table("my_vectors", data=data) tbl = db.create_table("my_vectors", data=data)
@@ -35,33 +35,25 @@ const db = await vectordb.connect('data/sample-lancedb')
let data = [] let data = []
for (let i = 0; i < 10_000; i++) { for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},) data.push({vector: Array(1536).fill(i), id: i, item: `item ${i}`, strId: `${i}`})
} }
const tbl = await db.createTable('my_vectors', data) const tbl = await db.createTable('myVectors', data)
``` ```
--> -->
=== "Python" === "Python"
```python ```python
tbl.search([100, 102]) \ tbl.search([100, 102]) \
.where("""( .where("(item IN ('item 0', 'item 2')) AND (id > 10)") \
(label IN [10, 20]) .to_arrow()
AND
(note.email IS NOT NULL)
) OR NOT note.created
""")
``` ```
=== "Javascript" === "Javascript"
```javascript ```javascript
tbl.search([100, 102]) await tbl.search(Array(1536).fill(0))
.where(`( .where("(item IN ('item 0', 'item 2')) AND (id > 10)")
(label IN [10, 20]) .execute()
AND
(note.email IS NOT NULL)
) OR NOT note.created
`)
``` ```
@@ -118,3 +110,22 @@ The mapping from SQL types to Arrow types is:
[^1]: See precision mapping in previous table. [^1]: See precision mapping in previous table.
## Filtering without Vector Search
You can also filter your data without search.
=== "Python"
```python
tbl.search().where("id=10").limit(10).to_arrow()
```
=== "JavaScript"
```javascript
await tbl.where('id=10').limit(10).execute()
```
!!! warning
If your table is large, this could potentially return a very large
amount of data. Please be sure to use a `limit` clause unless
you're sure you want to return the whole result set.

View File

@@ -18,29 +18,45 @@ python_file = ".py"
python_folder = "python" python_folder = "python"
files = glob.glob(glob_string, recursive=True) files = glob.glob(glob_string, recursive=True)
excluded_files = [f for excluded_glob in excluded_globs for f in glob.glob(excluded_glob, recursive=True)] excluded_files = [
f
for excluded_glob in excluded_globs
for f in glob.glob(excluded_glob, recursive=True)
]
def yield_lines(lines: Iterator[str], prefix: str, suffix: str): def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
in_code_block = False in_code_block = False
# Python code has strict indentation # Python code has strict indentation
strip_length = 0 strip_length = 0
skip_test = False
for line in lines: for line in lines:
if "skip-test" in line:
skip_test = True
if line.strip().startswith(prefix + python_prefix): if line.strip().startswith(prefix + python_prefix):
in_code_block = True in_code_block = True
strip_length = len(line) - len(line.lstrip()) strip_length = len(line) - len(line.lstrip())
elif in_code_block and line.strip().startswith(suffix): elif in_code_block and line.strip().startswith(suffix):
in_code_block = False in_code_block = False
yield "\n" if not skip_test:
yield "\n"
skip_test = False
elif in_code_block: elif in_code_block:
yield line[strip_length:] if not skip_test:
yield line[strip_length:]
for file in filter(lambda file: file not in excluded_files, files): for file in filter(lambda file: file not in excluded_files, files):
with open(file, "r") as f: with open(file, "r") as f:
lines = list(yield_lines(iter(f), "```", "```")) lines = list(yield_lines(iter(f), "```", "```"))
if len(lines) > 0: if len(lines) > 0:
out_path = Path(python_folder) / Path(file).name.strip(".md") / (Path(file).name.strip(".md") + python_file) print(lines)
out_path = (
Path(python_folder)
/ Path(file).name.strip(".md")
/ (Path(file).name.strip(".md") + python_file)
)
print(out_path) print(out_path)
out_path.parent.mkdir(exist_ok=True, parents=True) out_path.parent.mkdir(exist_ok=True, parents=True)
with open(out_path, "w") as out: with open(out_path, "w") as out:
out.writelines(lines) out.writelines(lines)

View File

@@ -9,8 +9,13 @@ npm install vectordb
``` ```
This will download the appropriate native library for your platform. We currently This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not support:
yet support Windows or musl-based Linux (such as Alpine Linux).
* Linux (x86_64 and aarch64)
* MacOS (Intel and ARM/M1/M2)
* Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage ## Usage

104
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.3.4", "version": "0.4.1",
"lockfileVersion": 2, "lockfileVersion": 2,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.3.4", "version": "0.4.1",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.4", "@lancedb/vectordb-darwin-arm64": "0.4.1",
"@lancedb/vectordb-darwin-x64": "0.3.4", "@lancedb/vectordb-darwin-x64": "0.4.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.4", "@lancedb/vectordb-linux-arm64-gnu": "0.4.1",
"@lancedb/vectordb-linux-x64-gnu": "0.3.4", "@lancedb/vectordb-linux-x64-gnu": "0.4.1",
"@lancedb/vectordb-win32-x64-msvc": "0.3.4" "@lancedb/vectordb-win32-x64-msvc": "0.4.1"
} }
}, },
"node_modules/@apache-arrow/ts": { "node_modules/@apache-arrow/ts": {
@@ -316,6 +316,66 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.1.tgz",
"integrity": "sha512-ul/Hvv5RX2RThpKSuiUjJRVrmXuBPvpU+HrLjcBmu4dzpuWN4+IeHIUM6xe79gLxOKlwkscVweTOuZnmMfsZeg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.1.tgz",
"integrity": "sha512-sJtF2Cv6T9RhUpdeHNkryiJwPuW9QPQ3aMs5fID1hMCJA2U3BX27t/WlkiPT2+kTLeUcwF1JvAOgsfvZkfvI8w==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.1.tgz",
"integrity": "sha512-tNnziT0BRjPsznKI4GgWROFdCOsCGx0inFu0z+WV1UomwXKcMWGslpWBqKE8IUiCq14duPVx/ie7Wwcf51IeJQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.1.tgz",
"integrity": "sha512-PAcF2p1FUsC0AD+qkLfgE5+ZlQwlHe9eTP9dSsX43V/NGPDQ9+gBzaBTEDbvyHj1wl2Wft2NwOqB1HAFhilSDg==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.1.tgz",
"integrity": "sha512-8mvThCppI/AfSPby6Y3t6xpCfbo8IY6JH5exO8fDGTwBFHOqgwR4Izb2K7FgXxkwUYcN4EfGSsk/6B1GpwMudg==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": { "node_modules/@neon-rs/cli": {
"version": "0.0.160", "version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz", "resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
@@ -4808,6 +4868,36 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"@lancedb/vectordb-darwin-arm64": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.1.tgz",
"integrity": "sha512-ul/Hvv5RX2RThpKSuiUjJRVrmXuBPvpU+HrLjcBmu4dzpuWN4+IeHIUM6xe79gLxOKlwkscVweTOuZnmMfsZeg==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.1.tgz",
"integrity": "sha512-sJtF2Cv6T9RhUpdeHNkryiJwPuW9QPQ3aMs5fID1hMCJA2U3BX27t/WlkiPT2+kTLeUcwF1JvAOgsfvZkfvI8w==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.1.tgz",
"integrity": "sha512-tNnziT0BRjPsznKI4GgWROFdCOsCGx0inFu0z+WV1UomwXKcMWGslpWBqKE8IUiCq14duPVx/ie7Wwcf51IeJQ==",
"optional": true
},
"@lancedb/vectordb-linux-x64-gnu": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.1.tgz",
"integrity": "sha512-PAcF2p1FUsC0AD+qkLfgE5+ZlQwlHe9eTP9dSsX43V/NGPDQ9+gBzaBTEDbvyHj1wl2Wft2NwOqB1HAFhilSDg==",
"optional": true
},
"@lancedb/vectordb-win32-x64-msvc": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.1.tgz",
"integrity": "sha512-8mvThCppI/AfSPby6Y3t6xpCfbo8IY6JH5exO8fDGTwBFHOqgwR4Izb2K7FgXxkwUYcN4EfGSsk/6B1GpwMudg==",
"optional": true
},
"@neon-rs/cli": { "@neon-rs/cli": {
"version": "0.0.160", "version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz", "resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.3.5", "version": "0.4.1",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
@@ -81,10 +81,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.5", "@lancedb/vectordb-darwin-arm64": "0.4.1",
"@lancedb/vectordb-darwin-x64": "0.3.5", "@lancedb/vectordb-darwin-x64": "0.4.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.5", "@lancedb/vectordb-linux-arm64-gnu": "0.4.1",
"@lancedb/vectordb-linux-x64-gnu": "0.3.5", "@lancedb/vectordb-linux-x64-gnu": "0.4.1",
"@lancedb/vectordb-win32-x64-msvc": "0.3.5" "@lancedb/vectordb-win32-x64-msvc": "0.4.1"
} }
} }

View File

@@ -21,9 +21,10 @@ import type { EmbeddingFunction } from './embedding/embedding_function'
import { RemoteConnection } from './remote' import { RemoteConnection } from './remote'
import { Query } from './query' import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function' import { isEmbeddingFunction } from './embedding/embedding_function'
import { type Literal, toSQL } from './util'
// eslint-disable-next-line @typescript-eslint/no-var-requires // eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js') const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateScalarIndex, tableCreateVectorIndex, tableCountRows, tableDelete, tableUpdate, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js')
export { Query } export { Query }
export type { EmbeddingFunction } export type { EmbeddingFunction }
@@ -222,6 +223,56 @@ export interface Table<T = number[]> {
*/ */
createIndex: (indexParams: VectorIndexParams) => Promise<any> createIndex: (indexParams: VectorIndexParams) => Promise<any>
/**
* Create a scalar index on this Table for the given column
*
* @param column The column to index
* @param replace If false, fail if an index already exists on the column
*
* Scalar indices, like vector indices, can be used to speed up scans. A scalar
* index can speed up scans that contain filter expressions on the indexed column.
* For example, the following scan will be faster if the column `my_col` has
* a scalar index:
*
* ```ts
* const con = await lancedb.connect('./.lancedb');
* const table = await con.openTable('images');
* const results = await table.where('my_col = 7').execute();
* ```
*
* Scalar indices can also speed up scans containing a vector search and a
* prefilter:
*
* ```ts
* const con = await lancedb.connect('././lancedb');
* const table = await con.openTable('images');
* const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true);
* ```
*
* Scalar indices can only speed up scans for basic filters using
* equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set
* membership (e.g. `my_col IN (0, 1, 2)`)
*
* Scalar indices can be used if the filter contains multiple indexed columns and
* the filter criteria are AND'd or OR'd together
* (e.g. `my_col < 0 AND other_col> 100`)
*
* Scalar indices may be used if the filter contains non-indexed columns but,
* depending on the structure of the filter, they may not be usable. For example,
* if the column `not_indexed` does not have a scalar index then the filter
* `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on
* `my_col`.
*
* @examples
*
* ```ts
* const con = await lancedb.connect('././lancedb')
* const table = await con.openTable('images')
* await table.createScalarIndex('my_col')
* ```
*/
createScalarIndex: (column: string, replace: boolean) => Promise<void>
/** /**
* Returns the number of rows in this table. * Returns the number of rows in this table.
*/ */
@@ -261,6 +312,39 @@ export interface Table<T = number[]> {
*/ */
delete: (filter: string) => Promise<void> delete: (filter: string) => Promise<void>
/**
* Update rows in this table.
*
* This can be used to update a single row, many rows, all rows, or
* sometimes no rows (if your predicate matches nothing).
*
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
*
* @examples
*
* ```ts
* const con = await lancedb.connect("./.lancedb")
* const data = [
* {id: 1, vector: [3, 3], name: 'Ye'},
* {id: 2, vector: [4, 4], name: 'Mike'},
* ];
* const tbl = await con.createTable("my_table", data)
*
* await tbl.update({
* where: "id = 2",
* values: { vector: [2, 2], name: "Michael" },
* })
*
* let results = await tbl.search([1, 1]).execute();
* // Returns [
* // {id: 2, vector: [2, 2], name: 'Michael'}
* // {id: 1, vector: [3, 3], name: 'Ye'}
* // ]
* ```
*
*/
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
/** /**
* List the indicies on this table. * List the indicies on this table.
*/ */
@@ -272,6 +356,34 @@ export interface Table<T = number[]> {
indexStats: (indexUuid: string) => Promise<IndexStats> indexStats: (indexUuid: string) => Promise<IndexStats>
} }
export interface UpdateArgs {
/**
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
* in which case all rows will be updated.
*/
where?: string
/**
* A key-value map of updates. The keys are the column names, and the values are the
* new values to set
*/
values: Record<string, Literal>
}
export interface UpdateSqlArgs {
/**
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
* in which case all rows will be updated.
*/
where?: string
/**
* A key-value map of updates. The keys are the column names, and the values are the
* new values to set as SQL expressions.
*/
valuesSql: Record<string, string>
}
export interface VectorIndex { export interface VectorIndex {
columns: string[] columns: string[]
name: string name: string
@@ -426,6 +538,16 @@ export class LocalTable<T = number[]> implements Table<T> {
return new Query(query, this._tbl, this._embeddings) return new Query(query, this._tbl, this._embeddings)
} }
/**
* Creates a filter query to find all rows matching the specified criteria
* @param value The filter criteria (like SQL where clause syntax)
*/
filter (value: string): Query<T> {
return new Query(undefined, this._tbl, this._embeddings).filter(value)
}
where = this.filter
/** /**
* Insert records into this Table. * Insert records into this Table.
* *
@@ -465,6 +587,10 @@ export class LocalTable<T = number[]> implements Table<T> {
return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable }) return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable })
} }
async createScalarIndex (column: string, replace: boolean): Promise<void> {
return tableCreateScalarIndex.call(this._tbl, column, replace)
}
/** /**
* Returns the number of rows in this table. * Returns the number of rows in this table.
*/ */
@@ -481,6 +607,31 @@ export class LocalTable<T = number[]> implements Table<T> {
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable }) return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
} }
/**
* Update rows in this table.
*
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
*
* @returns
*/
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
let filter: string | null
let updates: Record<string, string>
if ('valuesSql' in args) {
filter = args.where ?? null
updates = args.valuesSql
} else {
filter = args.where ?? null
updates = {}
for (const [key, value] of Object.entries(args.values)) {
updates[key] = toSQL(value)
}
}
return tableUpdate.call(this._tbl, filter, updates).then((newTable: any) => { this._tbl = newTable })
}
/** /**
* Clean up old versions of the table, freeing disk space. * Clean up old versions of the table, freeing disk space.
* *
@@ -647,6 +798,11 @@ export interface IvfPQIndexConfig {
*/ */
replace?: boolean replace?: boolean
/**
* Cache size of the index
*/
index_cache_size?: number
type: 'ivf_pq' type: 'ivf_pq'
} }

View File

@@ -23,27 +23,29 @@ const { tableSearch } = require('../native.js')
* A builder for nearest neighbor queries for LanceDB. * A builder for nearest neighbor queries for LanceDB.
*/ */
export class Query<T = number[]> { export class Query<T = number[]> {
private readonly _query: T private readonly _query?: T
private readonly _tbl?: any private readonly _tbl?: any
private _queryVector?: number[] private _queryVector?: number[]
private _limit: number private _limit?: number
private _refineFactor?: number private _refineFactor?: number
private _nprobes: number private _nprobes: number
private _select?: string[] private _select?: string[]
private _filter?: string private _filter?: string
private _metricType?: MetricType private _metricType?: MetricType
private _prefilter: boolean
protected readonly _embeddings?: EmbeddingFunction<T> protected readonly _embeddings?: EmbeddingFunction<T>
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) { constructor (query?: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl this._tbl = tbl
this._query = query this._query = query
this._limit = 10 this._limit = undefined
this._nprobes = 20 this._nprobes = 20
this._refineFactor = undefined this._refineFactor = undefined
this._select = undefined this._select = undefined
this._filter = undefined this._filter = undefined
this._metricType = undefined this._metricType = undefined
this._embeddings = embeddings this._embeddings = embeddings
this._prefilter = false
} }
/*** /***
@@ -102,14 +104,21 @@ export class Query<T = number[]> {
return this return this
} }
prefilter (value: boolean): Query<T> {
this._prefilter = value
return this
}
/** /**
* Execute the query and return the results as an Array of Objects * Execute the query and return the results as an Array of Objects
*/ */
async execute<T = Record<string, unknown>> (): Promise<T[]> { async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) { if (this._query !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0] if (this._embeddings !== undefined) {
} else { this._queryVector = (await this._embeddings.embed([this._query]))[0]
this._queryVector = this._query as number[] } else {
this._queryVector = this._query as number[]
}
} }
const isElectron = this.isElectron() const isElectron = this.isElectron()

