mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-25 22:29:58 +00:00
Reviving #1966. Closes #1938 The `search()` method can apply embeddings for the user. This simplifies hybrid search, so instead of writing: ```python vector_query = embeddings.compute_query_embeddings("flower moon")[0] await ( async_tbl.query() .nearest_to(vector_query) .nearest_to_text("flower moon") .to_pandas() ) ``` You can write: ```python await (await async_tbl.search("flower moon", query_type="hybrid")).to_pandas() ``` Unfortunately, we had to do a double-await here because `search()` needs to be async. This is because it often needs to do IO to retrieve and run an embedding function.
81 lines
2.4 KiB
Python
81 lines
2.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
|
|
|
import shutil
|
|
|
|
# --8<-- [start:imports]
|
|
import lancedb
|
|
import numpy as np
|
|
import pyarrow as pa
|
|
import pytest
|
|
# --8<-- [end:imports]
|
|
|
|
shutil.rmtree("data/binary_lancedb", ignore_errors=True)
|
|
|
|
|
|
def test_binary_vector():
|
|
# --8<-- [start:sync_binary_vector]
|
|
db = lancedb.connect("data/binary_lancedb")
|
|
schema = pa.schema(
|
|
[
|
|
pa.field("id", pa.int64()),
|
|
# for dim=256, lance stores every 8 bits in a byte
|
|
# so the vector field should be a list of 256 / 8 = 32 bytes
|
|
pa.field("vector", pa.list_(pa.uint8(), 32)),
|
|
]
|
|
)
|
|
tbl = db.create_table("my_binary_vectors", schema=schema)
|
|
|
|
data = []
|
|
for i in range(1024):
|
|
vector = np.random.randint(0, 2, size=256)
|
|
# pack the binary vector into bytes to save space
|
|
packed_vector = np.packbits(vector)
|
|
data.append(
|
|
{
|
|
"id": i,
|
|
"vector": packed_vector,
|
|
}
|
|
)
|
|
tbl.add(data)
|
|
|
|
query = np.random.randint(0, 2, size=256)
|
|
packed_query = np.packbits(query)
|
|
tbl.search(packed_query).distance_type("hamming").to_arrow()
|
|
# --8<-- [end:sync_binary_vector]
|
|
db.drop_table("my_binary_vectors")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_binary_vector_async():
|
|
# --8<-- [start:async_binary_vector]
|
|
db = await lancedb.connect_async("data/binary_lancedb")
|
|
schema = pa.schema(
|
|
[
|
|
pa.field("id", pa.int64()),
|
|
# for dim=256, lance stores every 8 bits in a byte
|
|
# so the vector field should be a list of 256 / 8 = 32 bytes
|
|
pa.field("vector", pa.list_(pa.uint8(), 32)),
|
|
]
|
|
)
|
|
tbl = await db.create_table("my_binary_vectors", schema=schema)
|
|
|
|
data = []
|
|
for i in range(1024):
|
|
vector = np.random.randint(0, 2, size=256)
|
|
# pack the binary vector into bytes to save space
|
|
packed_vector = np.packbits(vector)
|
|
data.append(
|
|
{
|
|
"id": i,
|
|
"vector": packed_vector,
|
|
}
|
|
)
|
|
await tbl.add(data)
|
|
|
|
query = np.random.randint(0, 2, size=256)
|
|
packed_query = np.packbits(query)
|
|
await (await tbl.search(packed_query)).distance_type("hamming").to_arrow()
|
|
# --8<-- [end:async_binary_vector]
|
|
await db.drop_table("my_binary_vectors")
|