// Copyright 2023 Lance Developers. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. 'use strict' async function example () { const lancedb = require('vectordb') // You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable const apiKey = process.env.OPENAI_API_KEY // The embedding function will create embeddings for the 'text' column(text in this case) const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey) const db = await lancedb.connect('data/sample-lancedb') const data = [ { id: 1, text: 'Black T-Shirt', price: 10 }, { id: 2, text: 'Leather Jacket', price: 50 } ] const table = await db.createTable('vectors', data, embedding) console.log(await db.tableNames()) const results = await table .search('keeps me warm') .limit(1) .execute() console.log(results[0].text) } example().then(_ => { console.log('All done!') })