View File

@@ -38,6 +38,7 @@ export class HttpLancedbClient {
vector: number[], vector: number[],
k: number, k: number,
nprobes: number, nprobes: number,
prefilter: boolean,
refineFactor?: number, refineFactor?: number,
columns?: string[], columns?: string[],
filter?: string filter?: string
@@ -50,7 +51,8 @@ export class HttpLancedbClient {
nprobes, nprobes,
refineFactor, refineFactor,
columns, columns,
filter filter,
prefilter
}, },
{ {
headers: { headers: {
@@ -63,6 +65,9 @@ export class HttpLancedbClient {
} }
).catch((err) => { ).catch((err) => {
console.error('error: ', err) console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response return err.response
}) })
if (response.status !== 200) { if (response.status !== 200) {
@@ -86,13 +91,17 @@ export class HttpLancedbClient {
{ {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
'x-api-key': this._apiKey() 'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
}, },
params, params,
timeout: 10000 timeout: 10000
} }
).catch((err) => { ).catch((err) => {
console.error('error: ', err) console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response return err.response
}) })
if (response.status !== 200) { if (response.status !== 200) {
@@ -128,6 +137,9 @@ export class HttpLancedbClient {
} }
).catch((err) => { ).catch((err) => {
console.error('error: ', err) console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response return err.response
}) })
if (response.status !== 200) { if (response.status !== 200) {

View File

@@ -16,7 +16,8 @@ import {
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection, type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
type ConnectionOptions, type CreateTableOptions, type VectorIndex, type ConnectionOptions, type CreateTableOptions, type VectorIndex,
type WriteOptions, type WriteOptions,
type IndexStats type IndexStats,
type UpdateArgs, type UpdateSqlArgs
} from '../index' } from '../index'
import { Query } from '../query' import { Query } from '../query'
@@ -24,6 +25,7 @@ import { Vector, Table as ArrowTable } from 'apache-arrow'
import { HttpLancedbClient } from './client' import { HttpLancedbClient } from './client'
import { isEmbeddingFunction } from '../embedding/embedding_function' import { isEmbeddingFunction } from '../embedding/embedding_function'
import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow' import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow'
import { toSQL } from '../util'
/** /**
* Remote connection. * Remote connection.
@@ -55,8 +57,8 @@ export class RemoteConnection implements Connection {
return 'db://' + this._client.uri return 'db://' + this._client.uri
} }
async tableNames (): Promise<string[]> { async tableNames (pageToken: string = '', limit: number = 10): Promise<string[]> {
const response = await this._client.get('/v1/table/') const response = await this._client.get('/v1/table/', { limit, page_token: pageToken })
return response.data.tables return response.data.tables
} }
@@ -154,6 +156,7 @@ export class RemoteQuery<T = number[]> extends Query<T> {
queryVector, queryVector,
(this as any)._limit, (this as any)._limit,
(this as any)._nprobes, (this as any)._nprobes,
(this as any)._prefilter,
(this as any)._refineFactor, (this as any)._refineFactor,
(this as any)._select, (this as any)._select,
(this as any)._filter (this as any)._filter
@@ -192,6 +195,17 @@ export class RemoteTable<T = number[]> implements Table<T> {
return this._name return this._name
} }
get schema (): Promise<any> {
return this._client.post(`/v1/table/${this._name}/describe/`).then(res => {
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
return res.data?.schema
})
}
search (query: T): Query<T> { search (query: T): Query<T> {
return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new) return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new)
} }
@@ -232,18 +246,76 @@ export class RemoteTable<T = number[]> implements Table<T> {
return data.length return data.length
} }
async createIndex (indexParams: VectorIndexParams): Promise<any> { async createIndex (indexParams: VectorIndexParams): Promise<void> {
const unsupportedParams = [
'index_name',
'num_partitions',
'max_iters',
'use_opq',
'num_sub_vectors',
'num_bits',
'max_opq_iters',
'replace'
]
for (const param of unsupportedParams) {
// eslint-disable-next-line @typescript-eslint/strict-boolean-expressions
if (indexParams[param as keyof VectorIndexParams]) {
throw new Error(`${param} is not supported for remote connections`)
}
}
const column = indexParams.column ?? 'vector'
const indexType = 'vector' // only vector index is supported for remote connections
const metricType = indexParams.metric_type ?? 'L2'
const indexCacheSize = indexParams.index_cache_size ?? null
const data = {
column,
index_type: indexType,
metric_type: metricType,
index_cache_size: indexCacheSize
}
const res = await this._client.post(`/v1/table/${this._name}/create_index/`, data)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
}
async createScalarIndex (column: string, replace: boolean): Promise<void> {
throw new Error('Not implemented') throw new Error('Not implemented')
} }
async countRows (): Promise<number> { async countRows (): Promise<number> {
throw new Error('Not implemented') const result = await this._client.post(`/v1/table/${this._name}/describe/`)
return result.data?.stats?.num_rows
} }
async delete (filter: string): Promise<void> { async delete (filter: string): Promise<void> {
await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter }) await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
} }
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
let filter: string | null
let updates: Record<string, string>
if ('valuesSql' in args) {
filter = args.where ?? null
updates = args.valuesSql
} else {
filter = args.where ?? null
updates = {}
for (const [key, value] of Object.entries(args.values)) {
updates[key] = toSQL(value)
}
}
await this._client.post(`/v1/table/${this._name}/update/`, {
predicate: filter,
updates: Object.entries(updates).map(([key, value]) => [key, value])
})
}
async listIndices (): Promise<VectorIndex[]> { async listIndices (): Promise<VectorIndex[]> {
const results = await this._client.post(`/v1/table/${this._name}/index/list/`) const results = await this._client.post(`/v1/table/${this._name}/index/list/`)
return results.data.indexes?.map((index: any) => ({ return results.data.indexes?.map((index: any) => ({

View File

@@ -78,12 +78,31 @@ describe('LanceDB client', function () {
}) })
it('limits # of results', async function () { it('limits # of results', async function () {
const uri = await createTestDB() const uri = await createTestDB(2, 100)
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
const table = await con.openTable('vectors') const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.3]).limit(1).execute() let results = await table.search([0.1, 0.3]).limit(1).execute()
assert.equal(results.length, 1) assert.equal(results.length, 1)
assert.equal(results[0].id, 1) assert.equal(results[0].id, 1)
// there is a default limit if unspecified
results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 10)
})
it('uses a filter / where clause without vector search', async function () {
// eslint-disable-next-line @typescript-eslint/explicit-function-return-type
const assertResults = (results: Array<Record<string, unknown>>) => {
assert.equal(results.length, 50)
}
const uri = await createTestDB(2, 100)
const con = await lancedb.connect(uri)
const table = (await con.openTable('vectors')) as LocalTable
let results = await table.filter('id % 2 = 0').execute()
assertResults(results)
results = await table.where('id % 2 = 0').execute()
assertResults(results)
}) })
it('uses a filter / where clause', async function () { it('uses a filter / where clause', async function () {
@@ -102,6 +121,31 @@ describe('LanceDB client', function () {
assertResults(results) assertResults(results)
}) })
it('should correctly process prefilter/postfilter', async function () {
const uri = await createTestDB(16, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
// post filter should return less than the limit
let results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(false).execute()
assert.isTrue(results.length < 10)
// pre filter should return exactly the limit
results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(true).execute()
assert.isTrue(results.length === 10)
})
it('should allow creation and use of scalar indices', async function () {
const uri = await createTestDB(16, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createScalarIndex('id', true)
// Prefiltering should still work the same
const results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(true).execute()
assert.isTrue(results.length === 10)
})
it('select only a subset of columns', async function () { it('select only a subset of columns', async function () {
const uri = await createTestDB() const uri = await createTestDB()
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
@@ -246,6 +290,46 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2) assert.equal(await table.countRows(), 2)
}) })
it('can update records in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ where: 'price = 10', valuesSql: { price: '100' } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 11)
})
it('can update the records using a literal value', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ where: 'price = 10', values: { price: 100 } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 11)
})
it('can update every record in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ valuesSql: { price: '100' } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 100)
})
it('can delete records from a table', async function () { it('can delete records from a table', async function () {
const uri = await createTestDB() const uri = await createTestDB()
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
@@ -282,7 +366,8 @@ describe('LanceDB client', function () {
) )
const table = await con.createTable({ name: 'vectors', schema }) const table = await con.createTable({ name: 'vectors', schema })
await table.add([{ vector: Array(128).fill(0.1) }]) await table.add([{ vector: Array(128).fill(0.1) }])
await table.delete('vector IS NOT NULL') // https://github.com/lancedb/lance/issues/1635
await table.delete('true')
const result = await table.search(Array(128).fill(0.1)).execute() const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result) assert.isEmpty(result)
}) })
@@ -396,6 +481,40 @@ describe('LanceDB client', function () {
}) })
}) })
describe('Remote LanceDB client', function () {
describe('when the server is not reachable', function () {
it('produces a network error', async function () {
const con = await lancedb.connect({
uri: 'db://test-1234',
region: 'asdfasfasfdf',
apiKey: 'some-api-key'
})
// GET
try {
await con.tableNames()
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
// POST
try {
await con.createTable({ name: 'vectors', schema: new Schema([]) })
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
// Search
const table = await con.openTable('vectors')
try {
await table.search([0.1, 0.3]).execute()
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
})
})
})
describe('Query object', function () { describe('Query object', function () {
it('sets custom parameters', async function () { it('sets custom parameters', async function () {
const query = new Query([0.1, 0.3]) const query = new Query([0.1, 0.3])
@@ -493,7 +612,7 @@ describe('Compact and cleanup', function () {
// should have no effect, but this validates the arguments are parsed. // should have no effect, but this validates the arguments are parsed.
await table.compactFiles({ await table.compactFiles({
targetRowsPerFragment: 1024 * 10, targetRowsPerFragment: 102410,
maxRowsPerGroup: 1024, maxRowsPerGroup: 1024,
materializeDeletions: true, materializeDeletions: true,
materializeDeletionsThreshold: 0.5, materializeDeletionsThreshold: 0.5,

45
node/src/test/util.ts Normal file
View File

@@ -0,0 +1,45 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { toSQL } from '../util'
import * as chai from 'chai'
const expect = chai.expect
describe('toSQL', function () {
it('should turn string to SQL expression', function () {
expect(toSQL('foo')).to.equal("'foo'")
})
it('should turn number to SQL expression', function () {
expect(toSQL(123)).to.equal('123')
})
it('should turn boolean to SQL expression', function () {
expect(toSQL(true)).to.equal('TRUE')
})
it('should turn null to SQL expression', function () {
expect(toSQL(null)).to.equal('NULL')
})
it('should turn Date to SQL expression', function () {
const date = new Date('05 October 2011 14:48 UTC')
expect(toSQL(date)).to.equal("'2011-10-05T14:48:00.000Z'")
})
it('should turn array to SQL expression', function () {
expect(toSQL(['foo', 'bar', true, 1])).to.equal("['foo', 'bar', TRUE, 1]")
})
})

44
node/src/util.ts Normal file
View File

@@ -0,0 +1,44 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
export type Literal = string | number | boolean | null | Date | Literal[]
export function toSQL (value: Literal): string {
if (typeof value === 'string') {
return `'${value}'`
}
if (typeof value === 'number') {
return value.toString()
}
if (typeof value === 'boolean') {
return value ? 'TRUE' : 'FALSE'
}
if (value === null) {
return 'NULL'
}
if (value instanceof Date) {
return `'${value.toISOString()}'`
}
if (Array.isArray(value)) {
return `[${value.map(toSQL).join(', ')}]`
}
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw new Error(`Unsupported value type: ${typeof value} value: (${value})`)
}

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.3.2 current_version = 0.4.2
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -16,17 +16,18 @@ from typing import Optional
__version__ = importlib.metadata.version("lancedb") __version__ = importlib.metadata.version("lancedb")
from .db import URI, DBConnection, LanceDBConnection from .common import URI
from .db import DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection from .remote.db import RemoteDBConnection
from .schema import vector from .schema import vector # noqa: F401
from .utils import sentry_log from .utils import sentry_log # noqa: F401
def connect( def connect(
uri: URI, uri: URI,
*, *,
api_key: Optional[str] = None, api_key: Optional[str] = None,
region: str = "us-west-2", region: str = "us-east-1",
host_override: Optional[str] = None, host_override: Optional[str] = None,
) -> DBConnection: ) -> DBConnection:
"""Connect to a LanceDB database. """Connect to a LanceDB database.
@@ -38,7 +39,7 @@ def connect(
api_key: str, optional api_key: str, optional
If presented, connect to LanceDB cloud. If presented, connect to LanceDB cloud.
Otherwise, connect to a database on file system or cloud storage. Otherwise, connect to a database on file system or cloud storage.
region: str, default "us-west-2" region: str, default "us-east-1"
The region to use for LanceDB Cloud. The region to use for LanceDB Cloud.
host_override: str, optional host_override: str, optional
The override url for LanceDB Cloud. The override url for LanceDB Cloud.

View File

@@ -1,4 +1,6 @@
import os import os
import time
from typing import Any
import numpy as np import numpy as np
import pytest import pytest
@@ -38,3 +40,26 @@ class MockTextEmbeddingFunction(TextEmbeddingFunction):
def ndims(self): def ndims(self):
return 10 return 10
class RateLimitedAPI:
rate_limit = 0.1 # 1 request per 0.1 second
last_request_time = 0
@staticmethod
def make_request():
current_time = time.time()
if current_time - RateLimitedAPI.last_request_time < RateLimitedAPI.rate_limit:
raise Exception("Rate limit exceeded. Please try again later.")
# Simulate a successful request
RateLimitedAPI.last_request_time = current_time
return "Request successful"
@registry.register("test-rate-limited")
class MockRateLimitedEmbeddingFunction(MockTextEmbeddingFunction):
def generate_embeddings(self, texts):
RateLimitedAPI.make_request()
return [self._compute_one_embedding(row) for row in texts]

View File

@@ -84,7 +84,9 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
context windows that don't cross document boundaries. In this case, we can context windows that don't cross document boundaries. In this case, we can
pass ``document_id`` as the group by. pass ``document_id`` as the group by.
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_pandas() >>> (contextualize(data)
... .window(4).stride(2).text_col('token').groupby('document_id')
... .to_pandas())
token document_id token document_id
0 The quick brown fox 1 0 The quick brown fox 1
2 brown fox jumped over 1 2 brown fox jumped over 1
@@ -92,18 +94,24 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
6 the lazy dog 1 6 the lazy dog 1
9 I love sandwiches 2 9 I love sandwiches 2
``min_window_size`` determines the minimum size of the context windows that are generated ``min_window_size`` determines the minimum size of the context windows
This can be used to trim the last few context windows which have size less than that are generated.This can be used to trim the last few context windows
``min_window_size``. By default context windows of size 1 are skipped. which have size less than ``min_window_size``.
By default context windows of size 1 are skipped.
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_pandas() >>> (contextualize(data)
... .window(6).stride(3).text_col('token').groupby('document_id')
... .to_pandas())
token document_id token document_id
0 The quick brown fox jumped over 1 0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1 3 fox jumped over the lazy dog 1
6 the lazy dog 1 6 the lazy dog 1
9 I love sandwiches 2 9 I love sandwiches 2
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_pandas() >>> (contextualize(data)
... .window(6).stride(3).min_window_size(4).text_col('token')
... .groupby('document_id')
... .to_pandas())
token document_id token document_id
0 The quick brown fox jumped over 1 0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1 3 fox jumped over the lazy dog 1
@@ -113,7 +121,9 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
class Contextualizer: class Contextualizer:
"""Create context windows from a DataFrame. See [lancedb.context.contextualize][].""" """Create context windows from a DataFrame.
See [lancedb.context.contextualize][].
"""
def __init__(self, raw_df): def __init__(self, raw_df):
self._text_col = None self._text_col = None
@@ -183,7 +193,7 @@ class Contextualizer:
deprecated_in="0.3.1", deprecated_in="0.3.1",
removed_in="0.4.0", removed_in="0.4.0",
current_version=__version__, current_version=__version__,
details="Use the bar function instead", details="Use to_pandas() instead",
) )
def to_df(self) -> "pd.DataFrame": def to_df(self) -> "pd.DataFrame":
return self.to_pandas() return self.to_pandas()

