# LanceDB LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings. ![Illustration](/lancedb/assets/ecosystem-illustration.png) The key features of LanceDB include: * Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more). * Support for production-scale vector similarity search, full-text search and SQL, with no servers to manage. * Native Python and Javascript/Typescript support. * Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. * Persisted on HDD, allowing scalability without breaking the bank. * Ingest your favorite data formats directly, like pandas DataFrames, Pydantic objects and more. LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads. ## Quick Start === "Python" ```shell pip install lancedb ``` ```python import lancedb uri = "data/sample-lancedb" db = lancedb.connect(uri) table = db.create_table("my_table", data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) result = table.search([100, 100]).limit(2).to_list() ``` === "Javascript" ```shell npm install vectordb ``` ```javascript const lancedb = require("vectordb"); const uri = "data/sample-lancedb"; const db = await lancedb.connect(uri); const table = await db.createTable("my_table", [{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 }, { id: 2, vector: [5.9, 26.5], item: "bar", price: 20.0 }]) const results = await table.search([100, 100]).limit(2).execute(); ``` ## Complete Demos (Python) - [YouTube Transcript Search](notebooks/youtube_transcript_search.ipynb) - [Documentation QA Bot using LangChain](notebooks/code_qa_bot.ipynb) - [Multimodal search using CLIP](notebooks/multimodal_search.ipynb) - [Serverless QA Bot with S3 and Lambda](examples/serverless_lancedb_with_s3_and_lambda.md) - [Serverless QA Bot with Modal](examples/serverless_qa_bot_with_modal_and_langchain.md) ## Complete Demos (JavaScript) - [YouTube Transcript Search](examples/youtube_transcript_bot_with_nodejs.md) ## Documentation Quick Links * [`Basic Operations`](basic.md) - basic functionality of LanceDB. * [`Embedding Functions`](embeddings/index.md) - functions for working with embeddings. * [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries. * [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API * [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem. * [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK. * [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Node SDK.