// Copyright 2023 LanceDB Developers. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. import { describe } from 'mocha' import { track } from 'temp' import * as chai from 'chai' import * as chaiAsPromised from 'chai-as-promised' import * as lancedb from '../index' import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions } from '../index' import { Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray } from 'apache-arrow' const expect = chai.expect const assert = chai.assert chai.use(chaiAsPromised) describe('LanceDB client', function () { describe('when creating a connection to lancedb', function () { it('should have a valid url', async function () { const uri = await createTestDB() const con = await lancedb.connect(uri) assert.equal(con.uri, uri) }) it('should accept an options object', async function () { const uri = await createTestDB() const con = await lancedb.connect({ uri }) assert.equal(con.uri, uri) }) it('should accept custom aws credentials', async function () { const uri = await createTestDB() const awsCredentials: AwsCredentials = { accessKeyId: '', secretKey: '' } const con = await lancedb.connect({ uri, awsCredentials }) assert.equal(con.uri, uri) }) it('should return the existing table names', async function () { const uri = await createTestDB() const con = await lancedb.connect(uri) assert.deepEqual(await con.tableNames(), ['vectors']) }) }) describe('when querying an existing dataset', function () { it('should open a table', async function () { const uri = await createTestDB() const con = await lancedb.connect(uri) const table = await con.openTable('vectors') assert.equal(table.name, 'vectors') }) it('execute a query', async function () { const uri = await createTestDB() const con = await lancedb.connect(uri) const table = await con.openTable('vectors') const results = await table.search([0.1, 0.3]).execute() assert.equal(results.length, 2) assert.equal(results[0].price, 10) const vector = results[0].vector as Float32Array assert.approximately(vector[0], 0.0, 0.2) assert.approximately(vector[0], 0.1, 0.3) }) it('limits # of results', async function () { const uri = await createTestDB() const con = await lancedb.connect(uri) const table = await con.openTable('vectors') const results = await table.search([0.1, 0.3]).limit(1).execute() assert.equal(results.length, 1) assert.equal(results[0].id, 1) }) it('uses a filter / where clause', async function () { // eslint-disable-next-line @typescript-eslint/explicit-function-return-type const assertResults = (results: Array>) => { assert.equal(results.length, 1) assert.equal(results[0].id, 2) } const uri = await createTestDB() const con = await lancedb.connect(uri) const table = await con.openTable('vectors') let results = await table.search([0.1, 0.1]).filter('id == 2').execute() assertResults(results) results = await table.search([0.1, 0.1]).where('id == 2').execute() assertResults(results) }) it('select only a subset of columns', async function () { const uri = await createTestDB() const con = await lancedb.connect(uri) const table = await con.openTable('vectors') const results = await table.search([0.1, 0.1]).select(['is_active']).execute() assert.equal(results.length, 2) // vector and _distance are always returned assert.isDefined(results[0].vector) assert.isDefined(results[0]._distance) assert.isDefined(results[0].is_active) assert.isUndefined(results[0].id) assert.isUndefined(results[0].name) assert.isUndefined(results[0].price) }) }) describe('when creating a new dataset', function () { it('create an empty table', async function () { const dir = await track().mkdir('lancejs') const con = await lancedb.connect(dir) const schema = new Schema( [new Field('id', new Int32()), new Field('name', new Utf8())] ) const table = await con.createTable({ name: 'vectors', schema }) assert.equal(table.name, 'vectors') assert.deepEqual(await con.tableNames(), ['vectors']) }) it('create a table with a empty data array', async function () { const dir = await track().mkdir('lancejs') const con = await lancedb.connect(dir) const schema = new Schema( [new Field('id', new Int32()), new Field('name', new Utf8())] ) const