View File

@@ -14,26 +14,39 @@
from __future__ import annotations from __future__ import annotations
import os import os
from abc import ABC, abstractmethod from abc import abstractmethod
from pathlib import Path from pathlib import Path
from typing import List, Optional, Union from typing import TYPE_CHECKING, Iterable, List, Optional, Union
import pyarrow as pa import pyarrow as pa
from overrides import EnforceOverrides, override
from pyarrow import fs from pyarrow import fs
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
from .table import LanceTable, Table from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
if TYPE_CHECKING:
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
class DBConnection(ABC): class DBConnection(EnforceOverrides):
"""An active LanceDB connection interface.""" """An active LanceDB connection interface."""
@abstractmethod @abstractmethod
def table_names(self) -> list[str]: def table_names(
"""List all table names in the database.""" self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""List all table in this database
Parameters
----------
page_token: str, optional
The token to use for pagination. If not present, start from the beginning.
limit: int, default 10
The size of the page to return.
"""
pass pass
@abstractmethod @abstractmethod
@@ -45,6 +58,7 @@ class DBConnection(ABC):
mode: str = "create", mode: str = "create",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table: ) -> Table:
"""Create a [Table][lancedb.table.Table] in the database. """Create a [Table][lancedb.table.Table] in the database.
@@ -52,12 +66,24 @@ class DBConnection(ABC):
---------- ----------
name: str name: str
The name of the table. The name of the table.
data: list, tuple, dict, pd.DataFrame; optional data: The data to initialize the table, *optional*
The data to initialize the table. User must provide at least one of `data` or `schema`. User must provide at least one of `data` or `schema`.
schema: pyarrow.Schema or LanceModel; optional Acceptable types are:
The schema of the table.
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
schema: The schema of the table, *optional*
Acceptable types are:
- pyarrow.Schema
- [LanceModel][lancedb.pydantic.LanceModel]
mode: str; default "create" mode: str; default "create"
The mode to use when creating the table. Can be either "create" or "overwrite". The mode to use when creating the table.
Can be either "create" or "overwrite".
By default, if the table already exists, an exception is raised. By default, if the table already exists, an exception is raised.
If you want to overwrite the table, use mode="overwrite". If you want to overwrite the table, use mode="overwrite".
on_bad_vectors: str, default "error" on_bad_vectors: str, default "error"
@@ -150,7 +176,8 @@ class DBConnection(ABC):
... for i in range(5): ... for i in range(5):
... yield pa.RecordBatch.from_arrays( ... yield pa.RecordBatch.from_arrays(
... [ ... [
... pa.array([[3.1, 4.1], [5.9, 26.5]], pa.list_(pa.float32(), 2)), ... pa.array([[3.1, 4.1], [5.9, 26.5]],
... pa.list_(pa.float32(), 2)),
... pa.array(["foo", "bar"]), ... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]), ... pa.array([10.0, 20.0]),
... ], ... ],
@@ -249,23 +276,25 @@ class LanceDBConnection(DBConnection):
def uri(self) -> str: def uri(self) -> str:
return self._uri return self._uri
def table_names(self) -> list[str]: @override
"""Get the names of all tables in the database. def table_names(
self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""Get the names of all tables in the database. The names are sorted.
Returns Returns
------- -------
list of str Iterator of str.
A list of table names. A list of table names.
""" """
try: try:
filesystem, path = fs_from_uri(self.uri) filesystem = fs_from_uri(self.uri)[0]
except pa.ArrowInvalid: except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri) raise NotImplementedError("Unsupported scheme: " + self.uri)
try: try:
paths = filesystem.get_file_info( loc = get_uri_location(self.uri)
fs.FileSelector(get_uri_location(self.uri)) paths = filesystem.get_file_info(fs.FileSelector(loc))
)
except FileNotFoundError: except FileNotFoundError:
# It is ok if the file does not exist since it will be created # It is ok if the file does not exist since it will be created
paths = [] paths = []
@@ -274,6 +303,7 @@ class LanceDBConnection(DBConnection):
for file_info in paths for file_info in paths
if file_info.extension == "lance" if file_info.extension == "lance"
] ]
tables.sort()
return tables return tables
def __len__(self) -> int: def __len__(self) -> int:
@@ -282,6 +312,7 @@ class LanceDBConnection(DBConnection):
def __contains__(self, name: str) -> bool: def __contains__(self, name: str) -> bool:
return name in self.table_names() return name in self.table_names()
@override
def create_table( def create_table(
self, self,
name: str, name: str,
@@ -313,6 +344,7 @@ class LanceDBConnection(DBConnection):
) )
return tbl return tbl
@override
def open_table(self, name: str) -> LanceTable: def open_table(self, name: str) -> LanceTable:
"""Open a table in the database. """Open a table in the database.
@@ -327,6 +359,7 @@ class LanceDBConnection(DBConnection):
""" """
return LanceTable.open(self, name) return LanceTable.open(self, name)
@override
def drop_table(self, name: str, ignore_missing: bool = False): def drop_table(self, name: str, ignore_missing: bool = False):
"""Drop a table from the database. """Drop a table from the database.
@@ -339,12 +372,13 @@ class LanceDBConnection(DBConnection):
""" """
try: try:
filesystem, path = fs_from_uri(self.uri) filesystem, path = fs_from_uri(self.uri)
table_path = os.path.join(path, name + ".lance") table_path = join_uri(path, name + ".lance")
filesystem.delete_dir(table_path) filesystem.delete_dir(table_path)
except FileNotFoundError: except FileNotFoundError:
if not ignore_missing: if not ignore_missing:
raise raise
@override
def drop_database(self): def drop_database(self):
filesystem, path = fs_from_uri(self.uri) filesystem, path = fs_from_uri(self.uri)
filesystem.delete_dir(path) filesystem.delete_dir(path)

View File

@@ -11,8 +11,10 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ruff: noqa: F401
from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction
from .cohere import CohereEmbeddingFunction from .cohere import CohereEmbeddingFunction
from .instructor import InstructorEmbeddingFunction
from .open_clip import OpenClipEmbeddings from .open_clip import OpenClipEmbeddings
from .openai import OpenAIEmbeddings from .openai import OpenAIEmbeddings
from .registry import EmbeddingFunctionRegistry, get_registry from .registry import EmbeddingFunctionRegistry, get_registry

View File

@@ -1,3 +1,15 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib import importlib
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import List, Union from typing import List, Union
@@ -6,7 +18,7 @@ import numpy as np
import pyarrow as pa import pyarrow as pa
from pydantic import BaseModel, Field, PrivateAttr from pydantic import BaseModel, Field, PrivateAttr
from .utils import TEXT from .utils import TEXT, retry_with_exponential_backoff
class EmbeddingFunction(BaseModel, ABC): class EmbeddingFunction(BaseModel, ABC):
@@ -21,6 +33,10 @@ class EmbeddingFunction(BaseModel, ABC):
3. ndims method which returns the number of dimensions of the vector column 3. ndims method which returns the number of dimensions of the vector column
""" """
__slots__ = ("__weakref__",) # pydantic 1.x compatibility
max_retries: int = (
7 # Setitng 0 disables retires. Maybe this should not be enabled by default,
)
_ndims: int = PrivateAttr() _ndims: int = PrivateAttr()
@classmethod @classmethod
@@ -44,6 +60,25 @@ class EmbeddingFunction(BaseModel, ABC):
""" """
pass pass
def compute_query_embeddings_with_retry(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for a given user query with retries
"""
return retry_with_exponential_backoff(
self.compute_query_embeddings, max_retries=self.max_retries
)(
*args,
**kwargs,
)
def compute_source_embeddings_with_retry(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for the source column in the database with retries
"""
return retry_with_exponential_backoff(
self.compute_source_embeddings, max_retries=self.max_retries
)(*args, **kwargs)
def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]: def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]:
""" """
Sanitize the input to the embedding function. Sanitize the input to the embedding function.
@@ -103,6 +138,14 @@ class EmbeddingFunction(BaseModel, ABC):
""" """
return Field(json_schema_extra={"vector_column_for": self}, **kwargs) return Field(json_schema_extra={"vector_column_for": self}, **kwargs)
def __eq__(self, __value: object) -> bool:
if not hasattr(__value, "__dict__"):
return False
return vars(self) == vars(__value)
def __hash__(self) -> int:
return hash(frozenset(vars(self).items()))
class EmbeddingFunctionConfig(BaseModel): class EmbeddingFunctionConfig(BaseModel):
""" """

View File

@@ -31,7 +31,8 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
Parameters Parameters
---------- ----------
name: str, default "embed-multilingual-v2.0" name: str, default "embed-multilingual-v2.0"
The name of the model to use. See the Cohere documentation for a list of available models. The name of the model to use. See the Cohere documentation for
a list of available models.
Examples Examples
-------- --------
@@ -39,7 +40,10 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
from lancedb.pydantic import LanceModel, Vector from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry.get_instance().get("cohere").create(name="embed-multilingual-v2.0") cohere = EmbeddingFunctionRegistry
.get_instance()
.get("cohere")
.create(name="embed-multilingual-v2.0")
class TextModel(LanceModel): class TextModel(LanceModel):
text: str = cohere.SourceField() text: str = cohere.SourceField()

View File

@@ -0,0 +1,137 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import numpy as np
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT, weak_lru
@register("instructor")
class InstructorEmbeddingFunction(TextEmbeddingFunction):
"""
An embedding function that uses the InstructorEmbedding library. Instructor models support multi-task learning, and can be used for a
variety of tasks, including text classification, sentence similarity, and document retrieval.
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
"Represent the `domain` `text_type` for `task_objective`":
* domain is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc.
* text_type is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc.
* task_objective is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc.
For example, if you want to calculate embeddings for a document, you may write the instruction as follows:
"Represent the document for retreival"
Parameters
----------
name: str
The name of the model to use. Available models are listed at https://github.com/xlang-ai/instructor-embedding#model-list;
The default model is hkunlp/instructor-base
batch_size: int, default 32
The batch size to use when generating embeddings
device: str, default "cpu"
The device to use when generating embeddings
show_progress_bar: bool, default True
Whether to show a progress bar when generating embeddings
normalize_embeddings: bool, default True
Whether to normalize the embeddings
quantize: bool, default False
Whether to quantize the model
source_instruction: str, default "represent the docuement for retreival"
The instruction for the source column
query_instruction: str, default "represent the document for retreiving the most similar documents"
The instruction for the query
Examples
--------
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
"""
name: str = "hkunlp/instructor-base"
batch_size: int = 32
device: str = "cpu"
show_progress_bar: bool = True
normalize_embeddings: bool = True
quantize: bool = False
# convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly
source_instruction: str = "represent the document for retrieval"
query_instruction: str = (
"represent the document for retrieving the most similar documents"
)
@weak_lru(maxsize=1)
def ndims(self):
model = self.get_model()
return model.encode("foo").shape[0]
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.generate_embeddings([[self.query_instruction, query]])
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
texts = self.sanitize_input(texts)
texts_formatted = []
for text in texts:
texts_formatted.append([self.source_instruction, text])
return self.generate_embeddings(texts_formatted)
def generate_embeddings(self, texts: List) -> List:
model = self.get_model()
res = model.encode(
texts,
batch_size=self.batch_size,
show_progress_bar=self.show_progress_bar,
normalize_embeddings=self.normalize_embeddings,
).tolist()
return res
@weak_lru(maxsize=1)
def get_model(self):
instructor_embedding = self.safe_import(
"InstructorEmbedding", "InstructorEmbedding"
)
torch = self.safe_import("torch", "torch")
model = instructor_embedding.INSTRUCTOR(self.name)
if self.quantize:
if (
"qnnpack" in torch.backends.quantized.supported_engines
): # fix for https://github.com/pytorch/pytorch/issues/29327
torch.backends.quantized.engine = "qnnpack"
model = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=torch.qint8
)
return model

View File

@@ -1,3 +1,15 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import concurrent.futures import concurrent.futures
import io import io
import os import os

View File

@@ -1,3 +1,16 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import cached_property
from typing import List, Union from typing import List, Union
import numpy as np import numpy as np
@@ -32,6 +45,10 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
The texts to embed The texts to embed
""" """
# TODO retry, rate limit, token limit # TODO retry, rate limit, token limit
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
return [v.embedding for v in rs.data]
@cached_property
def _openai_client(self):
openai = self.safe_import("openai") openai = self.safe_import("openai")
rs = openai.Embedding.create(input=texts, model=self.name)["data"] return openai.OpenAI()
return [v["embedding"] for v in rs]

View File

@@ -1,3 +1,15 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union from typing import List, Union
import numpy as np import numpy as np
@@ -5,6 +17,7 @@ from cachetools import cached
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import weak_lru
@register("sentence-transformers") @register("sentence-transformers")
@@ -30,7 +43,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name and device. This is cached so that the model is only loaded name and device. This is cached so that the model is only loaded
once per process. once per process.
""" """
return self.__class__.get_embedding_model(self.name, self.device) return self.get_embedding_model()
def ndims(self): def ndims(self):
if self._ndims is None: if self._ndims is None:
@@ -54,9 +67,8 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
normalize_embeddings=self.normalize, normalize_embeddings=self.normalize,
).tolist() ).tolist()
@classmethod @weak_lru(maxsize=1)
@cached(cache={}) def get_embedding_model(self):
def get_embedding_model(cls, name, device):
""" """
Get the sentence-transformers embedding model specified by the Get the sentence-transformers embedding model specified by the
name and device. This is cached so that the model is only loaded name and device. This is cached so that the model is only loaded
@@ -71,7 +83,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
TODO: use lru_cache instead with a reasonable/configurable maxsize TODO: use lru_cache instead with a reasonable/configurable maxsize
""" """
sentence_transformers = cls.safe_import( sentence_transformers = self.safe_import(
"sentence_transformers", "sentence-transformers" "sentence_transformers", "sentence-transformers"
) )
return sentence_transformers.SentenceTransformer(name, device=device) return sentence_transformers.SentenceTransformer(self.name, device=self.device)

View File

@@ -11,10 +11,14 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import functools
import math import math
import random
import socket import socket
import sys import sys
import time
import urllib.error import urllib.error
import weakref
from typing import Callable, List, Union from typing import Callable, List, Union
import numpy as np import numpy as np
@@ -162,6 +166,99 @@ class FunctionWrapper:
yield from _chunker(arr) yield from _chunker(arr)
def weak_lru(maxsize=128):
"""
LRU cache that keeps weak references to the objects it caches. Only caches the latest instance of the objects to make sure memory usage
is bounded.
Parameters
----------
maxsize : int, default 128
The maximum number of objects to cache.
Returns
-------
Callable
A decorator that can be applied to a method.
Examples
--------
>>> class Foo:
... @weak_lru()
... def bar(self, x):
... return x
>>> foo = Foo()
>>> foo.bar(1)
1
>>> foo.bar(2)
2
>>> foo.bar(1)
1
"""
def wrapper(func):
@functools.lru_cache(maxsize)
def _func(_self, *args, **kwargs):
return func(_self(), *args, **kwargs)
@functools.wraps(func)
def inner(self, *args, **kwargs):
return _func(weakref.ref(self), *args, **kwargs)
return inner
return wrapper
def retry_with_exponential_backoff(
func,
initial_delay: float = 1,
exponential_base: float = 2,
jitter: bool = True,
max_retries: int = 7,
# errors: tuple = (),
):
"""Retry a function with exponential backoff.
Args:
func (function): The function to be retried.
initial_delay (float): Initial delay in seconds (default is 1).
exponential_base (float): The base for exponential backoff (default is 2).
jitter (bool): Whether to add jitter to the delay (default is True).
max_retries (int): Maximum number of retries (default is 10).
errors (tuple): Tuple of specific exceptions to retry on (default is (openai.error.RateLimitError,)).
Returns:
function: The decorated function.
"""
def wrapper(*args, **kwargs):
num_retries = 0
delay = initial_delay
# Loop until a successful response or max_retries is hit or an exception is raised
while True:
try:
return func(*args, **kwargs)
# Currently retrying on all exceptions as there is no way to know the format of the error msgs used by different APIs
# We'll log the error and say that it is assumed that if this portion errors out, it's due to rate limit but the user
# should check the error message to be sure
except Exception as e:
num_retries += 1
if num_retries > max_retries:
raise Exception(
f"Maximum number of retries ({max_retries}) exceeded.", e
)
delay *= exponential_base * (1 + jitter * random.random())
LOGGER.info(f"Retrying in {delay:.2f} seconds due to {e}")
time.sleep(delay)
return wrapper
def url_retrieve(url: str): def url_retrieve(url: str):
""" """
Parameters Parameters

