mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-25 22:29:58 +00:00
Reviving #1966. Closes #1938 The `search()` method can apply embeddings for the user. This simplifies hybrid search, so instead of writing: ```python vector_query = embeddings.compute_query_embeddings("flower moon")[0] await ( async_tbl.query() .nearest_to(vector_query) .nearest_to_text("flower moon") .to_pandas() ) ``` You can write: ```python await (await async_tbl.search("flower moon", query_type="hybrid")).to_pandas() ``` Unfortunately, we had to do a double-await here because `search()` needs to be async. This is because it often needs to do IO to retrieve and run an embedding function.
168 lines
5.8 KiB
Python
168 lines
5.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
|
|
|
# --8<-- [start:import-lancedb]
|
|
import lancedb
|
|
|
|
# --8<-- [end:import-lancedb]
|
|
# --8<-- [start:import-lancedb-ivfpq]
|
|
from lancedb.index import IvfPq
|
|
|
|
# --8<-- [end:import-lancedb-ivfpq]
|
|
# --8<-- [start:import-lancedb-btree-bitmap]
|
|
from lancedb.index import BTree, Bitmap
|
|
|
|
# --8<-- [end:import-lancedb-btree-bitmap]
|
|
# --8<-- [start:import-numpy]
|
|
import numpy as np
|
|
|
|
# --8<-- [end:import-numpy]
|
|
import pytest
|
|
|
|
|
|
def test_ann_index():
|
|
# --8<-- [start:create_ann_index]
|
|
uri = "data/sample-lancedb"
|
|
|
|
# Create 5,000 sample vectors
|
|
data = [
|
|
{"vector": row, "item": f"item {i}"}
|
|
for i, row in enumerate(np.random.random((5_000, 32)).astype("float32"))
|
|
]
|
|
|
|
db = lancedb.connect(uri)
|
|
# Add the vectors to a table
|
|
tbl = db.create_table("my_vectors", data=data)
|
|
# Create and train the index - you need to have enough data in the table
|
|
# for an effective training step
|
|
tbl.create_index(num_partitions=2, num_sub_vectors=4)
|
|
# --8<-- [end:create_ann_index]
|
|
# --8<-- [start:vector_search]
|
|
tbl.search(np.random.random((32))).limit(2).nprobes(20).refine_factor(
|
|
10
|
|
).to_pandas()
|
|
# --8<-- [end:vector_search]
|
|
# --8<-- [start:vector_search_with_filter]
|
|
tbl.search(np.random.random((32))).where("item != 'item 1141'").to_pandas()
|
|
# --8<-- [end:vector_search_with_filter]
|
|
# --8<-- [start:vector_search_with_select]
|
|
tbl.search(np.random.random((32))).select(["vector"]).to_pandas()
|
|
# --8<-- [end:vector_search_with_select]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_ann_index_async():
|
|
# --8<-- [start:create_ann_index_async]
|
|
uri = "data/sample-lancedb"
|
|
|
|
# Create 5,000 sample vectors
|
|
data = [
|
|
{"vector": row, "item": f"item {i}"}
|
|
for i, row in enumerate(np.random.random((5_000, 32)).astype("float32"))
|
|
]
|
|
|
|
async_db = await lancedb.connect_async(uri)
|
|
# Add the vectors to a table
|
|
async_tbl = await async_db.create_table("my_vectors_async", data=data)
|
|
# Create and train the index - you need to have enough data in the table
|
|
# for an effective training step
|
|
await async_tbl.create_index(
|
|
"vector", config=IvfPq(num_partitions=2, num_sub_vectors=4)
|
|
)
|
|
# --8<-- [end:create_ann_index_async]
|
|
# --8<-- [start:vector_search_async]
|
|
await (
|
|
(await async_tbl.search(np.random.random((32))))
|
|
.limit(2)
|
|
.nprobes(20)
|
|
.refine_factor(10)
|
|
.to_pandas()
|
|
)
|
|
# --8<-- [end:vector_search_async]
|
