mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-04 10:52:56 +00:00
Sets things up for this -> https://github.com/lancedb/lancedb/issues/579 - Just separates out the registry/ingestion code from the function implementation code - adds a `get_registry` util - package name "open-clip" -> "open-clip-torch"
88 lines
2.7 KiB
Python
88 lines
2.7 KiB
Python
# Copyright (c) 2023. LanceDB Developers
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from typing import ClassVar, List, Union
|
|
|
|
import numpy as np
|
|
|
|
from .base import TextEmbeddingFunction
|
|
from .registry import register
|
|
from .utils import api_key_not_found_help
|
|
|
|
|
|
@register("cohere")
|
|
class CohereEmbeddingFunction(TextEmbeddingFunction):
|
|
"""
|
|
An embedding function that uses the Cohere API
|
|
|
|
https://docs.cohere.com/docs/multilingual-language-models
|
|
|
|
Parameters
|
|
----------
|
|
name: str, default "embed-multilingual-v2.0"
|
|
The name of the model to use. See the Cohere documentation for a list of available models.
|
|
|
|
Examples
|
|
--------
|
|
import lancedb
|
|
from lancedb.pydantic import LanceModel, Vector
|
|
from lancedb.embeddings import EmbeddingFunctionRegistry
|
|
|
|
cohere = EmbeddingFunctionRegistry.get_instance().get("cohere").create(name="embed-multilingual-v2.0")
|
|
|
|
class TextModel(LanceModel):
|
|
text: str = cohere.SourceField()
|
|
vector: Vector(cohere.ndims()) = cohere.VectorField()
|
|
|
|
data = [ { "text": "hello world" },
|
|
{ "text": "goodbye world" }]
|
|
|
|
db = lancedb.connect("~/.lancedb")
|
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
|
|
|
tbl.add(data)
|
|
|
|
"""
|
|
|
|
name: str = "embed-multilingual-v2.0"
|
|
client: ClassVar = None
|
|
|
|
def ndims(self):
|
|
# TODO: fix hardcoding
|
|
return 768
|
|
|
|
def generate_embeddings(
|
|
self, texts: Union[List[str], np.ndarray]
|
|
) -> List[np.array]:
|
|
"""
|
|
Get the embeddings for the given texts
|
|
|
|
Parameters
|
|
----------
|
|
texts: list[str] or np.ndarray (of str)
|
|
The texts to embed
|
|
"""
|
|
# TODO retry, rate limit, token limit
|
|
self._init_client()
|
|
rs = CohereEmbeddingFunction.client.embed(texts=texts, model=self.name)
|
|
|
|
return [emb for emb in rs.embeddings]
|
|
|
|
def _init_client(self):
|
|
cohere = self.safe_import("cohere")
|
|
if CohereEmbeddingFunction.client is None:
|
|
if os.environ.get("COHERE_API_KEY") is None:
|
|
api_key_not_found_help("cohere")
|
|
CohereEmbeddingFunction.client = cohere.Client(os.environ["COHERE_API_KEY"])
|