View File

@@ -75,8 +75,14 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
The number of rows indexed The number of rows indexed
""" """
# first check the fields exist and are string or large string type # first check the fields exist and are string or large string type
nested = []
for name in fields: for name in fields:
f = table.schema.field(name) # raises KeyError if not found try:
f = table.schema.field(name) # raises KeyError if not found
except KeyError:
f = resolve_path(table.schema, name)
nested.append(name)
if not pa.types.is_string(f.type) and not pa.types.is_large_string(f.type): if not pa.types.is_string(f.type) and not pa.types.is_large_string(f.type):
raise TypeError(f"Field {name} is not a string type") raise TypeError(f"Field {name} is not a string type")
@@ -85,7 +91,16 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
# write data into index # write data into index
dataset = table.to_lance() dataset = table.to_lance()
row_id = 0 row_id = 0
max_nested_level = 0
if len(nested) > 0:
max_nested_level = max([len(name.split(".")) for name in nested])
for b in dataset.to_batches(columns=fields): for b in dataset.to_batches(columns=fields):
if max_nested_level > 0:
b = pa.Table.from_batches([b])
for _ in range(max_nested_level - 1):
b = b.flatten()
for i in range(b.num_rows): for i in range(b.num_rows):
doc = tantivy.Document() doc = tantivy.Document()
doc.add_integer("doc_id", row_id) doc.add_integer("doc_id", row_id)
@@ -98,6 +113,30 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
return row_id return row_id
def resolve_path(schema, field_name: str) -> pa.Field:
"""
Resolve a nested field path to a list of field names
Parameters
----------
field_name : str
The field name to resolve
Returns
-------
List[str]
The resolved path
"""
path = field_name.split(".")
field = schema.field(path.pop(0))
for segment in path:
if pa.types.is_struct(field.type):
field = field.type.field(segment)
else:
raise KeyError(f"field {field_name} not found in schema {schema}")
return field
def search_index( def search_index(
index: tantivy.Index, query: str, limit: int = 10 index: tantivy.Index, query: str, limit: int = 10
) -> Tuple[Tuple[int], Tuple[float]]: ) -> Tuple[Tuple[int], Tuple[float]]:

View File

@@ -26,6 +26,7 @@ import numpy as np
import pyarrow as pa import pyarrow as pa
import pydantic import pydantic
import semver import semver
from pydantic.fields import FieldInfo
from .embeddings import EmbeddingFunctionRegistry from .embeddings import EmbeddingFunctionRegistry
@@ -142,8 +143,8 @@ def Vector(
return FixedSizeList return FixedSizeList
def _py_type_to_arrow_type(py_type: Type[Any]) -> pa.DataType: def _py_type_to_arrow_type(py_type: Type[Any], field: FieldInfo) -> pa.DataType:
"""Convert Python Type to Arrow DataType. """Convert a field with native Python type to Arrow data type.
Raises Raises
------ ------
@@ -163,9 +164,13 @@ def _py_type_to_arrow_type(py_type: Type[Any]) -> pa.DataType:
elif py_type == date: elif py_type == date:
return pa.date32() return pa.date32()
elif py_type == datetime: elif py_type == datetime:
return pa.timestamp("us") tz = get_extras(field, "tz")
return pa.timestamp("us", tz=tz)
elif getattr(py_type, "__origin__", None) in (list, tuple):
child = py_type.__args__[0]
return pa.list_(_py_type_to_arrow_type(child, field))
raise TypeError( raise TypeError(
f"Converting Pydantic type to Arrow Type: unsupported type {py_type}" f"Converting Pydantic type to Arrow Type: unsupported type {py_type}."
) )
@@ -194,10 +199,10 @@ def _pydantic_to_arrow_type(field: pydantic.fields.FieldInfo) -> pa.DataType:
args = field.annotation.__args__ args = field.annotation.__args__
if origin == list: if origin == list:
child = args[0] child = args[0]
return pa.list_(_py_type_to_arrow_type(child)) return pa.list_(_py_type_to_arrow_type(child, field))
elif origin == Union: elif origin == Union:
if len(args) == 2 and args[1] == type(None): if len(args) == 2 and args[1] == type(None):
return _py_type_to_arrow_type(args[0]) return _py_type_to_arrow_type(args[0], field)
elif inspect.isclass(field.annotation): elif inspect.isclass(field.annotation):
if issubclass(field.annotation, pydantic.BaseModel): if issubclass(field.annotation, pydantic.BaseModel):
# Struct # Struct
@@ -205,7 +210,7 @@ def _pydantic_to_arrow_type(field: pydantic.fields.FieldInfo) -> pa.DataType:
return pa.struct(fields) return pa.struct(fields)
elif issubclass(field.annotation, FixedSizeListMixin): elif issubclass(field.annotation, FixedSizeListMixin):
return pa.list_(field.annotation.value_arrow_type(), field.annotation.dim()) return pa.list_(field.annotation.value_arrow_type(), field.annotation.dim())
return _py_type_to_arrow_type(field.annotation) return _py_type_to_arrow_type(field.annotation, field)
def is_nullable(field: pydantic.fields.FieldInfo) -> bool: def is_nullable(field: pydantic.fields.FieldInfo) -> bool:
@@ -348,3 +353,20 @@ def get_extras(field_info: pydantic.fields.FieldInfo, key: str) -> Any:
if PYDANTIC_VERSION.major >= 2: if PYDANTIC_VERSION.major >= 2:
return (field_info.json_schema_extra or {}).get(key) return (field_info.json_schema_extra or {}).get(key)
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key) return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
if PYDANTIC_VERSION.major < 2:
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
"""
Convert a Pydantic model to a dictionary.
"""
return model.dict()
else:
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
"""
Convert a Pydantic model to a dictionary.
"""
return model.model_dump()

View File

@@ -14,7 +14,7 @@
from __future__ import annotations from __future__ import annotations
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import List, Literal, Optional, Type, Union from typing import TYPE_CHECKING, List, Literal, Optional, Type, Union
import deprecation import deprecation
import numpy as np import numpy as np
@@ -23,14 +23,49 @@ import pydantic
from . import __version__ from . import __version__
from .common import VECTOR_COLUMN_NAME from .common import VECTOR_COLUMN_NAME
from .pydantic import LanceModel
from .util import safe_import_pandas from .util import safe_import_pandas
if TYPE_CHECKING:
from .pydantic import LanceModel
pd = safe_import_pandas() pd = safe_import_pandas()
class Query(pydantic.BaseModel): class Query(pydantic.BaseModel):
"""A Query""" """The LanceDB Query
Attributes
----------
vector : List[float]
the vector to search for
filter : Optional[str]
sql filter to refine the query with, optional
prefilter : bool
if True then apply the filter before vector search
k : int
top k results to return
metric : str
the distance metric between a pair of vectors,
can support L2 (default), Cosine and Dot.
[metric definitions][search]
columns : Optional[List[str]]
which columns to return in the results
nprobes : int
The number of probes used - optional
- A higher number makes search more accurate but also slower.
- See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice.
refine_factor : Optional[int]
Refine the results by reading extra elements and re-ranking them in memory - optional
- A higher number makes search more accurate but also slower.
- See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice.
"""
vector_column: str = VECTOR_COLUMN_NAME vector_column: str = VECTOR_COLUMN_NAME
@@ -61,6 +96,10 @@ class Query(pydantic.BaseModel):
class LanceQueryBuilder(ABC): class LanceQueryBuilder(ABC):
"""Build LanceDB query based on specific query type:
vector or full text search.
"""
@classmethod @classmethod
def create( def create(
cls, cls,
@@ -103,7 +142,7 @@ class LanceQueryBuilder(ABC):
if not isinstance(query, (list, np.ndarray)): if not isinstance(query, (list, np.ndarray)):
conf = table.embedding_functions.get(vector_column_name) conf = table.embedding_functions.get(vector_column_name)
if conf is not None: if conf is not None:
query = conf.function.compute_query_embeddings(query)[0] query = conf.function.compute_query_embeddings_with_retry(query)[0]
else: else:
msg = f"No embedding function for {vector_column_name}" msg = f"No embedding function for {vector_column_name}"
raise ValueError(msg) raise ValueError(msg)
@@ -114,7 +153,7 @@ class LanceQueryBuilder(ABC):
else: else:
conf = table.embedding_functions.get(vector_column_name) conf = table.embedding_functions.get(vector_column_name)
if conf is not None: if conf is not None:
query = conf.function.compute_query_embeddings(query)[0] query = conf.function.compute_query_embeddings_with_retry(query)[0]
return query, "vector" return query, "vector"
else: else:
return query, "fts" return query, "fts"
@@ -133,11 +172,11 @@ class LanceQueryBuilder(ABC):
deprecated_in="0.3.1", deprecated_in="0.3.1",
removed_in="0.4.0", removed_in="0.4.0",
current_version=__version__, current_version=__version__,
details="Use the bar function instead", details="Use to_pandas() instead",
) )
def to_df(self) -> "pd.DataFrame": def to_df(self) -> "pd.DataFrame":
""" """
Deprecated alias for `to_pandas()`. Please use `to_pandas()` instead. *Deprecated alias for `to_pandas()`. Please use `to_pandas()` instead.*
Execute the query and return the results as a pandas DataFrame. Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector In addition to the selected columns, LanceDB also returns a vector
@@ -146,14 +185,40 @@ class LanceQueryBuilder(ABC):
""" """
return self.to_pandas() return self.to_pandas()
def to_pandas(self) -> "pd.DataFrame": def to_pandas(self, flatten: Optional[Union[int, bool]] = None) -> "pd.DataFrame":
""" """
Execute the query and return the results as a pandas DataFrame. Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
Parameters
----------
flatten: Optional[Union[int, bool]]
If flatten is True, flatten all nested columns.
If flatten is an integer, flatten the nested columns up to the
specified depth.
If unspecified, do not flatten the nested columns.
""" """
return self.to_arrow().to_pandas() tbl = self.to_arrow()
if flatten is True:
while True:
tbl = tbl.flatten()
has_struct = False
# loop through all columns to check if there is any struct column
if any(pa.types.is_struct(col.type) for col in tbl.schema):
continue
else:
break
elif isinstance(flatten, int):
if flatten <= 0:
raise ValueError(
"Please specify a positive integer for flatten or the boolean value `True`"
)
while flatten > 0:
tbl = tbl.flatten()
flatten -= 1
return tbl.to_pandas()
@abstractmethod @abstractmethod
def to_arrow(self) -> pa.Table: def to_arrow(self) -> pa.Table:
@@ -226,13 +291,20 @@ class LanceQueryBuilder(ABC):
self._columns = columns self._columns = columns
return self return self
def where(self, where) -> LanceQueryBuilder: def where(self, where: str, prefilter: bool = False) -> LanceQueryBuilder:
"""Set the where clause. """Set the where clause.
Parameters Parameters
---------- ----------
where: str where: str
The where clause. The where clause which is a valid SQL where clause. See
`Lance filter pushdown <https://lancedb.github.io/lance/read_and_write.html#filter-push-down>`_
for valid SQL expressions.
prefilter: bool, default False
If True, apply the filter before vector search, otherwise the
filter is applied on the result of vector search.
This feature is **EXPERIMENTAL** and may be removed and modified
without warning in the future.
Returns Returns
------- -------
@@ -240,13 +312,12 @@ class LanceQueryBuilder(ABC):
The LanceQueryBuilder object. The LanceQueryBuilder object.
""" """
self._where = where self._where = where
self._prefilter = prefilter
return self return self
class LanceVectorQueryBuilder(LanceQueryBuilder): class LanceVectorQueryBuilder(LanceQueryBuilder):
""" """
A builder for nearest neighbor queries for LanceDB.
Examples Examples
-------- --------
>>> import lancedb >>> import lancedb
@@ -302,7 +373,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
Higher values will yield better recall (more likely to find vectors if Higher values will yield better recall (more likely to find vectors if
they exist) at the expense of latency. they exist) at the expense of latency.
See discussion in [Querying an ANN Index][../querying-an-ann-index] for See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice. tuning advice.
Parameters Parameters
@@ -369,14 +440,14 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
Parameters Parameters
---------- ----------
where: str where: str
The where clause. The where clause which is a valid SQL where clause. See
`Lance filter pushdown <https://lancedb.github.io/lance/read_and_write.html#filter-push-down>`_
for valid SQL expressions.
prefilter: bool, default False prefilter: bool, default False
If True, apply the filter before vector search, otherwise the If True, apply the filter before vector search, otherwise the
filter is applied on the result of vector search. filter is applied on the result of vector search.
This feature is **EXPERIMENTAL** and may be removed and modified This feature is **EXPERIMENTAL** and may be removed and modified
without warning in the future. Currently this is only supported without warning in the future.
in OSS and can only be used with a table that does not have an ANN
index.
Returns Returns
------- -------
@@ -389,6 +460,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
class LanceFtsQueryBuilder(LanceQueryBuilder): class LanceFtsQueryBuilder(LanceQueryBuilder):
"""A builder for full text search for LanceDB."""
def __init__(self, table: "lancedb.table.Table", query: str): def __init__(self, table: "lancedb.table.Table", query: str):
super().__init__(table) super().__init__(table)
self._query = query self._query = query
@@ -415,6 +488,27 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
scores = pa.array(scores) scores = pa.array(scores)
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns) output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
output_tbl = output_tbl.append_column("score", scores) output_tbl = output_tbl.append_column("score", scores)
if self._where is not None:
try:
# TODO would be great to have Substrait generate pyarrow compute expressions
# or conversely have pyarrow support SQL expressions using Substrait
import duckdb
output_tbl = (
duckdb.sql(f"SELECT * FROM output_tbl")
.filter(self._where)
.to_arrow_table()
)
except ImportError:
import lance
import tempfile
# TODO Use "memory://" instead once that's supported
with tempfile.TemporaryDirectory() as tmp:
ds = lance.write_dataset(output_tbl, tmp)
output_tbl = ds.to_table(filter=self._where)
return output_tbl return output_tbl

View File

@@ -18,6 +18,8 @@ import attrs
import pyarrow as pa import pyarrow as pa
from pydantic import BaseModel from pydantic import BaseModel
from lancedb.common import VECTOR_COLUMN_NAME
__all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"] __all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"]
@@ -43,6 +45,8 @@ class VectorQuery(BaseModel):
refine_factor: Optional[int] = None refine_factor: Optional[int] = None
vector_column: str = VECTOR_COLUMN_NAME
@attrs.define @attrs.define
class VectorQueryResult: class VectorQueryResult:

View File

@@ -13,7 +13,7 @@
import functools import functools
from typing import Any, Callable, Dict, Optional, Union from typing import Any, Callable, Dict, Iterable, Optional, Union
import aiohttp import aiohttp
import attrs import attrs
@@ -151,15 +151,14 @@ class RestfulLanceDBClient:
return await deserialize(resp) return await deserialize(resp)
@_check_not_closed @_check_not_closed
async def list_tables(self, limit: int, page_token: str): async def list_tables(
self, limit: int, page_token: Optional[str] = None
) -> Iterable[str]:
"""List all tables in the database.""" """List all tables in the database."""
try: if page_token is None:
json = await self.get( page_token = ""
"/v1/table/", {"limit": limit, "page_token": page_token} json = await self.get("/v1/table/", {"limit": limit, "page_token": page_token})
) return json["tables"]
return json["tables"]
except StopAsyncIteration:
return []
@_check_not_closed @_check_not_closed
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult: async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:

