Files
lancedb/nodejs/__test__/table.test.ts

746 lines
22 KiB
TypeScript

// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import * as fs from "fs";
import * as path from "path";
import * as tmp from "tmp";
import * as arrow from "apache-arrow";
import * as arrowOld from "apache-arrow-old";
import { Table, connect } from "../lancedb";
import {
Table as ArrowTable,
Field,
FixedSizeList,
Float32,
Float64,
Int32,
Int64,
Schema,
makeArrowTable,
} from "../lancedb/arrow";
import { EmbeddingFunction, LanceSchema, register } from "../lancedb/embedding";
import { Index } from "../lancedb/indices";
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
describe.each([arrow, arrowOld])("Given a table", (arrow: any) => {
let tmpDir: tmp.DirResult;
let table: Table;
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Float64(), true),
]);
beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
const conn = await connect(tmpDir.name);
table = await conn.createEmptyTable("some_table", schema);
});
afterEach(() => tmpDir.removeCallback());
it("be displayable", async () => {
expect(table.display()).toMatch(
/NativeTable\(some_table, uri=.*, read_consistency_interval=None\)/,
);
table.close();
expect(table.display()).toBe("ClosedTable(some_table)");
});
it("should let me add data", async () => {
await table.add([{ id: 1 }, { id: 2 }]);
await table.add([{ id: 1 }]);
await expect(table.countRows()).resolves.toBe(3);
});
it("should overwrite data if asked", async () => {
await table.add([{ id: 1 }, { id: 2 }]);
await table.add([{ id: 1 }], { mode: "overwrite" });
await expect(table.countRows()).resolves.toBe(1);
});
it("should let me close the table", async () => {
expect(table.isOpen()).toBe(true);
table.close();
expect(table.isOpen()).toBe(false);
expect(table.countRows()).rejects.toThrow("Table some_table is closed");
});
it("should let me update values", async () => {
await table.add([{ id: 1 }]);
expect(await table.countRows("id == 1")).toBe(1);
expect(await table.countRows("id == 7")).toBe(0);
await table.update({ id: "7" });
expect(await table.countRows("id == 1")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
await table.add([{ id: 2 }]);
// Test Map as input
await table.update(new Map(Object.entries({ id: "10" })), {
where: "id % 2 == 0",
});
expect(await table.countRows("id == 2")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
expect(await table.countRows("id == 10")).toBe(1);
});
// https://github.com/lancedb/lancedb/issues/1293
test.each([new arrow.Float16(), new arrow.Float32(), new arrow.Float64()])(
"can create empty table with non default float type: %s",
async (floatType) => {
const db = await connect(tmpDir.name);
const data = [
{ text: "hello", vector: Array(512).fill(1.0) },
{ text: "hello world", vector: Array(512).fill(1.0) },
];
const f64Schema = new arrow.Schema([
new arrow.Field("text", new arrow.Utf8(), true),
new arrow.Field(
"vector",
new arrow.FixedSizeList(512, new arrow.Field("item", floatType)),
true,
),
]);
const f64Table = await db.createEmptyTable("f64", f64Schema, {
mode: "overwrite",
});
try {
await f64Table.add(data);
const res = await f64Table.query().toArray();
expect(res.length).toBe(2);
} catch (e) {
expect(e).toBeUndefined();
}
},
);
it("should return the table as an instance of an arrow table", async () => {
const arrowTbl = await table.toArrow();
expect(arrowTbl).toBeInstanceOf(ArrowTable);
});
});
describe("merge insert", () => {
let tmpDir: tmp.DirResult;
let table: Table;
beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
const conn = await connect(tmpDir.name);
table = await conn.createTable("some_table", [
{ a: 1, b: "a" },
{ a: 2, b: "b" },
{ a: 3, b: "c" },
]);
});
afterEach(() => tmpDir.removeCallback());
test("upsert", async () => {
const newData = [
{ a: 2, b: "x" },
{ a: 3, b: "y" },
{ a: 4, b: "z" },
];
await table
.mergeInsert("a")
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()
.execute(newData);
const expected = [
{ a: 1, b: "a" },
{ a: 2, b: "x" },
{ a: 3, b: "y" },
{ a: 4, b: "z" },
];
expect(
JSON.parse(JSON.stringify((await table.toArrow()).toArray())),
).toEqual(expected);
});
test("conditional update", async () => {
const newData = [
{ a: 2, b: "x" },
{ a: 3, b: "y" },
{ a: 4, b: "z" },
