mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-04 10:52:56 +00:00
Colab has pydantic 1.x by default and pydantic 1.x BaseModel objects don't support weakref creation by default that we use to cache embedding models https://github.com/lancedb/lancedb/blob/main/python/lancedb/embeddings/utils.py#L206 . It needs to be added to slot.
182 lines
5.9 KiB
Python
182 lines
5.9 KiB
Python
# Copyright (c) 2023. LanceDB Developers
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import importlib
|
|
from abc import ABC, abstractmethod
|
|
from typing import List, Union
|
|
|
|
import numpy as np
|
|
import pyarrow as pa
|
|
from pydantic import BaseModel, Field, PrivateAttr
|
|
|
|
from .utils import TEXT, retry_with_exponential_backoff
|
|
|
|
|
|
class EmbeddingFunction(BaseModel, ABC):
|
|
"""
|
|
An ABC for embedding functions.
|
|
|
|
All concrete embedding functions must implement the following:
|
|
1. compute_query_embeddings() which takes a query and returns a list of embeddings
|
|
2. get_source_embeddings() which returns a list of embeddings for the source column
|
|
For text data, the two will be the same. For multi-modal data, the source column
|
|
might be images and the vector column might be text.
|
|
3. ndims method which returns the number of dimensions of the vector column
|
|
"""
|
|
|
|
__slots__ = ("__weakref__",) # pydantic 1.x compatibility
|
|
max_retries: int = (
|
|
7 # Setitng 0 disables retires. Maybe this should not be enabled by default,
|
|
)
|
|
_ndims: int = PrivateAttr()
|
|
|
|
@classmethod
|
|
def create(cls, **kwargs):
|
|
"""
|
|
Create an instance of the embedding function
|
|
"""
|
|
return cls(**kwargs)
|
|
|
|
@abstractmethod
|
|
def compute_query_embeddings(self, *args, **kwargs) -> List[np.array]:
|
|
"""
|
|
Compute the embeddings for a given user query
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def compute_source_embeddings(self, *args, **kwargs) -> List[np.array]:
|
|
"""
|
|
Compute the embeddings for the source column in the database
|
|
"""
|
|
pass
|
|
|
|
def compute_query_embeddings_with_retry(self, *args, **kwargs) -> List[np.array]:
|
|
"""
|
|
Compute the embeddings for a given user query with retries
|
|
"""
|
|
return retry_with_exponential_backoff(
|
|
self.compute_query_embeddings, max_retries=self.max_retries
|
|
)(
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
def compute_source_embeddings_with_retry(self, *args, **kwargs) -> List[np.array]:
|
|
"""
|
|
Compute the embeddings for the source column in the database with retries
|
|
"""
|
|
return retry_with_exponential_backoff(
|
|
self.compute_source_embeddings, max_retries=self.max_retries
|
|
)(*args, **kwargs)
|
|
|
|
def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]:
|
|
"""
|
|
Sanitize the input to the embedding function.
|
|
"""
|
|
if isinstance(texts, str):
|
|
texts = [texts]
|
|
elif isinstance(texts, pa.Array):
|
|
texts = texts.to_pylist()
|
|
elif isinstance(texts, pa.ChunkedArray):
|
|
texts = texts.combine_chunks().to_pylist()
|
|
return texts
|
|
|
|
@classmethod
|
|
def safe_import(cls, module: str, mitigation=None):
|
|
"""
|
|
Import the specified module. If the module is not installed,
|
|
raise an ImportError with a helpful message.
|
|
|
|
Parameters
|
|
----------
|
|
module : str
|
|
The name of the module to import
|
|
mitigation : Optional[str]
|
|
The package(s) to install to mitigate the error.
|
|
If not provided then the module name will be used.
|
|
"""
|
|
try:
|
|
return importlib.import_module(module)
|
|
except ImportError:
|
|
raise ImportError(f"Please install {mitigation or module}")
|
|
|
|
def safe_model_dump(self):
|
|
from ..pydantic import PYDANTIC_VERSION
|
|
|
|
if PYDANTIC_VERSION.major < 2:
|
|
return dict(self)
|
|
return self.model_dump()
|
|
|
|
@abstractmethod
|
|
def ndims(self):
|
|
"""
|
|
Return the dimensions of the vector column
|
|
"""
|
|
pass
|
|
|
|
def SourceField(self, **kwargs):
|
|
"""
|
|
Creates a pydantic Field that can automatically annotate
|
|
the source column for this embedding function
|
|
"""
|
|
return Field(json_schema_extra={"source_column_for": self}, **kwargs)
|
|
|
|
def VectorField(self, **kwargs):
|
|
"""
|
|
Creates a pydantic Field that can automatically annotate
|
|
the target vector column for this embedding function
|
|
"""
|
|
return Field(json_schema_extra={"vector_column_for": self}, **kwargs)
|
|
|
|
def __eq__(self, __value: object) -> bool:
|
|
if not hasattr(__value, "__dict__"):
|
|
return False
|
|
return vars(self) == vars(__value)
|
|
|
|
def __hash__(self) -> int:
|
|
return hash(frozenset(vars(self).items()))
|
|
|
|
|
|
class EmbeddingFunctionConfig(BaseModel):
|
|
"""
|
|
This model encapsulates the configuration for a embedding function
|
|
in a lancedb table. It holds the embedding function, the source column,
|
|
and the vector column
|
|
"""
|
|
|
|
vector_column: str
|
|
source_column: str
|
|
function: EmbeddingFunction
|
|
|
|
|
|
class TextEmbeddingFunction(EmbeddingFunction):
|
|
"""
|
|
A callable ABC for embedding functions that take text as input
|
|
"""
|
|
|
|
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
|
|
return self.compute_source_embeddings(query, *args, **kwargs)
|
|
|
|
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
|
|
texts = self.sanitize_input(texts)
|
|
return self.generate_embeddings(texts)
|
|
|
|
@abstractmethod
|
|
def generate_embeddings(
|
|
self, texts: Union[List[str], np.ndarray]
|
|
) -> List[np.array]:
|
|
"""
|
|
Generate the embeddings for the given texts
|
|
"""
|
|
pass
|