## Finetuning the Embedding Model Try it yourself: Open In Colab
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model. We'll use the same dataset as in the previous sections. Start off by splitting the dataset into training and validation sets: ```python from sklearn.model_selection import train_test_split train_df, validation_df = train_test_split("data_qa.csv", test_size=0.2, random_state=42) train_df.to_csv("data_train.csv", index=False) validation_df.to_csv("data_val.csv", index=False) ``` You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model. We parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node: ```python from llama_index.core.node_parser import SentenceSplitter from llama_index.readers.file import PagedCSVReader from llama_index.finetuning import generate_qa_embedding_pairs from llama_index.core.evaluation import EmbeddingQAFinetuneDataset def load_corpus(file): loader = PagedCSVReader(encoding="utf-8") docs = loader.load_data(file=Path(file)) parser = SentenceSplitter() nodes = parser.get_nodes_from_documents(docs) return nodes from llama_index.llms.openai import OpenAI train_dataset = generate_qa_embedding_pairs( llm=OpenAI(model="gpt-3.5-turbo"), nodes=train_nodes, verbose=False ) val_dataset = generate_qa_embedding_pairs( llm=OpenAI(model="gpt-3.5-turbo"), nodes=val_nodes, verbose=False ) ``` Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model: ```python from llama_index.finetuning import SentenceTransformersFinetuneEngine finetune_engine = SentenceTransformersFinetuneEngine( train_dataset, model_id="BAAI/bge-small-en-v1.5", model_output_path="tuned_model", val_dataset=val_dataset, ) finetune_engine.finetune() embed_model = finetune_engine.get_finetuned_model() ``` This saves the fine tuned embedding model in `tuned_model` folder. # Evaluation results In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever. On performing the same hit-rate evaluation as before, we see a significant improvement in the hit-rate across all query types. ### Baseline | Query Type | Hit-rate@5 | | --- | --- | | Vector Search | 0.640 | | Full-text Search | 0.595 | | Reranked Vector Search | 0.677 | | Reranked Full-text Search | 0.672 | | Hybrid Search (w/ CohereReranker) | 0.759| ### Fine-tuned model ( 2 iterations ) | Query Type | Hit-rate@5 | | --- | --- | | Vector Search | 0.672 | | Full-text Search | 0.595 | | Reranked Vector Search | 0.754 | | Reranked Full-text Search | 0.672| | Hybrid Search (w/ CohereReranker) | 0.768 |