mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 13:29:57 +00:00
Users ingesting data using rate limited apis don't need to manually make the process sleep for counter rate limits resolves #579
115 lines
3.7 KiB
Python
115 lines
3.7 KiB
Python
# Copyright 2023 LanceDB Developers
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import sys
|
|
|
|
import lance
|
|
import numpy as np
|
|
import pyarrow as pa
|
|
import pytest
|
|
|
|
import lancedb
|
|
from lancedb.conftest import MockRateLimitedEmbeddingFunction, MockTextEmbeddingFunction
|
|
from lancedb.embeddings import (
|
|
EmbeddingFunctionConfig,
|
|
EmbeddingFunctionRegistry,
|
|
with_embeddings,
|
|
)
|
|
from lancedb.pydantic import LanceModel, Vector
|
|
|
|
|
|
def mock_embed_func(input_data):
|
|
return [np.random.randn(128).tolist() for _ in range(len(input_data))]
|
|
|
|
|
|
def test_with_embeddings():
|
|
for wrap_api in [True, False]:
|
|
if wrap_api and sys.version_info.minor >= 11:
|
|
# ratelimiter package doesn't work on 3.11
|
|
continue
|
|
data = pa.Table.from_arrays(
|
|
[
|
|
pa.array(["foo", "bar"]),
|
|
pa.array([10.0, 20.0]),
|
|
],
|
|
names=["text", "price"],
|
|
)
|
|
data = with_embeddings(mock_embed_func, data, wrap_api=wrap_api)
|
|
assert data.num_columns == 3
|
|
assert data.num_rows == 2
|
|
assert data.column_names == ["text", "price", "vector"]
|
|
assert data.column("text").to_pylist() == ["foo", "bar"]
|
|
assert data.column("price").to_pylist() == [10.0, 20.0]
|
|
|
|
|
|
def test_embedding_function(tmp_path):
|
|
registry = EmbeddingFunctionRegistry.get_instance()
|
|
|
|
# let's create a table
|
|
table = pa.table(
|
|
{
|
|
"text": pa.array(["hello world", "goodbye world"]),
|
|
"vector": [np.random.randn(10), np.random.randn(10)],
|
|
}
|
|
)
|
|
conf = EmbeddingFunctionConfig(
|
|
source_column="text",
|
|
vector_column="vector",
|
|
function=MockTextEmbeddingFunction(),
|
|
)
|
|
metadata = registry.get_table_metadata([conf])
|
|
table = table.replace_schema_metadata(metadata)
|
|
|
|
# Write it to disk
|
|
lance.write_dataset(table, tmp_path / "test.lance")
|
|
|
|
# Load this back
|
|
ds = lance.dataset(tmp_path / "test.lance")
|
|
|
|
# can we get the serialized version back out?
|
|
configs = registry.parse_functions(ds.schema.metadata)
|
|
|
|
conf = configs["vector"]
|
|
func = conf.function
|
|
actual = func.compute_query_embeddings("hello world")
|
|
|
|
# And we make sure we can call it
|
|
expected = func.compute_query_embeddings("hello world")
|
|
|
|
assert np.allclose(actual, expected)
|
|
|
|
|
|
def test_embedding_function_rate_limit(tmp_path):
|
|
def _get_schema_from_model(model):
|
|
class Schema(LanceModel):
|
|
text: str = model.SourceField()
|
|
vector: Vector(model.ndims()) = model.VectorField()
|
|
|
|
return Schema
|
|
|
|
db = lancedb.connect(tmp_path)
|
|
registry = EmbeddingFunctionRegistry.get_instance()
|
|
model = registry.get("test-rate-limited").create(max_retries=0)
|
|
schema = _get_schema_from_model(model)
|
|
table = db.create_table("test", schema=schema, mode="overwrite")
|
|
table.add([{"text": "hello world"}])
|
|
with pytest.raises(Exception):
|
|
table.add([{"text": "hello world"}])
|
|
assert len(table) == 1
|
|
|
|
model = registry.get("test-rate-limited").create()
|
|
schema = _get_schema_from_model(model)
|
|
table = db.create_table("test", schema=schema, mode="overwrite")
|
|
table.add([{"text": "hello world"}])
|
|
table.add([{"text": "hello world"}])
|
|
assert len(table) == 2
|