Files
lancedb/nodejs/vectordb/arrow.ts

184 lines
5.0 KiB
TypeScript

// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import {
Field,
FixedSizeList,
Float,
Float32,
Schema,
Table as ArrowTable,
Table,
Vector,
vectorFromArray,
tableToIPC,
} from "apache-arrow";
/** Data type accepted by NodeJS SDK */
export type Data = Record<string, unknown>[] | ArrowTable;
export class VectorColumnOptions {
/** Vector column type. */
type: Float = new Float32();
constructor(values?: Partial<VectorColumnOptions>) {
Object.assign(this, values);
}
}
/** Options to control the makeArrowTable call. */
export class MakeArrowTableOptions {
/** Provided schema. */
schema?: Schema;
/** Vector columns */
vectorColumns: Record<string, VectorColumnOptions> = {
vector: new VectorColumnOptions(),
};
constructor(values?: Partial<MakeArrowTableOptions>) {
Object.assign(this, values);
}
}
/**
* An enhanced version of the {@link makeTable} function from Apache Arrow
* that supports nested fields and embeddings columns.
*
* Note that it currently does not support nulls.
*
* @param data input data
* @param options options to control the makeArrowTable call.
*
* @example
*
* ```ts
*
* import { fromTableToBuffer, makeArrowTable } from "../arrow";
* import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
*
* const schema = new Schema([
* new Field("a", new Int32()),
* new Field("b", new Float32()),
* new Field("c", new FixedSizeList(3, new Field("item", new Float16()))),
* ]);
* const table = makeArrowTable([
* { a: 1, b: 2, c: [1, 2, 3] },
* { a: 4, b: 5, c: [4, 5, 6] },
* { a: 7, b: 8, c: [7, 8, 9] },
* ], { schema });
* ```
*
* It guesses the vector columns if the schema is not provided. For example,
* by default it assumes that the column named `vector` is a vector column.
*
* ```ts
*
* const schema = new Schema([
new Field("a", new Float64()),
new Field("b", new Float64()),
new Field(
"vector",
new FixedSizeList(3, new Field("item", new Float32()))
),
]);
const table = makeArrowTable([
{ a: 1, b: 2, vector: [1, 2, 3] },
{ a: 4, b: 5, vector: [4, 5, 6] },
{ a: 7, b: 8, vector: [7, 8, 9] },
]);
assert.deepEqual(table.schema, schema);
* ```
*
* You can specify the vector column types and names using the options as well
*
* ```typescript
*
* const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
]);
* const table = makeArrowTable([
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] }
], {
vectorColumns: {
vec1: { type: new Float16() },
vec2: { type: new Float16() }
}
}
* assert.deepEqual(table.schema, schema)
* ```
*/
export function makeArrowTable(
data: Record<string, any>[],
options?: Partial<MakeArrowTableOptions>
): Table {
if (data.length === 0) {
throw new Error("At least one record needs to be provided");
}
const opt = new MakeArrowTableOptions(options ?? {});
const columns: Record<string, Vector> = {};
// TODO: sample dataset to find missing columns
const columnNames = Object.keys(data[0]);
for (const colName of columnNames) {
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
const values = data.map((datum) => datum[colName]);
let vector: Vector;
if (opt.schema !== undefined) {
// Explicit schema is provided, highest priority
vector = vectorFromArray(
values,
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
);
} else {
const vectorColumnOptions = opt.vectorColumns[colName];
if (vectorColumnOptions !== undefined) {
const fslType = new FixedSizeList(
(values[0] as any[]).length,
new Field("item", vectorColumnOptions.type, false)
);
vector = vectorFromArray(values, fslType);
} else {
// Normal case
vector = vectorFromArray(values);
}
}
columns[colName] = vector;
}
return new Table(columns);
}
/**
* Convert an Arrow Table to a Buffer.
*
* @param data Arrow Table
* @param schema Arrow Schema, optional
* @returns Buffer node
*/
export function toBuffer(data: Data, schema?: Schema): Buffer {
let tbl: Table;
if (data instanceof Table) {
tbl = data;
} else {
tbl = makeArrowTable(data, { schema });
}
return Buffer.from(tableToIPC(tbl));
}