Files
lancedb/node/examples/js-transformers/index.js
gsilvestrin 593b5939be feat(node): Improve concurrency (#376)
- Moved computation out of JS main thread by using a mpsc
- Removes the Arc/Mutex since Table is owned by JsTable now
- Moved table / query methods to their own files 
- Fixed js-transformers example
2023-08-01 14:22:04 -07:00

67 lines
2.2 KiB
JavaScript

// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
'use strict'
async function example() {
const lancedb = require('vectordb')
// Import transformers and the all-MiniLM-L6-v2 model (https://huggingface.co/Xenova/all-MiniLM-L6-v2)
const { pipeline } = await import('@xenova/transformers')
const pipe = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
// Create embedding function from pipeline which returns a list of vectors from batch
// sourceColumn is the name of the column in the data to be embedded
//
// Output of pipe is a Tensor { data: Float32Array(384) }, so filter for the vector
const embed_fun = {}
embed_fun.sourceColumn = 'text'
embed_fun.embed = async function (batch) {
let result = []
for (let text of batch) {
const res = await pipe(text, { pooling: 'mean', normalize: true })
result.push(Array.from(res['data']))
}
return (result)
}
// Link a folder and create a table with data
const db = await lancedb.connect('data/sample-lancedb')
const data = [
{ id: 1, text: 'Cherry', type: 'fruit' },
{ id: 2, text: 'Carrot', type: 'vegetable' },
{ id: 3, text: 'Potato', type: 'vegetable' },
{ id: 4, text: 'Apple', type: 'fruit' },
{ id: 5, text: 'Banana', type: 'fruit' }
]
const table = await db.createTable('food_table', data, embed_fun)
// Query the table
const results = await table
.search("a sweet fruit to eat")
.metricType("cosine")
.limit(2)
.execute()
console.log(results.map(r => r.text))
}
example().then(_ => { console.log("Done!") })