# Reciprocal Rank Fusion Reranker This is the default re-ranker used by LanceDB hybrid search. Reciprocal Rank Fusion (RRF) is an algorithm that evaluates the search scores by leveraging the positions/rank of the documents. The implementation follows this [paper](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf). !!! note Supported Query Types: Hybrid ```python import numpy import lancedb from lancedb.embeddings import get_registry from lancedb.pydantic import LanceModel, Vector from lancedb.rerankers import RRFReranker embedder = get_registry().get("sentence-transformers").create() db = lancedb.connect("~/.lancedb") class Schema(LanceModel): text: str = embedder.SourceField() vector: Vector(embedder.ndims()) = embedder.VectorField() data = [ {"text": "hello world"}, {"text": "goodbye world"} ] tbl = db.create_table("test", schema=Schema, mode="overwrite") tbl.add(data) reranker = RRFReranker() # Run hybrid search with a reranker tbl.create_fts_index("text", replace=True) result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list() ``` Accepted Arguments ---------------- | Argument | Type | Default | Description | | --- | --- | --- | --- | | `K` | `int` | `60` | A constant used in the RRF formula (default is 60). Experiments indicate that k = 60 was near-optimal, but that the choice is not critical | | `return_score` | str | `"relevance"` | Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score`. If "all", will return all scores from the vector and FTS search along with the relevance score. | ## Supported Scores for each query type You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type: ### Hybrid Search |`return_score`| Status | Description | | --- | --- | --- | | `relevance` | ✅ Supported | Returned rows only have the `_relevance_score` column | | `all` | ✅ Supported | Returned rows have vector(`_distance`) and FTS(`score`) along with Hybrid Search score(`_relevance_score`) |