View File

@@ -12,17 +12,23 @@
# limitations under the License. # limitations under the License.
import asyncio import asyncio
import inspect
import logging
import uuid import uuid
from typing import Iterator, Optional from typing import Iterable, List, Optional, Union
from urllib.parse import urlparse from urllib.parse import urlparse
import pyarrow as pa import pyarrow as pa
from overrides import override
from ..common import DATA from ..common import DATA
from ..db import DBConnection from ..db import DBConnection
from ..embeddings import EmbeddingFunctionConfig
from ..pydantic import LanceModel
from ..table import Table, _sanitize_data from ..table import Table, _sanitize_data
from .arrow import to_ipc_binary from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
from .errors import LanceDBClientError
class RemoteDBConnection(DBConnection): class RemoteDBConnection(DBConnection):
@@ -50,14 +56,20 @@ class RemoteDBConnection(DBConnection):
self._loop = asyncio.get_event_loop() self._loop = asyncio.get_event_loop()
def __repr__(self) -> str: def __repr__(self) -> str:
return f"RemoveConnect(name={self.db_name})" return f"RemoteConnect(name={self.db_name})"
def table_names(self, last_token: str, limit=10) -> Iterator[str]: @override
def table_names(
self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""List the names of all tables in the database. """List the names of all tables in the database.
Parameters Parameters
---------- ----------
last_token: str page_token: str
The last token to start the new page. The last token to start the new page.
limit: int, default 10
The maximum number of tables to return for each page.
Returns Returns
------- -------
@@ -65,15 +77,16 @@ class RemoteDBConnection(DBConnection):
""" """
while True: while True:
result = self._loop.run_until_complete( result = self._loop.run_until_complete(
self._client.list_tables(limit, last_token) self._client.list_tables(limit, page_token)
) )
if len(result) > 0: if len(result) > 0:
last_token = result[len(result) - 1] page_token = result[len(result) - 1]
else: else:
break break
for item in result: for item in result:
yield result yield item
@override
def open_table(self, name: str) -> Table: def open_table(self, name: str) -> Table:
"""Open a Lance Table in the database. """Open a Lance Table in the database.
@@ -88,23 +101,142 @@ class RemoteDBConnection(DBConnection):
""" """
from .table import RemoteTable from .table import RemoteTable
# TODO: check if table exists # check if table exists
try:
self._loop.run_until_complete(
self._client.post(f"/v1/table/{name}/describe/")
)
except LanceDBClientError as err:
if str(err).startswith("Not found"):
logging.error(
f"Table {name} does not exist. "
f"Please first call db.create_table({name}, data)"
)
return RemoteTable(self, name) return RemoteTable(self, name)
@override
def create_table( def create_table(
self, self,
name: str, name: str,
data: DATA = None, data: DATA = None,
schema: pa.Schema = None, schema: Optional[Union[pa.Schema, LanceModel]] = None,
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table: ) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
Parameters
----------
name: str
The name of the table.
data: The data to initialize the table, *optional*
User must provide at least one of `data` or `schema`.
Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
schema: The schema of the table, *optional*
Acceptable types are:
- pyarrow.Schema
- [LanceModel][lancedb.pydantic.LanceModel]
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
LanceTable
A reference to the newly created table.
!!! note
The vector index won't be created by default.
To create the index, call the `create_index` method on the table.
Examples
--------
Can create with list of tuples or dictionaries:
>>> import lancedb
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data) # doctest: +SKIP
LanceTable(my_table)
You can also pass a pandas DataFrame:
>>> import pandas as pd
>>> data = pd.DataFrame({
... "vector": [[1.1, 1.2], [0.2, 1.8]],
... "lat": [45.5, 40.1],
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data) # doctest: +SKIP
LanceTable(table2)
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema) # doctest: +SKIP
LanceTable(table3)
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
>>> import pyarrow as pa
>>> def make_batches():
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]],
... pa.list_(pa.float32(), 2)),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
... ["vector", "item", "price"],
... )
>>> schema=pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema) # doctest: +SKIP
LanceTable(table4)
"""
if data is None and schema is None: if data is None and schema is None:
raise ValueError("Either data or schema must be provided.") raise ValueError("Either data or schema must be provided.")
if embedding_functions is not None:
raise NotImplementedError(
"embedding_functions is not supported for remote databases."
"Please vote https://github.com/lancedb/lancedb/issues/626 "
"for this feature."
)
if inspect.isclass(schema) and issubclass(schema, LanceModel):
# convert LanceModel to pyarrow schema
# note that it's possible this contains
# embedding function metadata already
schema = schema.to_arrow_schema()
if data is not None: if data is not None:
data = _sanitize_data( data = _sanitize_data(
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value data,
schema,
metadata=None,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
) )
else: else:
if schema is None: if schema is None:
@@ -126,6 +258,7 @@ class RemoteDBConnection(DBConnection):
) )
return RemoteTable(self, name) return RemoteTable(self, name)
@override
def drop_table(self, name: str): def drop_table(self, name: str):
"""Drop a table from the database. """Drop a table from the database.

View File

@@ -13,7 +13,7 @@
import uuid import uuid
from functools import cached_property from functools import cached_property
from typing import Optional, Union from typing import Dict, Optional, Union
import pyarrow as pa import pyarrow as pa
from lance import json_to_schema from lance import json_to_schema
@@ -22,6 +22,7 @@ from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from ..query import LanceVectorQueryBuilder from ..query import LanceVectorQueryBuilder
from ..table import Query, Table, _sanitize_data from ..table import Query, Table, _sanitize_data
from ..util import value_to_sql
from .arrow import to_ipc_binary from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE from .client import ARROW_STREAM_CONTENT_TYPE
from .db import RemoteDBConnection from .db import RemoteDBConnection
@@ -37,34 +38,87 @@ class RemoteTable(Table):
@cached_property @cached_property
def schema(self) -> pa.Schema: def schema(self) -> pa.Schema:
"""Return the schema of the table.""" """The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
of this Table
"""
resp = self._conn._loop.run_until_complete( resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/describe/") self._conn._client.post(f"/v1/table/{self._name}/describe/")
) )
schema = json_to_schema(resp["schema"]) schema = json_to_schema(resp["schema"])
return schema return schema
@property
def version(self) -> int:
"""Get the current version of the table"""
resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/describe/")
)
return resp["version"]
def to_arrow(self) -> pa.Table: def to_arrow(self) -> pa.Table:
"""Return the table as an Arrow table.""" """to_arrow() is not supported on the LanceDB cloud"""
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud") raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
def to_pandas(self): def to_pandas(self):
"""Return the table as a Pandas DataFrame. """to_pandas() is not supported on the LanceDB cloud"""
Intercept `to_arrow()` for better error message.
"""
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud") return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
def create_scalar_index(self, *args, **kwargs):
"""Creates a scalar index"""
return NotImplementedError(
"create_scalar_index() is not supported on the LanceDB cloud"
)
def create_index( def create_index(
self, self,
metric="L2", metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True, index_cache_size: Optional[int] = None,
accelerator: Optional[str] = None,
): ):
raise NotImplementedError """Create an index on the table.
Currently, the only parameters that matter are
the metric and the vector column name.
Parameters
----------
metric : str
The metric to use for the index. Default is "L2".
vector_column_name : str
The name of the vector column. Default is "vector".
Examples
--------
>>> import lancedb
>>> import uuid
>>> from lancedb.schema import vector
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> table_name = uuid.uuid4().hex
>>> schema = pa.schema(
... [
... pa.field("id", pa.uint32(), False),
... pa.field("vector", vector(128), False),
... pa.field("s", pa.string(), False),
... ]
... )
>>> table = db.create_table( # doctest: +SKIP
... table_name, # doctest: +SKIP
... schema=schema, # doctest: +SKIP
... )
>>> table.create_index("L2", "vector") # doctest: +SKIP
"""
index_type = "vector"
data = {
"column": vector_column_name,
"index_type": index_type,
"metric_type": metric,
"index_cache_size": index_cache_size,
}
resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/create_index/", data=data)
)
return resp
def add( def add(
self, self,
@@ -73,6 +127,28 @@ class RemoteTable(Table):
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
) -> int: ) -> int:
"""Add more data to the [Table](Table). It has the same API signature as the OSS version.
Parameters
----------
data: DATA
The data to insert into the table. Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
mode: str
The mode to use when writing the data. Valid values are
"append" and "overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
data = _sanitize_data( data = _sanitize_data(
data, data,
self.schema, self.schema,
@@ -96,17 +172,173 @@ class RemoteTable(Table):
def search( def search(
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
) -> LanceVectorQueryBuilder: ) -> LanceVectorQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
All query options are defined in [Query][lancedb.query.Query].
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> data = [
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
... ]
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector") # doctest: +SKIP
... .where("original_width > 1000", prefilter=True) # doctest: +SKIP
... .select(["caption", "original_width"]) # doctest: +SKIP
... .limit(2) # doctest: +SKIP
... .to_pandas()) # doctest: +SKIP
caption original_width vector _distance # doctest: +SKIP
0 foo 2000 [0.5, 3.4, 1.3] 5.220000 # doctest: +SKIP
1 test 3000 [0.3, 6.2, 2.6] 23.089996 # doctest: +SKIP
Parameters
----------
query: list/np.ndarray/str/PIL.Image.Image, default None
The targetted vector to search for.
- *default None*.
Acceptable types are: list, np.ndarray, PIL.Image.Image
- If None then the select/where/limit clauses are applied to filter
the table
vector_column_name: str
The name of the vector column to search.
*default "vector"*
Returns
-------
LanceQueryBuilder
A query builder object representing the query.
Once executed, the query returns
- selected columns
- the vector
- and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
return LanceVectorQueryBuilder(self, query, vector_column_name) return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
if query.prefilter:
raise NotImplementedError("Cloud support for prefiltering is coming soon")
result = self._conn._client.query(self._name, query) result = self._conn._client.query(self._name, query)
return self._conn._loop.run_until_complete(result).to_arrow() return self._conn._loop.run_until_complete(result).to_arrow()
def delete(self, predicate: str): def delete(self, predicate: str):
"""Delete rows from the table.""" """Delete rows from the table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
Parameters
----------
predicate: str
The SQL where clause to use when deleting rows.
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
The filter must not be empty, or it will error.
Examples
--------
>>> import lancedb
>>> data = [
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
x vector _distance # doctest: +SKIP
0 3 [5.0, 6.0] 41.0 # doctest: +SKIP
1 2 [3.0, 4.0] 85.0 # doctest: +SKIP
2 1 [1.0, 2.0] 145.0 # doctest: +SKIP
>>> table.delete("x = 2") # doctest: +SKIP
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
x vector _distance # doctest: +SKIP
0 3 [5.0, 6.0] 41.0 # doctest: +SKIP
1 1 [1.0, 2.0] 145.0 # doctest: +SKIP
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
>>> to_remove = [1, 3] # doctest: +SKIP
>>> to_remove = ", ".join([str(v) for v in to_remove]) # doctest: +SKIP
>>> table.delete(f"x IN ({to_remove})") # doctest: +SKIP
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
x vector _distance # doctest: +SKIP
0 2 [3.0, 4.0] 85.0 # doctest: +SKIP
"""
payload = {"predicate": predicate} payload = {"predicate": predicate}
self._conn._loop.run_until_complete( self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload) self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)
) )
def update(
self,
where: Optional[str] = None,
values: Optional[dict] = None,
*,
values_sql: Optional[Dict[str, str]] = None,
):
"""
This can be used to update zero to all rows depending on how many
rows match the where clause.
Parameters
----------
where: str, optional
The SQL where clause to use when updating rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
values: dict, optional
The values to update. The keys are the column names and the values
are the values to set.
values_sql: dict, optional
The values to update, expressed as SQL expression strings. These can
reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1.
Examples
--------
>>> import lancedb
>>> data = [
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> table.to_pandas() # doctest: +SKIP
x vector # doctest: +SKIP
0 1 [1.0, 2.0] # doctest: +SKIP
1 2 [3.0, 4.0] # doctest: +SKIP
2 3 [5.0, 6.0] # doctest: +SKIP
>>> table.update(where="x = 2", values={"vector": [10, 10]}) # doctest: +SKIP
>>> table.to_pandas() # doctest: +SKIP
x vector # doctest: +SKIP
0 1 [1.0, 2.0] # doctest: +SKIP
1 3 [5.0, 6.0] # doctest: +SKIP
2 2 [10.0, 10.0] # doctest: +SKIP
"""
if values is not None and values_sql is not None:
raise ValueError("Only one of values or values_sql can be provided")
if values is None and values_sql is None:
raise ValueError("Either values or values_sql must be provided")
if values is not None:
updates = [[k, value_to_sql(v)] for k, v in values.items()]
else:
updates = [[k, v] for k, v in values_sql.items()]
payload = {"predicate": where, "updates": updates}
self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/update/", data=payload)
)

