Files
lancedb/python/python/tests/test_hybrid_query.py
BubbleCal 9b902272f1 fix: sync hybrid search ignores the distance range params (#2356)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for distance range filtering in hybrid vector queries,
allowing users to specify lower and upper bounds for search results.

- **Tests**
- Introduced new tests to validate distance range filtering and
reranking in both synchronous and asynchronous hybrid query scenarios.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-04-25 13:01:22 +08:00

200 lines
5.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
import lancedb
from lancedb.query import LanceHybridQueryBuilder
from lancedb.rerankers.rrf import RRFReranker
import pyarrow as pa
import pyarrow.compute as pc
import pytest
import pytest_asyncio
from lancedb.index import FTS
from lancedb.table import AsyncTable, Table
@pytest.fixture
def sync_table(tmpdir_factory) -> Table:
tmp_path = str(tmpdir_factory.mktemp("data"))
db = lancedb.connect(tmp_path)
data = pa.table(
{
"text": pa.array(["a", "b", "cat", "dog"]),
"vector": pa.array(
[[0.1, 0.1], [2, 2], [-0.1, -0.1], [0.5, -0.5]],
type=pa.list_(pa.float32(), list_size=2),
),
}
)
table = db.create_table("test", data)
table.create_fts_index("text", with_position=False, use_tantivy=False)
return table
@pytest_asyncio.fixture
async def table(tmpdir_factory) -> AsyncTable:
tmp_path = str(tmpdir_factory.mktemp("data"))
db = await lancedb.connect_async(tmp_path)
data = pa.table(
{
"text": pa.array(["a", "b", "cat", "dog"]),
"vector": pa.array(
[[0.1, 0.1], [2, 2], [-0.1, -0.1], [0.5, -0.5]],
type=pa.list_(pa.float32(), list_size=2),
),
}
)
table = await db.create_table("test", data)
await table.create_index("text", config=FTS(with_position=False))
return table
@pytest.mark.asyncio
async def test_async_hybrid_query(table: AsyncTable):
result = await (
table.query().nearest_to([0.0, 0.4]).nearest_to_text("dog").limit(2).to_arrow()
)
assert len(result) == 2
# ensure we get results that would match well for text and vector
assert result["text"].to_pylist() == ["a", "dog"]
# ensure there is no rowid by default
assert "_rowid" not in result
@pytest.mark.asyncio
async def test_async_hybrid_query_with_row_ids(table: AsyncTable):
result = await (
table.query()
.nearest_to([0.0, 0.4])
.nearest_to_text("dog")
.limit(2)
.with_row_id()
.to_arrow()
)
assert len(result) == 2
# ensure we get results that would match well for text and vector
assert result["text"].to_pylist() == ["a", "dog"]
assert result["_rowid"].to_pylist() == [0, 3]
@pytest.mark.asyncio
async def test_async_hybrid_query_filters(table: AsyncTable):
# test that query params are passed down from the regular builder to
# child vector/fts builders
result = await (
table.query()
.where("text not in ('a', 'dog')")
.nearest_to([0.3, 0.3])
.nearest_to_text("*a*")
.distance_type("l2")
.limit(2)
.to_arrow()
)
assert len(result) == 2
# ensure we get results that would match well for text and vector
assert result["text"].to_pylist() == ["cat", "b"]
@pytest.mark.asyncio
async def test_async_hybrid_query_default_limit(table: AsyncTable):
# add 10 new rows
new_rows = []
for i in range(100):
if i < 2:
new_rows.append({"text": "close_vec", "vector": [0.1, 0.1]})
else:
new_rows.append({"text": "far_vec", "vector": [5 * i, 5 * i]})
await table.add(new_rows)
result = await (
table.query().nearest_to_text("dog").nearest_to([0.1, 0.1]).to_arrow()
)
# assert we got the default limit of 10
assert len(result) == 10
# assert we got the closest vectors and the text searched for
texts = result["text"].to_pylist()
assert texts.count("close_vec") == 2
assert texts.count("dog") == 1
assert texts.count("a") == 1
def test_hybrid_query_distance_range(sync_table: Table):
reranker = RRFReranker(return_score="all")
result = (
sync_table.search(query_type="hybrid")
.vector([0.0, 0.4])
.text("cat and dog")
.distance_range(lower_bound=0.2, upper_bound=0.5)
.rerank(reranker)
.limit(2)
.to_arrow()
)
assert len(result) == 2
print(result)
for dist in result["_distance"]:
if dist.is_valid:
assert 0.2 <= dist.as_py() <= 0.5
@pytest.mark.asyncio
async def test_hybrid_query_distance_range_async(table: AsyncTable):
reranker = RRFReranker(return_score="all")
result = await (
table.query()
.nearest_to([0.0, 0.4])
.nearest_to_text("cat and dog")
.distance_range(lower_bound=0.2, upper_bound=0.5)
.rerank(reranker)
.limit(2)
.to_arrow()
)
assert len(result) == 2
for dist in result["_distance"]:
if dist.is_valid:
assert 0.2 <= dist.as_py() <= 0.5
@pytest.mark.asyncio
async def test_explain_plan(table: AsyncTable):
plan = await (
table.query().nearest_to_text("dog").nearest_to([0.1, 0.1]).explain_plan(True)
)
assert "Vector Search Plan" in plan
assert "KNNVectorDistance" in plan
assert "FTS Search Plan" in plan
assert "LanceScan" in plan
@pytest.mark.asyncio
async def test_analyze_plan(table: AsyncTable):
res = await (
table.query().nearest_to_text("dog").nearest_to([0.1, 0.1]).analyze_plan()
)
assert "AnalyzeExec" in res
assert "metrics=" in res
def test_normalize_scores():
cases = [
(pa.array([0.1, 0.4]), pa.array([0.0, 1.0])),
(pa.array([2.0, 10.0, 20.0]), pa.array([0.0, 8.0 / 18.0, 1.0])),
(pa.array([0.0, 0.0, 0.0]), pa.array([0.0, 0.0, 0.0])),
(pa.array([10.0, 9.9999999999999]), pa.array([0.0, 0.0])),
]
for input, expected in cases:
for invert in [True, False]:
result = LanceHybridQueryBuilder._normalize_scores(input, invert)
if invert:
expected = pc.subtract(1.0, expected)
assert pc.equal(result, expected), (
f"Expected {expected} but got {result} for invert={invert}"
)