];
await table
.mergeInsert("a")
.whenMatchedUpdateAll({ where: "target.b = 'b'" })
.execute(newData);
const expected = [
{ a: 1, b: "a" },
{ a: 2, b: "x" },
{ a: 3, b: "c" },
];
// round trip to arrow and back to json to avoid comparing arrow objects to js object
// biome-ignore lint/suspicious/noExplicitAny: test
let res: any[] = JSON.parse(
JSON.stringify((await table.toArrow()).toArray()),
);
res = res.sort((a, b) => a.a - b.a);
expect(res).toEqual(expected);
});
test("insert if not exists", async () => {
const newData = [
{ a: 2, b: "x" },
{ a: 3, b: "y" },
{ a: 4, b: "z" },
];
await table.mergeInsert("a").whenNotMatchedInsertAll().execute(newData);
const expected = [
{ a: 1, b: "a" },
{ a: 2, b: "b" },
{ a: 3, b: "c" },
{ a: 4, b: "z" },
];
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
let res: any[] = JSON.parse(
JSON.stringify((await table.toArrow()).toArray()),
);
res = res.sort((a, b) => a.a - b.a);
expect(res).toEqual(expected);
});
test("replace range", async () => {
const newData = [
{ a: 2, b: "x" },
{ a: 4, b: "z" },
];
await table
.mergeInsert("a")
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()
.whenNotMatchedBySourceDelete({ where: "a > 2" })
.execute(newData);
const expected = [
{ a: 1, b: "a" },
{ a: 2, b: "x" },
{ a: 4, b: "z" },
];
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
let res: any[] = JSON.parse(
JSON.stringify((await table.toArrow()).toArray()),
);
res = res.sort((a, b) => a.a - b.a);
expect(res).toEqual(expected);
});
test("replace range no condition", async () => {
const newData = [
{ a: 2, b: "x" },
{ a: 4, b: "z" },
];
await table
.mergeInsert("a")
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()
.whenNotMatchedBySourceDelete()
.execute(newData);
const expected = [
{ a: 2, b: "x" },
{ a: 4, b: "z" },
];
// biome-ignore lint/suspicious/noExplicitAny: test
let res: any[] = JSON.parse(
JSON.stringify((await table.toArrow()).toArray()),
);
res = res.sort((a, b) => a.a - b.a);
expect(res).toEqual(expected);
});
});
describe("When creating an index", () => {
let tmpDir: tmp.DirResult;
const schema = new Schema([
new Field("id", new Int32(), true),
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
]);
let tbl: Table;
let queryVec: number[];
beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
const db = await connect(tmpDir.name);
const data = makeArrowTable(
Array(300)
.fill(1)
.map((_, i) => ({
id: i,
vec: Array(32)
.fill(1)
.map(() => Math.random()),
})),
{
schema,
},
);
queryVec = data.toArray()[5].vec.toJSON();
tbl = await db.createTable("test", data);
});
afterEach(() => tmpDir.removeCallback());
it("should create a vector index on vector columns", async () => {
await tbl.createIndex("vec");
// check index directory
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
const indices = await tbl.listIndices();
expect(indices.length).toBe(1);
expect(indices[0]).toEqual({
name: "vec_idx",
indexType: "IvfPq",
columns: ["vec"],
});
// Search without specifying the column
let rst = await tbl
.query()
.limit(2)
.nearestTo(queryVec)
.distanceType("DoT")
.toArrow();
expect(rst.numRows).toBe(2);
// Search using `vectorSearch`
rst = await tbl.vectorSearch(queryVec).limit(2).toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
const rst2 = await tbl
.query()
.limit(2)
.nearestTo(queryVec)
.column("vec")
.toArrow();
expect(rst2.numRows).toBe(2);
expect(rst.toString()).toEqual(rst2.toString());
});
it("should allow parameters to be specified", async () => {
await tbl.createIndex("vec", {
config: Index.ivfPq({
numPartitions: 10,
}),
});
// TODO: Verify parameters when we can load index config as part of list indices
});
it("should allow me to replace (or not) an existing index", async () => {
await tbl.createIndex("id");
// Default is replace=true
await tbl.createIndex("id");
await expect(tbl.createIndex("id", { replace: false })).rejects.toThrow(
"already exists",
);
await tbl.createIndex("id", { replace: true });
});
test("should create a scalar index on scalar columns", async () => {
await tbl.createIndex("id");
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
for await (const r of tbl.query().where("id > 1").select(["id"])) {
expect(r.numRows).toBe(298);
}
// should also work with 'filter' alias