table = await con.createTable({ name: 'vectors', schema, data: [] }) assert.equal(table.name, 'vectors') assert.deepEqual(await con.tableNames(), ['vectors']) }) it('create a table from an Arrow Table', async function () { const dir = await track().mkdir('lancejs') const con = await lancedb.connect(dir) const i32s = new Int32Array(new Array(10)) const i32 = makeVector(i32s) const data = new ArrowTable({ vector: i32 }) const table = await con.createTable({ name: 'vectors', data }) assert.equal(table.name, 'vectors') assert.equal(await table.countRows(), 10) assert.deepEqual(await con.tableNames(), ['vectors']) }) it('creates a new table from javascript objects', async function () { const dir = await track().mkdir('lancejs') const con = await lancedb.connect(dir) const data = [ { id: 1, vector: [0.1, 0.2], price: 10 }, { id: 2, vector: [1.1, 1.2], price: 50 } ] const tableName = `vectors_${Math.floor(Math.random() * 100)}` const table = await con.createTable(tableName, data) assert.equal(table.name, tableName) assert.equal(await table.countRows(), 2) }) it('fails to create a new table when the vector column is missing', async function () { const dir = await track().mkdir('lancejs') const con = await lancedb.connect(dir) const data = [ { id: 1, price: 10 } ] const create = con.createTable('missing_vector', data) await expect(create).to.be.rejectedWith(Error, 'column \'vector\' is missing') }) it('use overwrite flag to overwrite existing table', async function () { const dir = await track().mkdir('lancejs') const con = await lancedb.connect(dir) const data = [ { id: 1, vector: [0.1, 0.2], price: 10 }, { id: 2, vector: [1.1, 1.2], price: 50 } ] const tableName = 'overwrite' await con.createTable(tableName, data, { writeMode: WriteMode.Create }) const newData = [ { id: 1, vector: [0.1, 0.2], price: 10 }, { id: 2, vector: [1.1, 1.2], price: 50 }, { id: 3, vector: [1.1, 1.2], price: 50 } ] await expect(con.createTable(tableName, newData)).to.be.rejectedWith(Error, 'already exists') const table = await con.createTable(tableName, newData, { writeMode: WriteMode.Overwrite }) assert.equal(table.name, tableName) assert.equal(await table.countRows(), 3) }) it('appends records to an existing table ', async function () { const dir = await track().mkdir('lancejs') const con = await lancedb.connect(dir) const data = [ { id: 1, vector: [0.1, 0.2], price: 10, name: 'a' }, { id: 2, vector: [1.1, 1.2], price: 50, name: 'b' } ] const table = await con.createTable('vectors', data) assert.equal(await table.countRows(), 2) const dataAdd = [ { id: 3, vector: [2.1, 2.2], price: 10, name: 'c' }, { id: 4, vector: [3.1, 3.2], price: 50, name: 'd' } ] await table.add(dataAdd) assert.equal(await table.countRows(), 4) }) it('overwrite all records in a table', async function () { const uri = await createTestDB() const con = await lancedb.connect(uri) const table = await con.openTable('vectors') assert.equal(await table.countRows(), 2) const dataOver = [ { vector: [2.1, 2.2], price: 10, name: 'foo' }, { vector: [3.1, 3.2], price: 50, name: 'bar' } ] await table.overwrite(dataOver) assert.equal(await table.countRows(), 2) }) it('can delete records from a table', async function () { const uri = await createTestDB() const con = await lancedb.connect(uri) const table = await con.openTable('vectors') assert.equal(await table.countRows(), 2) await table.delete('price = 10') assert.equal(await table.countRows(), 1) }) }) describe('when creating a vector index', function () { it('overwrite all records in a table', async function () { const uri = await createTestDB(32, 300) const con = await lancedb.connect(uri) const table = await con.openTable('vectors') await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 }) }).