|
# --8<-- [start:vector_search_async_with_filter]
|
|
await (
|
|
(await async_tbl.search(np.random.random((32))))
|
|
.where("item != 'item 1141'")
|
|
.to_pandas()
|
|
)
|
|
# --8<-- [end:vector_search_async_with_filter]
|
|
# --8<-- [start:vector_search_async_with_select]
|
|
await (
|
|
(await async_tbl.search(np.random.random((32)))).select(["vector"]).to_pandas()
|
|
)
|
|
# --8<-- [end:vector_search_async_with_select]
|
|
|
|
|
|
def test_scalar_index():
|
|
# --8<-- [start:basic_scalar_index]
|
|
uri = "data/sample-lancedb"
|
|
db = lancedb.connect(uri)
|
|
books = [
|
|
{
|
|
"book_id": 1,
|
|
"publisher": "plenty of books",
|
|
"tags": ["fantasy", "adventure"],
|
|
},
|
|
{"book_id": 2, "publisher": "book town", "tags": ["non-fiction"]},
|
|
{"book_id": 3, "publisher": "oreilly", "tags": ["textbook"]},
|
|
]
|
|
table = db.create_table("books", books)
|
|
table.create_scalar_index("book_id") # BTree by default
|
|
table.create_scalar_index("publisher", index_type="BITMAP")
|
|
# --8<-- [end:basic_scalar_index]
|
|
# --8<-- [start:search_with_scalar_index]
|
|
table = db.open_table("books")
|
|
table.search().where("book_id = 2").to_pandas()
|
|
# --8<-- [end:search_with_scalar_index]
|
|
# --8<-- [start:vector_search_with_scalar_index]
|
|
data = [
|
|
{"book_id": 1, "vector": [1.0, 2]},
|
|
{"book_id": 2, "vector": [3.0, 4]},
|
|
{"book_id": 3, "vector": [5.0, 6]},
|
|
]
|
|
|
|
table = db.create_table("book_with_embeddings", data)
|
|
(table.search([1, 2]).where("book_id != 3", prefilter=True).to_pandas())
|
|
# --8<-- [end:vector_search_with_scalar_index]
|
|
# --8<-- [start:update_scalar_index]
|
|
table.add([{"vector": [7, 8], "book_id": 4}])
|
|
table.optimize()
|
|
# --8<-- [end:update_scalar_index]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_scalar_index_async():
|
|
# --8<-- [start:basic_scalar_index_async]
|
|
uri = "data/sample-lancedb"
|
|
async_db = await lancedb.connect_async(uri)
|
|
books = [
|
|
{
|
|
"book_id": 1,
|
|
"publisher": "plenty of books",
|
|
"tags": ["fantasy", "adventure"],
|
|
},
|
|
{"book_id": 2, "publisher": "book town", "tags": ["non-fiction"]},
|
|
{"book_id": 3, "publisher": "oreilly", "tags": ["textbook"]},
|
|
]
|
|
async_tbl = await async_db.create_table("books_async", books)
|
|
await async_tbl.create_index("book_id", config=BTree()) # BTree by default
|
|
await async_tbl.create_index("publisher", config=Bitmap())
|
|
# --8<-- [end:basic_scalar_index_async]
|
|
# --8<-- [start:search_with_scalar_index_async]
|
|
async_tbl = await async_db.open_table("books_async")
|
|
await async_tbl.query().where("book_id = 2").to_pandas()
|
|
# --8<-- [end:search_with_scalar_index_async]
|
|
# --8<-- [start:vector_search_with_scalar_index_async]
|
|
data = [
|
|
{"book_id": 1, "vector": [1.0, 2]},
|
|
{"book_id": 2, "vector": [3.0, 4]},
|
|
{"book_id": 3, "vector": [5.0, 6]},
|
|
]
|
|
async_tbl = await async_db.create_table("book_with_embeddings_async", data)
|
|
(await (await async_tbl.search([1, 2])).where("book_id != 3").to_pandas())
|
|
# --8<-- [end:vector_search_with_scalar_index_async]
|
|
# --8<-- [start:update_scalar_index_async]
|
|
await async_tbl.add([{"vector": [7, 8], "book_id": 4}])
|
|
await async_tbl.optimize()
|
|
# --8<-- [end:update_scalar_index_async]
|