**Recommender Systems: Personalized Discovery🍿📺** ============================================================== Deliver personalized experiences with Recommender Systems. 🎁 **Technical Overview📜** 🔍️ LanceDB's powerful vector database capabilities can efficiently store and query item embeddings. Recommender Systems can utilize it and provide personalized recommendations based on user preferences 🤝 and item features 📊 and therefore enhance the user experience.🗂️ | **Recommender System** | **Description** | **Links** | | ---------------------- | --------------- | --------- | | **Movie Recommender System🎬** | 🤝 Use **collaborative filtering** to predict user preferences, assuming similar users will like similar movies, and leverage **Singular Value Decomposition** (SVD) from Numpy for precise matrix factorization and accurate recommendations📊 | [![Github](../../assets/github.svg)][movie_github]
[![Open In Collab](../../assets/colab.svg)][movie_colab]
[![Python](../../assets/python.svg)][movie_python] | | **🎥 Movie Recommendation with Genres** | 🔍 Creates movie embeddings using **Doc2Vec**, capturing genre and characteristic nuances, and leverages VectorDB for efficient storage and querying, enabling accurate genre classification and personalized movie recommendations through **similarity searches**🎥 | [![Github](../../assets/github.svg)][genre_github]
[![Open In Collab](../../assets/colab.svg)][genre_colab]
[![Ghost](../../assets/ghost.svg)][genre_ghost] | | **🛍️ Product Recommender using Collaborative Filtering and LanceDB** | 📈 Using **Collaborative Filtering** and **LanceDB** to analyze your past purchases, recommends products based on user's past purchases. Demonstrated with the Instacart dataset in our example🛒 | [![Github](../../assets/github.svg)][product_github]
[![Open In Collab](../../assets/colab.svg)][product_colab]
[![Python](../../assets/python.svg)][product_python] | | **🔍 Arxiv Search with OpenCLIP and LanceDB** | 💡 Build a semantic search engine for **Arxiv papers** using **LanceDB**, and benchmarks its performance against traditional keyword-based search on **Nomic's Atlas**, to demonstrate the power of semantic search in finding relevant research papers📚 | [![Github](../../assets/github.svg)][arxiv_github]
[![Open In Collab](../../assets/colab.svg)][arxiv_colab]
[![Python](../../assets/python.svg)][arxiv_python] | | **Food Recommendation System🍴** | 🍔 Build a food recommendation system with **LanceDB**, featuring vector-based recommendations, full-text search, hybrid search, and reranking model integration for personalized and accurate food suggestions👌 | [![Github](../../assets/github.svg)][food_github]
[![Open In Collab](../../assets/colab.svg)][food_colab] | [movie_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender [movie_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb [movie_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.py [genre_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/movie-recommendation-with-genres [genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb [genre_ghost]: https://blog.lancedb.com/movie-recommendation-system-using-lancedb-and-doc2vec/ [product_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender [product_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.ipynb [product_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.py [arxiv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender [arxiv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.ipynb [arxiv_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.py [food_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/Food_recommendation [food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/Food_recommendation/main.ipynb