View File

@@ -16,25 +16,30 @@ from __future__ import annotations
import inspect import inspect
import os import os
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from datetime import timedelta
from functools import cached_property from functools import cached_property
from typing import Any, Iterable, List, Optional, Union from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Union
import lance import lance
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
import pyarrow.compute as pc import pyarrow.compute as pc
import pyarrow.fs as pa_fs
from lance import LanceDataset from lance import LanceDataset
from lance.dataset import CleanupStats, ReaderLike
from lance.vector import vec_to_table from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from .pydantic import LanceModel from .pydantic import LanceModel, model_to_dict
from .query import LanceQueryBuilder, Query from .query import LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas from .util import fs_from_uri, safe_import_pandas, value_to_sql, join_uri
from .utils.events import register_event from .utils.events import register_event
if TYPE_CHECKING:
from datetime import timedelta
from lance.dataset import CleanupStats, ReaderLike
pd = safe_import_pandas() pd = safe_import_pandas()
@@ -49,8 +54,10 @@ def _sanitize_data(
# convert to list of dict if data is a bunch of LanceModels # convert to list of dict if data is a bunch of LanceModels
if isinstance(data[0], LanceModel): if isinstance(data[0], LanceModel):
schema = data[0].__class__.to_arrow_schema() schema = data[0].__class__.to_arrow_schema()
data = [dict(d) for d in data] data = [model_to_dict(d) for d in data]
data = pa.Table.from_pylist(data) data = pa.Table.from_pylist(data, schema=schema)
else:
data = pa.Table.from_pylist(data)
elif isinstance(data, dict): elif isinstance(data, dict):
data = vec_to_table(data) data = vec_to_table(data)
elif pd is not None and isinstance(data, pd.DataFrame): elif pd is not None and isinstance(data, pd.DataFrame):
@@ -86,7 +93,9 @@ def _append_vector_col(data: pa.Table, metadata: dict, schema: Optional[pa.Schem
for vector_column, conf in functions.items(): for vector_column, conf in functions.items():
func = conf.function func = conf.function
if vector_column not in data.column_names: if vector_column not in data.column_names:
col_data = func.compute_source_embeddings(data[conf.source_column]) col_data = func.compute_source_embeddings_with_retry(
data[conf.source_column]
)
if schema is not None: if schema is not None:
dtype = schema.field(vector_column).type dtype = schema.field(vector_column).type
else: else:
@@ -149,13 +158,13 @@ class Table(ABC):
@property @property
@abstractmethod @abstractmethod
def schema(self) -> pa.Schema: def schema(self) -> pa.Schema:
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of """The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
this Table of this Table
""" """
raise NotImplementedError raise NotImplementedError
def to_pandas(self): def to_pandas(self) -> "pd.DataFrame":
"""Return the table as a pandas DataFrame. """Return the table as a pandas DataFrame.
Returns Returns
@@ -182,6 +191,7 @@ class Table(ABC):
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True, replace: bool = True,
accelerator: Optional[str] = None, accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
): ):
"""Create an index on the table. """Create an index on the table.
@@ -191,20 +201,94 @@ class Table(ABC):
The distance metric to use when creating the index. The distance metric to use when creating the index.
Valid values are "L2", "cosine", or "dot". Valid values are "L2", "cosine", or "dot".
L2 is euclidean distance. L2 is euclidean distance.
num_partitions: int num_partitions: int, default 256
The number of IVF partitions to use when creating the index. The number of IVF partitions to use when creating the index.
Default is 256. Default is 256.
num_sub_vectors: int num_sub_vectors: int, default 96
The number of PQ sub-vectors to use when creating the index. The number of PQ sub-vectors to use when creating the index.
Default is 96. Default is 96.
vector_column_name: str, default "vector" vector_column_name: str, default "vector"
The vector column name to create the index. The vector column name to create the index.
replace: bool, default True replace: bool, default True
If True, replace the existing index if it exists. - If True, replace the existing index if it exists.
If False, raise an error if duplicate index exists.
- If False, raise an error if duplicate index exists.
accelerator: str, default None accelerator: str, default None
If set, use the given accelerator to create the index. If set, use the given accelerator to create the index.
Only support "cuda" for now. Only support "cuda" for now.
index_cache_size : int, optional
The size of the index cache in number of entries. Default value is 256.
"""
raise NotImplementedError
@abstractmethod
def create_scalar_index(
self,
column: str,
*,
replace: bool = True,
):
"""Create a scalar index on a column.
Scalar indices, like vector indices, can be used to speed up scans. A scalar
index can speed up scans that contain filter expressions on the indexed column.
For example, the following scan will be faster if the column ``my_col`` has
a scalar index:
.. code-block:: python
import lancedb
db = lancedb.connect("/data/lance")
img_table = db.open_table("images")
my_df = img_table.search().where("my_col = 7", prefilter=True).to_pandas()
Scalar indices can also speed up scans containing a vector search and a
prefilter:
.. code-block::python
import lancedb
db = lancedb.connect("/data/lance")
img_table = db.open_table("images")
img_table.search([1, 2, 3, 4], vector_column_name="vector")
.where("my_col != 7", prefilter=True)
.to_pandas()
Scalar indices can only speed up scans for basic filters using
equality, comparison, range (e.g. ``my_col BETWEEN 0 AND 100``), and set
membership (e.g. `my_col IN (0, 1, 2)`)
Scalar indices can be used if the filter contains multiple indexed columns and
the filter criteria are AND'd or OR'd together
(e.g. ``my_col < 0 AND other_col> 100``)
Scalar indices may be used if the filter contains non-indexed columns but,
depending on the structure of the filter, they may not be usable. For example,
if the column ``not_indexed`` does not have a scalar index then the filter
``my_col = 0 OR not_indexed = 1`` will not be able to use any scalar index on
``my_col``.
**Experimental API**
Parameters
----------
column : str
The column to be indexed. Must be a boolean, integer, float,
or string column.
replace : bool, default True
Replace the existing index if it exists.
Examples
--------
.. code-block:: python
import lance
dataset = lance.dataset("/tmp/images.lance")
dataset.create_scalar_index("category")
""" """
raise NotImplementedError raise NotImplementedError
@@ -220,8 +304,14 @@ class Table(ABC):
Parameters Parameters
---------- ----------
data: list-of-dict, dict, pd.DataFrame data: DATA
The data to insert into the table. The data to insert into the table. Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
mode: str mode: str
The mode to use when writing the data. Valid values are The mode to use when writing the data. Valid values are
"append" and "overwrite". "append" and "overwrite".
@@ -242,31 +332,70 @@ class Table(ABC):
query_type: str = "auto", query_type: str = "auto",
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors """Create a search query to find the nearest neighbors
of the given query vector. of the given query vector. We currently support [vector search][search]
and [full-text search][experimental-full-text-search].
All query options are defined in [Query][lancedb.query.Query].
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> data = [
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector")
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
... .to_pandas())
caption original_width vector _distance
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
1 test 3000 [0.3, 6.2, 2.6] 23.089996
Parameters Parameters
---------- ----------
query: str, list, np.ndarray, PIL.Image.Image, default None query: list/np.ndarray/str/PIL.Image.Image, default None
The query to search for. If None then The targetted vector to search for.
the select/where/limit clauses are applied to filter
- *default None*.
Acceptable types are: list, np.ndarray, PIL.Image.Image
- If None then the select/where/limit clauses are applied to filter
the table the table
vector_column_name: str, default "vector" vector_column_name: str
The name of the vector column to search. The name of the vector column to search.
query_type: str, default "auto" *default "vector"*
"vector", "fts", or "auto" query_type: str
If "auto" then the query type is inferred from the query; *default "auto"*.
If `query` is a list/np.ndarray then the query type is "vector"; Acceptable types are: "vector", "fts", or "auto"
If `query` is a PIL.Image.Image then either do vector search
or raise an error if no corresponding embedding function is found. - If "auto" then the query type is inferred from the query;
If `query` is a string, then the query type is "vector" if the
- If `query` is a list/np.ndarray then the query type is
"vector";
- If `query` is a PIL.Image.Image then either do vector search,
or raise an error if no corresponding embedding function is found.
- If `query` is a string, then the query type is "vector" if the
table has embedding functions else the query type is "fts" table has embedding functions else the query type is "fts"
Returns Returns
------- -------
LanceQueryBuilder LanceQueryBuilder
A query builder object representing the query. A query builder object representing the query.
Once executed, the query returns selected columns, the vector, Once executed, the query returns
and also the "_distance" column which is the distance between the query
- selected columns
- the vector
- and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
""" """
raise NotImplementedError raise NotImplementedError
@@ -285,14 +414,19 @@ class Table(ABC):
Parameters Parameters
---------- ----------
where: str where: str
The SQL where clause to use when deleting rows. For example, 'x = 2' The SQL where clause to use when deleting rows.
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
The filter must not be empty, or it will error.
Examples Examples
-------- --------
>>> import lancedb >>> import lancedb
>>> data = [ >>> data = [
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]} ... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ] ... ]
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data) >>> table = db.create_table("my_table", data)
@@ -321,6 +455,62 @@ class Table(ABC):
""" """
raise NotImplementedError raise NotImplementedError
@abstractmethod
def update(
self,
where: Optional[str] = None,
values: Optional[dict] = None,
*,
values_sql: Optional[Dict[str, str]] = None,
):
"""
This can be used to update zero to all rows depending on how many
rows match the where clause. If no where clause is provided, then
all rows will be updated.
Either `values` or `values_sql` must be provided. You cannot provide
both.
Parameters
----------
where: str, optional
The SQL where clause to use when updating rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
values: dict, optional
The values to update. The keys are the column names and the values
are the values to set.
values_sql: dict, optional
The values to update, expressed as SQL expression strings. These can
reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1.
Examples
--------
>>> import lancedb
>>> import pandas as pd
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
>>> table.update(where="x = 2", values={"vector": [10, 10]})
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
2 2 [10.0, 10.0]
>>> table.update(values_sql={"x": "x + 1"})
>>> table.to_pandas()
x vector
0 2 [1.0, 2.0]
1 4 [5.0, 6.0]
2 3 [10.0, 10.0]
"""
raise NotImplementedError
class LanceTable(Table): class LanceTable(Table):
""" """
@@ -377,7 +567,8 @@ class LanceTable(Table):
-------- --------
>>> import lancedb >>> import lancedb
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}]) >>> table = db.create_table("my_table",
... [{"vector": [1.1, 0.9], "type": "vector"}])
>>> table.version >>> table.version
2 2
>>> table.to_pandas() >>> table.to_pandas()
@@ -424,7 +615,8 @@ class LanceTable(Table):
-------- --------
>>> import lancedb >>> import lancedb
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}]) >>> table = db.create_table("my_table", [
... {"vector": [1.1, 0.9], "type": "vector"}])
>>> table.version >>> table.version
2 2
>>> table.to_pandas() >>> table.to_pandas()
@@ -487,7 +679,7 @@ class LanceTable(Table):
@property @property
def _dataset_uri(self) -> str: def _dataset_uri(self) -> str:
return os.path.join(self._conn.uri, f"{self.name}.lance") return join_uri(self._conn.uri, f"{self.name}.lance")
def create_index( def create_index(
self, self,
@@ -497,6 +689,7 @@ class LanceTable(Table):
vector_column_name=VECTOR_COLUMN_NAME, vector_column_name=VECTOR_COLUMN_NAME,
replace: bool = True, replace: bool = True,
accelerator: Optional[str] = None, accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
): ):
"""Create an index on the table.""" """Create an index on the table."""
self._dataset.create_index( self._dataset.create_index(
@@ -507,11 +700,17 @@ class LanceTable(Table):
num_sub_vectors=num_sub_vectors, num_sub_vectors=num_sub_vectors,
replace=replace, replace=replace,
accelerator=accelerator, accelerator=accelerator,
index_cache_size=index_cache_size,
) )
self._reset_dataset() self._reset_dataset()
register_event("create_index") register_event("create_index")
def create_fts_index(self, field_names: Union[str, List[str]]): def create_scalar_index(self, column: str, *, replace: bool = True):
self._dataset.create_scalar_index(column, index_type="BTREE", replace=replace)
def create_fts_index(
self, field_names: Union[str, List[str]], *, replace: bool = False
):
"""Create a full-text search index on the table. """Create a full-text search index on the table.
Warning - this API is highly experimental and is highly likely to change Warning - this API is highly experimental and is highly likely to change
@@ -521,17 +720,31 @@ class LanceTable(Table):
---------- ----------
field_names: str or list of str field_names: str or list of str
The name(s) of the field to index. The name(s) of the field to index.
replace: bool, default False
If True, replace the existing index if it exists. Note that this is
not yet an atomic operation; the index will be temporarily
unavailable while the new index is being created.
""" """
from .fts import create_index, populate_index from .fts import create_index, populate_index
if isinstance(field_names, str): if isinstance(field_names, str):
field_names = [field_names] field_names = [field_names]
fs, path = fs_from_uri(self._get_fts_index_path())
index_exists = fs.get_file_info(path).type != pa_fs.FileType.NotFound
if index_exists:
if not replace:
raise ValueError(
f"Index already exists. Use replace=True to overwrite."
)
fs.delete_dir(path)
index = create_index(self._get_fts_index_path(), field_names) index = create_index(self._get_fts_index_path(), field_names)
populate_index(index, self, field_names) populate_index(index, self, field_names)
register_event("create_fts_index") register_event("create_fts_index")
def _get_fts_index_path(self): def _get_fts_index_path(self):
return os.path.join(self._dataset_uri, "_indices", "tantivy") return join_uri(self._dataset_uri, "_indices", "tantivy")
@cached_property @cached_property
def _dataset(self) -> LanceDataset: def _dataset(self) -> LanceDataset:
@@ -669,14 +882,39 @@ class LanceTable(Table):
query_type: str = "auto", query_type: str = "auto",
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors """Create a search query to find the nearest neighbors
of the given query vector. of the given query vector. We currently support [vector search][search]
and [full-text search][search].
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> data = [
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector")
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
... .to_pandas())
caption original_width vector _distance
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
1 test 3000 [0.3, 6.2, 2.6] 23.089996
Parameters Parameters
---------- ----------
query: str, list, np.ndarray, a PIL Image or None query: list/np.ndarray/str/PIL.Image.Image, default None
The query to search for. If None then The targetted vector to search for.
the select/where/limit clauses are applied to filter
the table - *default None*.
Acceptable types are: list, np.ndarray, PIL.Image.Image
- If None then the select/[where][sql]/limit clauses are applied
to filter the table
vector_column_name: str, default "vector" vector_column_name: str, default "vector"
The name of the vector column to search. The name of the vector column to search.
query_type: str, default "auto" query_type: str, default "auto"
@@ -685,7 +923,7 @@ class LanceTable(Table):
If `query` is a list/np.ndarray then the query type is "vector"; If `query` is a list/np.ndarray then the query type is "vector";
If `query` is a PIL.Image.Image then either do vector search If `query` is a PIL.Image.Image then either do vector search
or raise an error if no corresponding embedding function is found. or raise an error if no corresponding embedding function is found.
If the query is a string, then the query type is "vector" if the If the `query` is a string, then the query type is "vector" if the
table has embedding functions, else the query type is "fts" table has embedding functions, else the query type is "fts"
Returns Returns
@@ -696,7 +934,7 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
""" """
register_event("search") register_event("search_table")
return LanceQueryBuilder.create( return LanceQueryBuilder.create(
self, query, query_type, vector_column_name=vector_column_name self, query, query_type, vector_column_name=vector_column_name
) )
@@ -720,7 +958,9 @@ class LanceTable(Table):
-------- --------
>>> import lancedb >>> import lancedb
>>> data = [ >>> data = [
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]} ... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ] ... ]
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data) >>> table = db.create_table("my_table", data)
@@ -740,7 +980,8 @@ class LanceTable(Table):
The data to insert into the table. The data to insert into the table.
At least one of `data` or `schema` must be provided. At least one of `data` or `schema` must be provided.
schema: pa.Schema or LanceModel, optional schema: pa.Schema or LanceModel, optional
The schema of the table. If not provided, the schema is inferred from the data. The schema of the table. If not provided,
the schema is inferred from the data.
At least one of `data` or `schema` must be provided. At least one of `data` or `schema` must be provided.
mode: str, default "create" mode: str, default "create"
The mode to use when writing the data. Valid values are The mode to use when writing the data. Valid values are
@@ -811,35 +1052,45 @@ class LanceTable(Table):
file_info = fs.get_file_info(path) file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory: if file_info.type != pa.fs.FileType.Directory:
raise FileNotFoundError( raise FileNotFoundError(
f"Table {name} does not exist. Please first call db.create_table({name}, data)" f"Table {name} does not exist."
f"Please first call db.create_table({name}, data)"
) )
register_event("open_table")
return tbl return tbl
def delete(self, where: str): def delete(self, where: str):
self._dataset.delete(where) self._dataset.delete(where)
def update(self, where: str, values: dict): def update(
self,
where: Optional[str] = None,
values: Optional[dict] = None,
*,
values_sql: Optional[Dict[str, str]] = None,
):
""" """
EXPERIMENTAL: Update rows in the table (not threadsafe).
This can be used to update zero to all rows depending on how many This can be used to update zero to all rows depending on how many
rows match the where clause. rows match the where clause.
Parameters Parameters
---------- ----------
where: str where: str, optional
The SQL where clause to use when updating rows. For example, 'x = 2' The SQL where clause to use when updating rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error. or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
values: dict values: dict, optional
The values to update. The keys are the column names and the values The values to update. The keys are the column names and the values
are the values to set. are the values to set.
values_sql: dict, optional
The values to update, expressed as SQL expression strings. These can
reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1.
Examples Examples
-------- --------
>>> import lancedb >>> import lancedb
>>> data = [ >>> import pandas as pd
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]} >>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
... ]
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data) >>> table = db.create_table("my_table", data)
>>> table.to_pandas() >>> table.to_pandas()
@@ -855,29 +1106,20 @@ class LanceTable(Table):
2 2 [10.0, 10.0] 2 2 [10.0, 10.0]
""" """
orig_data = self._dataset.to_table(filter=where).combine_chunks() if values is not None and values_sql is not None:
if len(orig_data) == 0: raise ValueError("Only one of values or values_sql can be provided")
return if values is None and values_sql is None:
for col, val in values.items(): raise ValueError("Either values or values_sql must be provided")
i = orig_data.column_names.index(col)
if i < 0: if values is not None:
raise ValueError(f"Column {col} does not exist") values_sql = {k: value_to_sql(v) for k, v in values.items()}
orig_data = orig_data.set_column(
i, col, pa.array([val] * len(orig_data), type=orig_data[col].type) self.to_lance().update(values_sql, where)
)
self.delete(where)
self.add(orig_data, mode="append")
self._reset_dataset() self._reset_dataset()
register_event("update") register_event("update")
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
ds = self.to_lance() ds = self.to_lance()
if query.prefilter:
for idx in ds.list_indices():
if query.vector_column in idx["fields"]:
raise NotImplementedError(
"Prefiltering for indexed vector column is coming soon."
)
return ds.to_table( return ds.to_table(
columns=query.columns, columns=query.columns,
filter=query.filter, filter=query.filter,
@@ -1019,7 +1261,8 @@ def _sanitize_vector_column(
# ChunkedArray is annoying to work with, so we combine chunks here # ChunkedArray is annoying to work with, so we combine chunks here
vec_arr = data[vector_column_name].combine_chunks() vec_arr = data[vector_column_name].combine_chunks()
if pa.types.is_list(data[vector_column_name].type): if pa.types.is_list(data[vector_column_name].type):
# if it's a variable size list array we make sure the dimensions are all the same # if it's a variable size list array,
# we make sure the dimensions are all the same
has_jagged_ndims = len(vec_arr.values) % len(data) != 0 has_jagged_ndims = len(vec_arr.values) % len(data) != 0
if has_jagged_ndims: if has_jagged_ndims:
data = _sanitize_jagged( data = _sanitize_jagged(

View File

@@ -12,9 +12,13 @@
# limitations under the License. # limitations under the License.
import os import os
from typing import Tuple from datetime import date, datetime
from functools import singledispatch
import pathlib
from typing import Tuple, Union
from urllib.parse import urlparse from urllib.parse import urlparse
import numpy as np
import pyarrow.fs as pa_fs import pyarrow.fs as pa_fs
@@ -59,6 +63,12 @@ def get_uri_location(uri: str) -> str:
str: Location part of the URL, without scheme str: Location part of the URL, without scheme
""" """
parsed = urlparse(uri) parsed = urlparse(uri)
if len(parsed.scheme) == 1:
# Windows drive names are parsed as the scheme
# e.g. "c:\path" -> ParseResult(scheme="c", netloc="", path="/path", ...)
# So we add special handling here for schemes that are a single character
return uri
if not parsed.netloc: if not parsed.netloc:
return parsed.path return parsed.path
else: else:
@@ -81,6 +91,29 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
return pa_fs.FileSystem.from_uri(uri) return pa_fs.FileSystem.from_uri(uri)
def join_uri(base: Union[str, pathlib.Path], *parts: str) -> str:
"""
Join a URI with multiple parts, handles both local and remote paths
Parameters
----------
base : str
The base URI
parts : str
The parts to join to the base URI, each separated by the
appropriate path separator for the URI scheme and OS
"""
if isinstance(base, pathlib.Path):
return base.joinpath(*parts)
base = str(base)
if get_uri_scheme(base) == "file":
# using pathlib for local paths make this windows compatible
# `get_uri_scheme` returns `file` for windows drive names (e.g. `c:\path`)
return str(pathlib.Path(base, *parts))
# for remote paths, just use os.path.join
return "/".join([p.rstrip("/") for p in [base, *parts]])
def safe_import_pandas(): def safe_import_pandas():
try: try:
import pandas as pd import pandas as pd
@@ -88,3 +121,53 @@ def safe_import_pandas():
return pd return pd
except ImportError: except ImportError:
return None return None
@singledispatch
def value_to_sql(value):
raise NotImplementedError("SQL conversion is not implemented for this type")
@value_to_sql.register(str)
def _(value: str):
return f"'{value}'"
@value_to_sql.register(int)
def _(value: int):
return str(value)
@value_to_sql.register(float)
def _(value: float):
return str(value)
@value_to_sql.register(bool)
def _(value: bool):
return str(value).upper()
@value_to_sql.register(type(None))
def _(value: type(None)):
return "NULL"
@value_to_sql.register(datetime)
def _(value: datetime):
return f"'{value.isoformat()}'"
@value_to_sql.register(date)
def _(value: date):
return f"'{value.isoformat()}'"
@value_to_sql.register(list)
def _(value: list):
return "[" + ", ".join(map(value_to_sql, value)) + "]"
@value_to_sql.register(np.ndarray)
def _(value: np.ndarray):
return value_to_sql(value.tolist())