for await (const r of tbl.query().filter("id > 1").select(["id"])) {
expect(r.numRows).toBe(298);
}
});
test("should be able to get index stats", async () => {
await tbl.createIndex("id");
const stats = await tbl.indexStats("id_idx");
expect(stats).toBeDefined();
expect(stats?.numIndexedRows).toEqual(300);
expect(stats?.numUnindexedRows).toEqual(0);
});
test("when getting stats on non-existent index", async () => {
const stats = await tbl.indexStats("some non-existent index");
expect(stats).toBeUndefined();
});
// TODO: Move this test to the query API test (making sure we can reject queries
// when the dimension is incorrect)
test("two columns with different dimensions", async () => {
const db = await connect(tmpDir.name);
const schema = new Schema([
new Field("id", new Int32(), true),
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
new Field(
"vec2",
new FixedSizeList(64, new Field("item", new Float32())),
),
]);
const tbl = await db.createTable(
"two_vectors",
makeArrowTable(
Array(300)
.fill(1)
.map((_, i) => ({
id: i,
vec: Array(32)
.fill(1)
.map(() => Math.random()),
vec2: Array(64) // different dimension
.fill(1)
.map(() => Math.random()),
})),
{ schema },
),
);
// Only build index over v1
await tbl.createIndex("vec", {
config: Index.ivfPq({ numPartitions: 2, numSubVectors: 2 }),
});
const rst = await tbl
.query()
.limit(2)
.nearestTo(
Array(32)
.fill(1)
.map(() => Math.random()),
)
.toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
await expect(
tbl
.query()
.limit(2)
.nearestTo(
Array(64)
.fill(1)
.map(() => Math.random()),
)
.column("vec")
.toArrow(),
).rejects.toThrow(/.* query dim=64, expected vector dim=32.*/);
const query64 = Array(64)
.fill(1)
.map(() => Math.random());
const rst64Query = await tbl.query().limit(2).nearestTo(query64).toArrow();
const rst64Search = await tbl
.query()
.limit(2)
.nearestTo(query64)
.column("vec2")
.toArrow();
expect(rst64Query.toString()).toEqual(rst64Search.toString());
expect(rst64Query.numRows).toBe(2);
});
});
describe("Read consistency interval", () => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => tmpDir.removeCallback());
// const intervals = [undefined, 0, 0.1];
const intervals = [0];
test.each(intervals)("read consistency interval %p", async (interval) => {
const db = await connect(tmpDir.name);
const table = await db.createTable("my_table", [{ id: 1 }]);
const db2 = await connect(tmpDir.name, {
readConsistencyInterval: interval,
});
const table2 = await db2.openTable("my_table");
expect(await table2.countRows()).toEqual(await table.countRows());
await table.add([{ id: 2 }]);
if (interval === undefined) {
expect(await table2.countRows()).toEqual(1);
// TODO: once we implement time travel we can uncomment this part of the test.
// await table2.checkout_latest();
// expect(await table2.countRows()).toEqual(2);
} else if (interval === 0) {
expect(await table2.countRows()).toEqual(2);
} else {
// interval == 0.1
expect(await table2.countRows()).toEqual(1);
await new Promise((r) => setTimeout(r, 100));
expect(await table2.countRows()).toEqual(2);
}
});
});
describe("schema evolution", function () {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => {
tmpDir.removeCallback();
});
// Create a new sample table
it("can add a new column to the schema", async function () {
const con = await connect(tmpDir.name);
const table = await con.createTable("vectors", [
{ id: 1n, vector: [0.1, 0.2] },
]);
await table.addColumns([
{ name: "price", valueSql: "cast(10.0 as float)" },
]);
const expectedSchema = new Schema([
new Field("id", new Int64(), true),
new Field(
"vector",
new FixedSizeList(2, new Field("item", new Float32(), true)),
true,
),
new Field("price", new Float32(), false),
]);
expect(await table.schema()).toEqual(expectedSchema);
});
it("can alter the columns in the schema", async function () {
const con = await connect(tmpDir.name);
const schema = new Schema([
new Field("id", new Int64(), true),
new Field(
"vector",
new FixedSizeList(2, new Field("item", new Float32(), true)),
true,
),
new Field("price", new Float64(), false),
]);
const table = await con.createTable("vectors", [
{ id: 1n, vector: [0.1, 0.2] },
]);
// Can create a non-nullable column only through addColumns at the moment.