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow it('replace an existing index', async function () { const uri = await createTestDB(16, 300) const con = await lancedb.connect(uri) const table = await con.openTable('vectors') await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 }) // Replace should fail if the index already exists await expect(table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2, replace: false }) ).to.be.rejectedWith('LanceError(Index)') // Default replace = true await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 }) }).timeout(50_000) it('it should fail when the column is not a vector', async function () { const uri = await createTestDB(32, 300) const con = await lancedb.connect(uri) const table = await con.openTable('vectors') const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 }) await expect(createIndex).to.be.rejectedWith(/VectorIndex requires the column data type to be fixed size list of float32s/) }) it('it should fail when the column is not a vector', async function () { const uri = await createTestDB(32, 300) const con = await lancedb.connect(uri) const table = await con.openTable('vectors') const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 }) await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0') }) }) describe('when using a custom embedding function', function () { class TextEmbedding implements EmbeddingFunction { sourceColumn: string constructor (targetColumn: string) { this.sourceColumn = targetColumn } _embedding_map = new Map([ ['foo', [2.1, 2.2]], ['bar', [3.1, 3.2]] ]) async embed (data: string[]): Promise { return data.map(datum => this._embedding_map.get(datum) ?? [0.0, 0.0]) } } it('should encode the original data into embeddings', async function () { const dir = await track().mkdir('lancejs') const con = await lancedb.connect(dir) const embeddings = new TextEmbedding('name') const data = [ { price: 10, name: 'foo' }, { price: 50, name: 'bar' } ] const table = await con.createTable('vectors', data, embeddings, { writeMode: WriteMode.Create }) const results = await table.search('foo').execute() assert.equal(results.length, 2) }) it('should create embeddings for Arrow Table', async function () { const dir = await track().mkdir('lancejs') const con = await lancedb.connect(dir) const embeddingFunction = new TextEmbedding('name') const names = vectorFromArray(['foo', 'bar'], new Utf8()) const data = new ArrowTable({ name: names }) const table = await con.createTable({ name: 'vectors', data, embeddingFunction }) assert.equal(table.name, 'vectors') const results = await table.search('foo').execute() assert.equal(results.length, 2) }) }) }) describe('Query object', function () { it('sets custom parameters', async function () { const query = new Query([0.1, 0.3]) .limit(1) .metricType(MetricType.Cosine) .refineFactor(100) .select(['a', 'b']) .nprobes(20) as Record assert.equal(query._limit, 1) assert.equal(query._metricType, MetricType.Cosine) assert.equal(query._refineFactor, 100) assert.equal(query._nprobes, 20) assert.deepEqual(query._select, ['a', 'b']) }) }) async function createTestDB (numDimensions: number = 2, numRows: number = 2): Promise { const dir = await track().mkdir('lancejs') const con = await lancedb.connect(dir) const data = [] for (let i = 0; i < numRows; i++) { const vector = [] for (let j = 0; j < numDimensions; j++) { vector.push(i + (j * 0.1)) } data.push({ id: i + 1, name: `name_${i}`, price: i + 10, is_active: (i % 2 === 0), vector }) } await con.createTable('vectors', data) return dir } describe('Drop table', function () { it('drop a table', async function () { const dir = await track().mkdir('lancejs') const con = await lancedb.connect(dir) const data = [ { price: 10, name: 'foo', vector: [1, 2, 3] }, { price: 50, name: 'bar', vector: [4, 5, 6] } ] await con.createTable('t1', data) await con.createTable('t2', data) assert.deepEqual(await con.tableNames(), ['t1', 't2']) await con.dropTable('t1') assert.deepEqual(await con.tableNames(), ['t2']) }) }) describe('WriteOptions', function () { context('#isWriteOptions', function () { it('should not match empty object', function () { assert.equal(isWriteOptions({}), false) }) it('should match write options', function () { assert.equal(isWriteOptions({ writeMode: WriteMode.Create }), true) }) it('should match undefined write mode', function () { assert.equal(isWriteOptions({ writeMode: undefined }), true) }) it('should match default write options', function () { assert.equal(isWriteOptions(new DefaultWriteOptions()), true) }) }) })