View File

@@ -64,8 +64,10 @@ class _Events:
Initializes the Events object with default values for events, rate_limit, and metadata. Initializes the Events object with default values for events, rate_limit, and metadata.
""" """
self.events = [] # events list self.events = [] # events list
self.max_events = 25 # max events to store in memory self.throttled_event_names = ["search_table"]
self.rate_limit = 60.0 # rate limit (seconds) self.throttled_events = set()
self.max_events = 5 # max events to store in memory
self.rate_limit = 60.0 * 5 # rate limit (seconds)
self.time = 0.0 self.time = 0.0
if is_git_dir(): if is_git_dir():
@@ -112,18 +114,21 @@ class _Events:
return return
if ( if (
len(self.events) < self.max_events len(self.events) < self.max_events
): # Events list limited to 25 events (drop any events past this) ): # Events list limited to self.max_events (drop any events past this)
params.update(self.metadata) params.update(self.metadata)
self.events.append( event = {
{ "event": event_name,
"event": event_name, "properties": params,
"properties": params, "timestamp": datetime.datetime.now(
"timestamp": datetime.datetime.now( tz=datetime.timezone.utc
tz=datetime.timezone.utc ).isoformat(),
).isoformat(), "distinct_id": CONFIG["uuid"],
"distinct_id": CONFIG["uuid"], }
} if event_name not in self.throttled_event_names:
) self.events.append(event)
elif event_name not in self.throttled_events:
self.throttled_events.add(event_name)
self.events.append(event)
# Check rate limit # Check rate limit
t = time.time() t = time.time()
@@ -135,7 +140,6 @@ class _Events:
"distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event "distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event
"batch": self.events, "batch": self.events,
} }
# POST equivalent to requests.post(self.url, json=data). # POST equivalent to requests.post(self.url, json=data).
# threaded request is used to avoid blocking, retries are disabled, and verbose is disabled # threaded request is used to avoid blocking, retries are disabled, and verbose is disabled
# to avoid any possible disruption in the console. # to avoid any possible disruption in the console.
@@ -150,6 +154,7 @@ class _Events:
# Flush & Reset # Flush & Reset
self.events = [] self.events = []
self.throttled_events = set()
self.time = t self.time = t

View File

@@ -63,7 +63,8 @@ def set_sentry():
""" """
if "exc_info" in hint: if "exc_info" in hint:
exc_type, exc_value, tb = hint["exc_info"] exc_type, exc_value, tb = hint["exc_info"]
if "out of memory" in str(exc_value).lower(): ignored_errors = ["out of memory", "no space left on device", "testing"]
if any(error in str(exc_value).lower() for error in ignored_errors):
return None return None
if is_git_dir(): if is_git_dir():
@@ -97,7 +98,7 @@ def set_sentry():
dsn="https://c63ef8c64e05d1aa1a96513361f3ca2f@o4505950840946688.ingest.sentry.io/4505950933614592", dsn="https://c63ef8c64e05d1aa1a96513361f3ca2f@o4505950840946688.ingest.sentry.io/4505950933614592",
debug=False, debug=False,
include_local_variables=False, include_local_variables=False,
traces_sample_rate=1.0, traces_sample_rate=0.5,
environment="production", # 'dev' or 'production' environment="production", # 'dev' or 'production'
before_send=before_send, before_send=before_send,
ignore_errors=[KeyboardInterrupt, FileNotFoundError, bdb.BdbQuit], ignore_errors=[KeyboardInterrupt, FileNotFoundError, bdb.BdbQuit],

View File

@@ -1,12 +1,12 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.3.2" version = "0.4.2"
dependencies = [ dependencies = [
"deprecation", "deprecation",
"pylance==0.8.7", "pylance==0.9.1",
"ratelimiter~=1.0", "ratelimiter~=1.0",
"retry>=0.9.2", "retry>=0.9.2",
"tqdm>=4.1.0", "tqdm>=4.27.0",
"aiohttp", "aiohttp",
"pydantic>=1.10", "pydantic>=1.10",
"attrs>=21.3.0", "attrs>=21.3.0",
@@ -14,7 +14,8 @@ dependencies = [
"cachetools", "cachetools",
"pyyaml>=6.0", "pyyaml>=6.0",
"click>=8.1.7", "click>=8.1.7",
"requests>=2.31.0" "requests>=2.31.0",
"overrides>=0.7"
] ]
description = "lancedb" description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }] authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
@@ -48,11 +49,11 @@ classifiers = [
repository = "https://github.com/lancedb/lancedb" repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies] [project.optional-dependencies]
tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests"] tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests", "duckdb", "pytz"]
dev = ["ruff", "pre-commit", "black"] dev = ["ruff", "pre-commit", "black"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"] docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
clip = ["torch", "pillow", "open-clip"] clip = ["torch", "pillow", "open-clip"]
embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere"] embeddings = ["openai>=1.6.1", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere", "InstructorEmbedding"]
[project.scripts] [project.scripts]
lancedb = "lancedb.cli.cli:cli" lancedb = "lancedb.cli.cli:cli"
@@ -64,6 +65,9 @@ build-backend = "setuptools.build_meta"
[tool.isort] [tool.isort]
profile = "black" profile = "black"
[tool.ruff]
select = ["F", "E", "W", "I", "G", "TCH", "PERF"]
[tool.pytest.ini_options] [tool.pytest.ini_options]
addopts = "--strict-markers" addopts = "--strict-markers"
markers = [ markers = [

View File

@@ -129,7 +129,7 @@ def test_ingest_iterator(tmp_path):
[ [
PydanticSchema(vector=[3.1, 4.1], item="foo", price=10.0), PydanticSchema(vector=[3.1, 4.1], item="foo", price=10.0),
PydanticSchema(vector=[5.9, 26.5], item="bar", price=20.0), PydanticSchema(vector=[5.9, 26.5], item="bar", price=20.0),
] ],
# TODO: test pydict separately. it is unique column number and names contraint # TODO: test pydict separately. it is unique column number and names contraint
] ]
@@ -150,6 +150,21 @@ def test_ingest_iterator(tmp_path):
run_tests(PydanticSchema) run_tests(PydanticSchema)
def test_table_names(tmp_path):
db = lancedb.connect(tmp_path)
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
db.create_table("test2", data=data)
db.create_table("test1", data=data)
db.create_table("test3", data=data)
assert db.table_names() == ["test1", "test2", "test3"]
def test_create_mode(tmp_path): def test_create_mode(tmp_path):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
data = pd.DataFrame( data = pd.DataFrame(
@@ -286,4 +301,29 @@ def test_replace_index(tmp_path):
num_partitions=2, num_partitions=2,
num_sub_vectors=4, num_sub_vectors=4,
replace=True, replace=True,
index_cache_size=10,
) )
def test_prefilter_with_index(tmp_path):
db = lancedb.connect(uri=tmp_path)
data = [
{"vector": np.random.rand(128), "item": "foo", "price": float(i)}
for i in range(1000)
]
sample_key = data[100]["vector"]
table = db.create_table(
"test",
data,
)
table.create_index(
num_partitions=2,
num_sub_vectors=4,
)
table = (
table.search(sample_key)
.where("price == 500", prefilter=True)
.limit(5)
.to_arrow()
)
assert table.num_rows == 1

View File

@@ -15,13 +15,16 @@ import sys
import lance import lance
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
import pytest
from lancedb.conftest import MockTextEmbeddingFunction import lancedb
from lancedb.conftest import MockRateLimitedEmbeddingFunction, MockTextEmbeddingFunction
from lancedb.embeddings import ( from lancedb.embeddings import (
EmbeddingFunctionConfig, EmbeddingFunctionConfig,
EmbeddingFunctionRegistry, EmbeddingFunctionRegistry,
with_embeddings, with_embeddings,
) )
from lancedb.pydantic import LanceModel, Vector
def mock_embed_func(input_data): def mock_embed_func(input_data):
@@ -83,3 +86,29 @@ def test_embedding_function(tmp_path):
expected = func.compute_query_embeddings("hello world") expected = func.compute_query_embeddings("hello world")
assert np.allclose(actual, expected) assert np.allclose(actual, expected)
def test_embedding_function_rate_limit(tmp_path):
def _get_schema_from_model(model):
class Schema(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
return Schema
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
model = registry.get("test-rate-limited").create(max_retries=0)
schema = _get_schema_from_model(model)
table = db.create_table("test", schema=schema, mode="overwrite")
table.add([{"text": "hello world"}])
with pytest.raises(Exception):
table.add([{"text": "hello world"}])
assert len(table) == 1
model = registry.get("test-rate-limited").create()
schema = _get_schema_from_model(model)
table = db.create_table("test", schema=schema, mode="overwrite")
table.add([{"text": "hello world"}])
table.add([{"text": "hello world"}])
assert len(table) == 2

View File

@@ -29,11 +29,11 @@ from lancedb.pydantic import LanceModel, Vector
@pytest.mark.slow @pytest.mark.slow
@pytest.mark.parametrize("alias", ["sentence-transformers", "openai"]) @pytest.mark.parametrize("alias", ["sentence-transformers", "openai"])
def test_sentence_transformer(alias, tmp_path): def test_basic_text_embeddings(alias, tmp_path):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
registry = get_registry() registry = get_registry()
func = registry.get(alias).create() func = registry.get(alias).create(max_retries=0)
func2 = registry.get(alias).create() func2 = registry.get(alias).create(max_retries=0)
class Words(LanceModel): class Words(LanceModel):
text: str = func.SourceField() text: str = func.SourceField()
@@ -150,7 +150,11 @@ def test_openclip(tmp_path):
os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set" os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set"
) # also skip if cohere not installed ) # also skip if cohere not installed
def test_cohere_embedding_function(): def test_cohere_embedding_function():
cohere = get_registry().get("cohere").create(name="embed-multilingual-v2.0") cohere = (
get_registry()
.get("cohere")
.create(name="embed-multilingual-v2.0", max_retries=0)
)
class TextModel(LanceModel): class TextModel(LanceModel):
text: str = cohere.SourceField() text: str = cohere.SourceField()
@@ -162,3 +166,19 @@ def test_cohere_embedding_function():
tbl.add(df) tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == cohere.ndims() assert len(tbl.to_pandas()["vector"][0]) == cohere.ndims()
@pytest.mark.slow
def test_instructor_embedding(tmp_path):
model = get_registry().get("instructor").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()

View File

@@ -12,6 +12,7 @@
# limitations under the License. # limitations under the License.
import os import os
import random import random
from unittest import mock
import numpy as np import numpy as np
import pandas as pd import pandas as pd
@@ -43,7 +44,16 @@ def table(tmp_path) -> ldb.table.LanceTable:
for _ in range(100) for _ in range(100)
] ]
table = db.create_table( table = db.create_table(
"test", data=pd.DataFrame({"vector": vectors, "text": text, "text2": text}) "test",
data=pd.DataFrame(
{
"vector": vectors,
"id": [i % 2 for i in range(100)],
"text": text,
"text2": text,
"nested": [{"text": t} for t in text],
}
),
) )
return table return table
@@ -75,6 +85,25 @@ def test_create_index_from_table(tmp_path, table):
assert len(df) == 10 assert len(df) == 10
assert "text" in df.columns assert "text" in df.columns
# Check whether it can be updated
table.add(
[
{
"vector": np.random.randn(128),
"id": 101,
"text": "gorilla",
"text2": "gorilla",
"nested": {"text": "gorilla"},
}
]
)
with pytest.raises(ValueError, match="already exists"):
table.create_fts_index("text")
table.create_fts_index("text", replace=True)
assert len(table.search("gorilla").limit(1).to_pandas()) == 1
def test_create_index_multiple_columns(tmp_path, table): def test_create_index_multiple_columns(tmp_path, table):
table.create_fts_index(["text", "text2"]) table.create_fts_index(["text", "text2"])
@@ -89,3 +118,32 @@ def test_empty_rs(tmp_path, table, mocker):
mocker.patch("lancedb.fts.search_index", return_value=([], [])) mocker.patch("lancedb.fts.search_index", return_value=([], []))
df = table.search("puppy").limit(10).to_pandas() df = table.search("puppy").limit(10).to_pandas()
assert len(df) == 0 assert len(df) == 0
def test_nested_schema(tmp_path, table):
table.create_fts_index("nested.text")
rs = table.search("puppy").limit(10).to_list()
assert len(rs) == 10
def test_search_index_with_filter(table):
table.create_fts_index("text")
orig_import = __import__
def import_mock(name, *args):
if name == "duckdb":
raise ImportError
return orig_import(name, *args)
# no duckdb
with mock.patch("builtins.__import__", side_effect=import_mock):
rs = table.search("puppy").where("id=1").limit(10).to_list()
for r in rs:
assert r["id"] == 1
# yes duckdb
rs2 = table.search("puppy").where("id=1").limit(10).to_list()
for r in rs2:
assert r["id"] == 1
assert rs == rs2

View File

@@ -13,9 +13,10 @@
import json import json
import pytz
import sys import sys
from datetime import date, datetime from datetime import date, datetime
from typing import List, Optional from typing import List, Optional, Tuple
import pyarrow as pa import pyarrow as pa
import pydantic import pydantic
@@ -38,11 +39,14 @@ def test_pydantic_to_arrow():
id: int id: int
s: str s: str
vec: list[float] vec: list[float]
li: List[int] li: list[int]
lili: list[list[float]]
litu: list[tuple[float, float]]
opt: Optional[str] = None opt: Optional[str] = None
st: StructModel st: StructModel
dt: date dt: date
dtt: datetime dtt: datetime
dt_with_tz: datetime = Field(json_schema_extra={"tz": "Asia/Shanghai"})
# d: dict # d: dict
m = TestModel( m = TestModel(
@@ -50,9 +54,12 @@ def test_pydantic_to_arrow():
s="hello", s="hello",
vec=[1.0, 2.0, 3.0], vec=[1.0, 2.0, 3.0],
li=[2, 3, 4], li=[2, 3, 4],
lili=[[2.5, 1.5], [3.5, 4.5], [5.5, 6.5]],
litu=[(2.5, 1.5), (3.5, 4.5), (5.5, 6.5)],
st=StructModel(a="a", b=1.0), st=StructModel(a="a", b=1.0),
dt=date.today(), dt=date.today(),
dtt=datetime.now(), dtt=datetime.now(),
dt_with_tz=datetime.now(pytz.timezone("Asia/Shanghai")),
) )
schema = pydantic_to_schema(TestModel) schema = pydantic_to_schema(TestModel)
@@ -63,6 +70,8 @@ def test_pydantic_to_arrow():
pa.field("s", pa.utf8(), False), pa.field("s", pa.utf8(), False),
pa.field("vec", pa.list_(pa.float64()), False), pa.field("vec", pa.list_(pa.float64()), False),
pa.field("li", pa.list_(pa.int64()), False), pa.field("li", pa.list_(pa.int64()), False),
pa.field("lili", pa.list_(pa.list_(pa.float64())), False),
pa.field("litu", pa.list_(pa.list_(pa.float64())), False),
pa.field("opt", pa.utf8(), True), pa.field("opt", pa.utf8(), True),
pa.field( pa.field(
"st", "st",
@@ -73,11 +82,16 @@ def test_pydantic_to_arrow():
), ),
pa.field("dt", pa.date32(), False), pa.field("dt", pa.date32(), False),
pa.field("dtt", pa.timestamp("us"), False), pa.field("dtt", pa.timestamp("us"), False),
pa.field("dt_with_tz", pa.timestamp("us", tz="Asia/Shanghai"), False),
] ]
) )
assert schema == expect_schema assert schema == expect_schema
@pytest.mark.skipif(
sys.version_info > (3, 8),
reason="using native type alias requires python3.9 or higher",
)
def test_pydantic_to_arrow_py38(): def test_pydantic_to_arrow_py38():
class StructModel(pydantic.BaseModel): class StructModel(pydantic.BaseModel):
a: str a: str
@@ -88,10 +102,13 @@ def test_pydantic_to_arrow_py38():
s: str s: str
vec: List[float] vec: List[float]
li: List[int] li: List[int]
lili: List[List[float]]
litu: List[Tuple[float, float]]
opt: Optional[str] = None opt: Optional[str] = None
st: StructModel st: StructModel
dt: date dt: date
dtt: datetime dtt: datetime
dt_with_tz: datetime = Field(json_schema_extra={"tz": "Asia/Shanghai"})
# d: dict # d: dict
m = TestModel( m = TestModel(
@@ -99,9 +116,12 @@ def test_pydantic_to_arrow_py38():
s="hello", s="hello",
vec=[1.0, 2.0, 3.0], vec=[1.0, 2.0, 3.0],
li=[2, 3, 4], li=[2, 3, 4],
lili=[[2.5, 1.5], [3.5, 4.5], [5.5, 6.5]],
litu=[(2.5, 1.5), (3.5, 4.5), (5.5, 6.5)],
st=StructModel(a="a", b=1.0), st=StructModel(a="a", b=1.0),
dt=date.today(), dt=date.today(),
dtt=datetime.now(), dtt=datetime.now(),
dt_with_tz=datetime.now(pytz.timezone("Asia/Shanghai")),
) )
schema = pydantic_to_schema(TestModel) schema = pydantic_to_schema(TestModel)
@@ -112,6 +132,8 @@ def test_pydantic_to_arrow_py38():
pa.field("s", pa.utf8(), False), pa.field("s", pa.utf8(), False),
pa.field("vec", pa.list_(pa.float64()), False), pa.field("vec", pa.list_(pa.float64()), False),
pa.field("li", pa.list_(pa.int64()), False), pa.field("li", pa.list_(pa.int64()), False),
pa.field("lili", pa.list_(pa.list_(pa.float64())), False),
pa.field("litu", pa.list_(pa.list_(pa.float64())), False),
pa.field("opt", pa.utf8(), True), pa.field("opt", pa.utf8(), True),
pa.field( pa.field(
"st", "st",
@@ -122,6 +144,7 @@ def test_pydantic_to_arrow_py38():
), ),
pa.field("dt", pa.date32(), False), pa.field("dt", pa.date32(), False),
pa.field("dtt", pa.timestamp("us"), False), pa.field("dtt", pa.timestamp("us"), False),
pa.field("dt_with_tz", pa.timestamp("us", tz="Asia/Shanghai"), False),
] ]
) )
assert schema == expect_schema assert schema == expect_schema