await table.addColumns([
{ name: "price", valueSql: "cast(10.0 as double)" },
]);
expect(await table.schema()).toEqual(schema);
await table.alterColumns([
{ path: "id", rename: "new_id" },
{ path: "price", nullable: true },
]);
const expectedSchema = new Schema([
new Field("new_id", new Int64(), true),
new Field(
"vector",
new FixedSizeList(2, new Field("item", new Float32(), true)),
true,
),
new Field("price", new Float64(), true),
]);
expect(await table.schema()).toEqual(expectedSchema);
});
it("can drop a column from the schema", async function () {
const con = await connect(tmpDir.name);
const table = await con.createTable("vectors", [
{ id: 1n, vector: [0.1, 0.2] },
]);
await table.dropColumns(["vector"]);
const expectedSchema = new Schema([new Field("id", new Int64(), true)]);
expect(await table.schema()).toEqual(expectedSchema);
});
});
describe("when dealing with versioning", () => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => {
tmpDir.removeCallback();
});
it("can travel in time", async () => {
// Setup
const con = await connect(tmpDir.name);
const table = await con.createTable("vectors", [
{ id: 1n, vector: [0.1, 0.2] },
]);
const version = await table.version();
await table.add([{ id: 2n, vector: [0.1, 0.2] }]);
expect(await table.countRows()).toBe(2);
// Make sure we can rewind
await table.checkout(version);
expect(await table.countRows()).toBe(1);
// Can't add data in time travel mode
await expect(table.add([{ id: 3n, vector: [0.1, 0.2] }])).rejects.toThrow(
"table cannot be modified when a specific version is checked out",
);
// Can go back to normal mode
await table.checkoutLatest();
expect(await table.countRows()).toBe(2);
// Should be able to add data again
await table.add([{ id: 2n, vector: [0.1, 0.2] }]);
expect(await table.countRows()).toBe(3);
// Now checkout and restore
await table.checkout(version);
await table.restore();
expect(await table.countRows()).toBe(1);
// Should be able to add data
await table.add([{ id: 2n, vector: [0.1, 0.2] }]);
expect(await table.countRows()).toBe(2);
// Can't use restore if not checked out
await expect(table.restore()).rejects.toThrow(
"checkout before running restore",
);
});
});
describe("when optimizing a dataset", () => {
let tmpDir: tmp.DirResult;
let table: Table;
beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
const con = await connect(tmpDir.name);
table = await con.createTable("vectors", [{ id: 1 }]);
await table.add([{ id: 2 }]);
});
afterEach(() => {
tmpDir.removeCallback();
});
it("compacts files", async () => {
const stats = await table.optimize();
expect(stats.compaction.filesAdded).toBe(1);
expect(stats.compaction.filesRemoved).toBe(2);
expect(stats.compaction.fragmentsAdded).toBe(1);
expect(stats.compaction.fragmentsRemoved).toBe(2);
});
it("cleanups old versions", async () => {
const stats = await table.optimize({ cleanupOlderThan: new Date() });
expect(stats.prune.bytesRemoved).toBeGreaterThan(0);
expect(stats.prune.oldVersionsRemoved).toBe(3);
});
});
describe("table.search", () => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => tmpDir.removeCallback());
test("can search using a string", async () => {
@register()
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {};
}
ndims() {
return 1;
}
embeddingDataType(): arrow.Float {
return new Float32();
}
// Hardcoded embeddings for the sake of testing
async computeQueryEmbeddings(_data: string) {
switch (_data) {
case "greetings":
return [0.1];
case "farewell":
return [0.2];
default:
return null as never;
}
}
// Hardcoded embeddings for the sake of testing
async computeSourceEmbeddings(data: string[]) {
return data.map((s) => {
switch (s) {
case "hello world":
return [0.1];
case "goodbye world":
return [0.2];
default:
return null as never;
}
});
}
}
const func = new MockEmbeddingFunction();
const schema = LanceSchema({
text: func.sourceField(new arrow.Utf8()),
vector: func.vectorField(),
});
const db = await connect(tmpDir.name);
const data = [{ text: "hello world" }, { text: "goodbye world" }];
const table = await db.createTable("test", data, { schema });
const results = await table.search("greetings").then((r) => r.toArray());
expect(results[0].text).toBe(data[0].text);
const results2 = await table.search("farewell").then((r) => r.toArray());
expect(results2[0].text).toBe(data[1].text);
});
test("rejects if no embedding function provided", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
];
const table = await db.createTable("test", data);
expect(table.search("hello")).rejects.toThrow(
"No embedding functions are defined in the table",
);
});
test.each([
[0.4, 0.5, 0.599], // number[]
Float32Array.of(0.4, 0.5, 0.599), // Float32Array
Float64Array.of(0.4, 0.5, 0.599), // Float64Array
])("can search using vectorlike datatypes", async (vectorlike) => {
const db = await connect(tmpDir.name);
const data = [
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
];
const table = await db.createTable("test", data);
// biome-ignore lint/suspicious/noExplicitAny: test
const results: any[] = await table.search(vectorlike).toArray();
expect(results.length).toBe(2);
expect(results[0].text).toBe(data[1].text);
});
});