# Copyright 2023 LanceDB Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest.mock as mock import lance import numpy as np import pandas.testing as tm import pyarrow as pa import pytest from lancedb.db import LanceDBConnection from lancedb.query import LanceQueryBuilder, Query from lancedb.table import LanceTable class MockTable: def __init__(self, tmp_path): self.uri = tmp_path self._conn = LanceDBConnection(self.uri) def to_lance(self): return lance.dataset(self.uri) def _execute_query(self, query): ds = self.to_lance() return ds.to_table( columns=query.columns, filter=query.filter, nearest={ "column": query.vector_column, "q": query.vector, "k": query.k, "metric": query.metric, "nprobes": query.nprobes, "refine_factor": query.refine_factor, }, ) @pytest.fixture def table(tmp_path) -> MockTable: df = pa.table( { "vector": pa.array( [[1, 2], [3, 4]], type=pa.list_(pa.float32(), list_size=2) ), "id": pa.array([1, 2]), "str_field": pa.array(["a", "b"]), "float_field": pa.array([1.0, 2.0]), } ) lance.write_dataset(df, tmp_path) return MockTable(tmp_path) def test_query_builder(table): df = LanceQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df() assert df["id"].values[0] == 1 assert all(df["vector"].values[0] == [1, 2]) def test_query_builder_with_filter(table): df = LanceQueryBuilder(table, [0, 0], "vector").where("id = 2").to_df() assert df["id"].values[0] == 2 assert all(df["vector"].values[0] == [3, 4]) def test_query_builder_with_metric(table): query = [4, 8] vector_column_name = "vector" df_default = LanceQueryBuilder(table, query, vector_column_name).to_df() df_l2 = LanceQueryBuilder(table, query, vector_column_name).metric("L2").to_df() tm.assert_frame_equal(df_default, df_l2) df_cosine = ( LanceQueryBuilder(table, query, vector_column_name) .metric("cosine") .limit(1) .to_df() ) assert df_cosine.score[0] == pytest.approx( cosine_distance(query, df_cosine.vector[0]), abs=1e-6, ) assert 0 <= df_cosine.score[0] <= 1 def test_query_builder_with_different_vector_column(): table = mock.MagicMock(spec=LanceTable) query = [4, 8] vector_column_name = "foo_vector" builder = ( LanceQueryBuilder(table, query, vector_column_name) .metric("cosine") .where("b < 10") .select(["b"]) .limit(2) ) ds = mock.Mock() table.to_lance.return_value = ds builder.to_arrow() table._execute_query.assert_called_once_with( Query( vector=query, filter="b < 10", k=2, metric="cosine", columns=["b"], nprobes=20, refine_factor=None, vector_column="foo_vector", ) ) def cosine_distance(vec1, vec2): return 1 - np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))