View File

@@ -26,6 +26,9 @@ class FakeLanceDBClient:
t = pa.schema([]).empty_table() t = pa.schema([]).empty_table()
return VectorQueryResult(t) return VectorQueryResult(t)
async def post(self, path: str):
pass
def test_remote_db(): def test_remote_db():
conn = lancedb.connect("db://client-will-be-injected", api_key="fake") conn = lancedb.connect("db://client-will-be-injected", api_key="fake")

View File

@@ -12,7 +12,7 @@
# limitations under the License. # limitations under the License.
import functools import functools
from datetime import timedelta from datetime import date, datetime, timedelta
from pathlib import Path from pathlib import Path
from typing import List from typing import List
from unittest.mock import PropertyMock, patch from unittest.mock import PropertyMock, patch
@@ -22,6 +22,7 @@ import numpy as np
import pandas as pd import pandas as pd
import pyarrow as pa import pyarrow as pa
import pytest import pytest
from pydantic import BaseModel
from lancedb.conftest import MockTextEmbeddingFunction from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.db import LanceDBConnection from lancedb.db import LanceDBConnection
@@ -141,14 +142,44 @@ def test_add(db):
def test_add_pydantic_model(db): def test_add_pydantic_model(db):
class TestModel(LanceModel): # https://github.com/lancedb/lancedb/issues/562
vector: Vector(16)
li: List[int]
data = TestModel(vector=list(range(16)), li=[1, 2, 3]) class Metadata(BaseModel):
table = LanceTable.create(db, "test", data=[data]) source: str
assert len(table) == 1 timestamp: datetime
assert table.schema == TestModel.to_arrow_schema()
class Document(BaseModel):
content: str
meta: Metadata
class LanceSchema(LanceModel):
id: str
vector: Vector(2)
li: List[int]
payload: Document
tbl = LanceTable.create(db, "mytable", schema=LanceSchema, mode="overwrite")
assert tbl.schema == LanceSchema.to_arrow_schema()
# add works
expected = LanceSchema(
id="id",
vector=[0.0, 0.0],
li=[1, 2, 3],
payload=Document(
content="foo", meta=Metadata(source="bar", timestamp=datetime.now())
),
)
tbl.add([expected])
result = tbl.search([0.0, 0.0]).limit(1).to_pydantic(LanceSchema)[0]
assert result == expected
flattened = tbl.search([0.0, 0.0]).limit(1).to_pandas(flatten=1)
assert len(flattened.columns) == 6 # _distance is automatically added
really_flattened = tbl.search([0.0, 0.0]).limit(1).to_pandas(flatten=True)
assert len(really_flattened.columns) == 7
def _add(table, schema): def _add(table, schema):
@@ -213,6 +244,7 @@ def test_create_index_method():
num_sub_vectors=96, num_sub_vectors=96,
vector_column_name="vector", vector_column_name="vector",
replace=True, replace=True,
index_cache_size=256,
) )
# Check that the _dataset.create_index method was called # Check that the _dataset.create_index method was called
@@ -225,6 +257,7 @@ def test_create_index_method():
num_sub_vectors=96, num_sub_vectors=96,
replace=True, replace=True,
accelerator=None, accelerator=None,
index_cache_size=256,
) )
@@ -346,14 +379,79 @@ def test_update(db):
assert len(table) == 2 assert len(table) == 2
assert len(table.list_versions()) == 2 assert len(table.list_versions()) == 2
table.update(where="id=0", values={"vector": [1.1, 1.1]}) table.update(where="id=0", values={"vector": [1.1, 1.1]})
assert len(table.list_versions()) == 4 assert len(table.list_versions()) == 3
assert table.version == 4 assert table.version == 3
assert len(table) == 2 assert len(table) == 2
v = table.to_arrow()["vector"].combine_chunks() v = table.to_arrow()["vector"].combine_chunks()
v = v.values.to_numpy().reshape(2, 2) v = v.values.to_numpy().reshape(2, 2)
assert np.allclose(v, np.array([[1.2, 1.9], [1.1, 1.1]])) assert np.allclose(v, np.array([[1.2, 1.9], [1.1, 1.1]]))
def test_update_types(db):
table = LanceTable.create(
db,
"my_table",
data=[
{
"id": 0,
"str": "foo",
"float": 1.1,
"timestamp": datetime(2021, 1, 1),
"date": date(2021, 1, 1),
"vector1": [1.0, 0.0],
"vector2": [1.0, 1.0],
}
],
)
# Update with SQL
table.update(
values_sql=dict(
id="1",
str="'bar'",
float="2.2",
timestamp="TIMESTAMP '2021-01-02 00:00:00'",
date="DATE '2021-01-02'",
vector1="[2.0, 2.0]",
vector2="[3.0, 3.0]",
)
)
actual = table.to_arrow().to_pylist()[0]
expected = dict(
id=1,
str="bar",
float=2.2,
timestamp=datetime(2021, 1, 2),
date=date(2021, 1, 2),
vector1=[2.0, 2.0],
vector2=[3.0, 3.0],
)
assert actual == expected
# Update with values
table.update(
values=dict(
id=2,
str="baz",
float=3.3,
timestamp=datetime(2021, 1, 3),
date=date(2021, 1, 3),
vector1=[3.0, 3.0],
vector2=np.array([4.0, 4.0]),
)
)
actual = table.to_arrow().to_pylist()[0]
expected = dict(
id=2,
str="baz",
float=3.3,
timestamp=datetime(2021, 1, 3),
date=date(2021, 1, 3),
vector1=[3.0, 3.0],
vector2=[4.0, 4.0],
)
assert actual == expected
def test_create_with_embedding_function(db): def test_create_with_embedding_function(db):
class MyTable(LanceModel): class MyTable(LanceModel):
text: str text: str
@@ -434,6 +532,33 @@ def test_multiple_vector_columns(db):
assert result1["text"].iloc[0] != result2["text"].iloc[0] assert result1["text"].iloc[0] != result2["text"].iloc[0]
def test_create_scalar_index(db):
vec_array = pa.array(
[[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], pa.list_(pa.float32(), 2)
)
test_data = pa.Table.from_pydict(
{"x": ["c", "b", "a", "e", "b"], "y": [1, 2, 3, 4, 5], "vector": vec_array}
)
table = LanceTable.create(
db,
"my_table",
data=test_data,
)
table.create_scalar_index("x")
indices = table.to_lance().list_indices()
assert len(indices) == 1
scalar_index = indices[0]
assert scalar_index["type"] == "Scalar"
# Confirm that prefiltering still works with the scalar index column
results = table.search().where("x = 'c'").to_arrow()
assert results == test_data.slice(0, 1)
results = table.search([5, 5]).to_arrow()
assert results["_distance"][0].as_py() == 0
results = table.search([5, 5]).where("x != 'b'").to_arrow()
assert results["_distance"][0].as_py() > 0
def test_empty_query(db): def test_empty_query(db):
table = LanceTable.create( table = LanceTable.create(
db, db,

View File

@@ -11,7 +11,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from lancedb.util import get_uri_scheme import os
import pathlib
import pytest
from lancedb.util import get_uri_scheme, join_uri
def test_normalize_uri(): def test_normalize_uri():
@@ -28,3 +33,55 @@ def test_normalize_uri():
for uri, expected_scheme in zip(uris, schemes): for uri, expected_scheme in zip(uris, schemes):
parsed_scheme = get_uri_scheme(uri) parsed_scheme = get_uri_scheme(uri)
assert parsed_scheme == expected_scheme assert parsed_scheme == expected_scheme
def test_join_uri_remote():
schemes = ["s3", "az", "gs"]
for scheme in schemes:
expected = f"{scheme}://bucket/path/to/table.lance"
base_uri = f"{scheme}://bucket/path/to/"
parts = ["table.lance"]
assert join_uri(base_uri, *parts) == expected
base_uri = f"{scheme}://bucket"
parts = ["path", "to", "table.lance"]
assert join_uri(base_uri, *parts) == expected
# skip this test if on windows
@pytest.mark.skipif(os.name == "nt", reason="Windows paths are not POSIX")
def test_join_uri_posix():
for base in [
# relative path
"relative/path",
"relative/path/",
# an absolute path
"/absolute/path",
"/absolute/path/",
# a file URI
"file:///absolute/path",
"file:///absolute/path/",
]:
joined = join_uri(base, "table.lance")
assert joined == str(pathlib.Path(base) / "table.lance")
joined = join_uri(pathlib.Path(base), "table.lance")
assert joined == pathlib.Path(base) / "table.lance"
# skip this test if not on windows
@pytest.mark.skipif(os.name != "nt", reason="Windows paths are not POSIX")
def test_local_join_uri_windows():
# https://learn.microsoft.com/en-us/dotnet/standard/io/file-path-formats
for base in [
# windows relative path
"relative\\path",
"relative\\path\\",
# windows absolute path from current drive
"c:\\absolute\\path",
# relative path from root of current drive
"\\relative\\path",
]:
joined = join_uri(base, "table.lance")
assert joined == str(pathlib.Path(base) / "table.lance")
joined = join_uri(pathlib.Path(base), "table.lance")
assert joined == pathlib.Path(base) / "table.lance"

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb-node" name = "vectordb-node"
version = "0.3.5" version = "0.4.1"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
edition = "2018" edition = "2018"
@@ -19,6 +19,7 @@ once_cell = "1"
futures = "0.3" futures = "0.3"
half = { workspace = true } half = { workspace = true }
lance = { workspace = true } lance = { workspace = true }
lance-index = { workspace = true }
lance-linalg = { workspace = true } lance-linalg = { workspace = true }
vectordb = { path = "../../vectordb" } vectordb = { path = "../../vectordb" }
tokio = { version = "1.23", features = ["rt-multi-thread"] } tokio = { version = "1.23", features = ["rt-multi-thread"] }

View File

@@ -23,7 +23,7 @@ pub enum Error {
#[snafu(display("column '{name}' is missing"))] #[snafu(display("column '{name}' is missing"))]
MissingColumn { name: String }, MissingColumn { name: String },
#[snafu(display("{name}: {message}"))] #[snafu(display("{name}: {message}"))]
RangeError { name: String, message: String }, OutOfRange { name: String, message: String },
#[snafu(display("{index_type} is not a valid index type"))] #[snafu(display("{index_type} is not a valid index type"))]
InvalidIndexType { index_type: String }, InvalidIndexType { index_type: String },

View File

@@ -12,4 +12,5 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
pub mod scalar;
pub mod vector; pub mod vector;

View File

@@ -0,0 +1,43 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use neon::{
context::{Context, FunctionContext},
result::JsResult,
types::{JsBoolean, JsBox, JsPromise, JsString},
};
use crate::{error::ResultExt, runtime, table::JsTable};
pub(crate) fn table_create_scalar_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let column = cx.argument::<JsString>(0)?.value(&mut cx);
let replace = cx.argument::<JsBoolean>(1)?.value(&mut cx);
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let channel = cx.channel();
let mut table = js_table.table.clone();
rt.spawn(async move {
let idx_result = table.create_scalar_index(&column, replace).await;
deferred.settle_with(&channel, move |mut cx| {
idx_result.or_throw(&mut cx)?;
Ok(cx.undefined())
});
});
Ok(promise)
}

View File

@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use lance::index::vector::{ivf::IvfBuildParams, pq::PQBuildParams}; use lance_index::vector::{ivf::IvfBuildParams, pq::PQBuildParams};
use lance_linalg::distance::MetricType; use lance_linalg::distance::MetricType;
use neon::context::FunctionContext; use neon::context::FunctionContext;
use neon::prelude::*; use neon::prelude::*;
@@ -65,13 +65,10 @@ fn get_index_params_builder(
obj.get_opt::<JsString, _, _>(cx, "index_name")? obj.get_opt::<JsString, _, _>(cx, "index_name")?
.map(|s| index_builder.index_name(s.value(cx))); .map(|s| index_builder.index_name(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "metric_type")? if let Some(metric_type) = obj.get_opt::<JsString, _, _>(cx, "metric_type")? {
.map(|s| MetricType::try_from(s.value(cx).as_str())) let metric_type = MetricType::try_from(metric_type.value(cx).as_str()).unwrap();
.map(|mt| { index_builder.metric_type(metric_type);
let metric_type = mt.unwrap(); }
index_builder.metric_type(metric_type);
pq_params.metric_type = metric_type;
});
let num_partitions = obj.get_opt_usize(cx, "num_partitions")?; let num_partitions = obj.get_opt_usize(cx, "num_partitions")?;
let max_iters = obj.get_opt_usize(cx, "max_iters")?; let max_iters = obj.get_opt_usize(cx, "max_iters")?;
@@ -86,23 +83,29 @@ fn get_index_params_builder(
index_builder.ivf_params(ivf_params) index_builder.ivf_params(ivf_params)
}); });
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")? if let Some(use_opq) = obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")? {
.map(|s| pq_params.use_opq = s.value(cx)); pq_params.use_opq = use_opq.value(cx);
}
obj.get_opt_usize(cx, "num_sub_vectors")? if let Some(num_sub_vectors) = obj.get_opt_usize(cx, "num_sub_vectors")? {
.map(|s| pq_params.num_sub_vectors = s); pq_params.num_sub_vectors = num_sub_vectors;
}
obj.get_opt_usize(cx, "num_bits")? if let Some(num_bits) = obj.get_opt_usize(cx, "num_bits")? {
.map(|s| pq_params.num_bits = s); pq_params.num_bits = num_bits;
}
obj.get_opt_usize(cx, "max_iters")? if let Some(max_iters) = obj.get_opt_usize(cx, "max_iters")? {
.map(|s| pq_params.max_iters = s); pq_params.max_iters = max_iters;
}
obj.get_opt_usize(cx, "max_opq_iters")? if let Some(max_opq_iters) = obj.get_opt_usize(cx, "max_opq_iters")? {
.map(|s| pq_params.max_opq_iters = s); pq_params.max_opq_iters = max_opq_iters;
}
obj.get_opt::<JsBoolean, _, _>(cx, "replace")? if let Some(replace) = obj.get_opt::<JsBoolean, _, _>(cx, "replace")? {
.map(|s| index_builder.replace(s.value(cx))); index_builder.replace(replace.value(cx));
}
Ok(index_builder) Ok(index_builder)
} }

Some files were not shown because too many files have changed in this diff Show More