Files
lancedb/python/python/lancedb/_lancedb.pyi
Will Jones bcfc93cc88 fix(python): various fixes for async query builders (#2048)
This includes several improvements and fixes to the Python Async query
builders:

1. The API reference docs show all the methods for each builder
2. The hybrid query builder now has all the same setter methods as the
vector search one, so you can now set things like `.distance_type()` on
a hybrid query.
3. Re-rankers are now properly hooked up and tested for FTS and vector
search. Previously the re-rankers were accidentally bypassed in unit
tests, because the builders overrode `.to_arrow()`, but the unit test
called `.to_batches()` which was only defined in the base class. Now all
builders implement `.to_batches()` and leave `.to_arrow()` to the base
class.
4. The `AsyncQueryBase` and `AsyncVectoryQueryBase` setter methods now
return `Self`, which provides the appropriate subclass as the type hint
return value. Previously, `AsyncQueryBase` had them all hard-coded to
`AsyncQuery`, which was unfortunate. (This required bringing in
`typing-extensions` for older Python version, but I think it's worth
it.)
2025-01-20 16:14:34 -08:00

156 lines
5.3 KiB
Python

from typing import Dict, List, Optional, Tuple, Any, Union, Literal
import pyarrow as pa
from .index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
class Connection(object):
uri: str
async def table_names(
self, start_after: Optional[str], limit: Optional[int]
) -> list[str]: ...
async def create_table(
self,
name: str,
mode: str,
data: pa.RecordBatchReader,
storage_options: Optional[Dict[str, str]] = None,
data_storage_version: Optional[str] = None,
enable_v2_manifest_paths: Optional[bool] = None,
) -> Table: ...
async def create_empty_table(
self,
name: str,
mode: str,
schema: pa.Schema,
storage_options: Optional[Dict[str, str]] = None,
data_storage_version: Optional[str] = None,
enable_v2_manifest_paths: Optional[bool] = None,
) -> Table: ...
async def rename_table(self, old_name: str, new_name: str) -> None: ...
async def drop_table(self, name: str) -> None: ...
class Table:
def name(self) -> str: ...
def __repr__(self) -> str: ...
def is_open(self) -> bool: ...
def close(self) -> None: ...
async def schema(self) -> pa.Schema: ...
async def add(
self, data: pa.RecordBatchReader, mode: Literal["append", "overwrite"]
) -> None: ...
async def update(self, updates: Dict[str, str], where: Optional[str]) -> None: ...
async def count_rows(self, filter: Optional[str]) -> int: ...
async def create_index(
self,
column: str,
index: Union[IvfFlat, IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS],
replace: Optional[bool],
): ...
async def list_versions(self) -> List[Dict[str, Any]]: ...
async def version(self) -> int: ...
async def checkout(self, version: int): ...
async def checkout_latest(self): ...
async def restore(self): ...
async def list_indices(self) -> list[IndexConfig]: ...
async def delete(self, filter: str): ...
async def add_columns(self, columns: list[tuple[str, str]]) -> None: ...
async def alter_columns(self, columns: list[dict[str, Any]]) -> None: ...
async def optimize(
self,
*,
cleanup_since_ms: Optional[int] = None,
delete_unverified: Optional[bool] = None,
) -> OptimizeStats: ...
def query(self) -> Query: ...
def vector_search(self) -> VectorQuery: ...
class IndexConfig:
index_type: str
columns: List[str]
async def connect(
uri: str,
api_key: Optional[str],
region: Optional[str],
host_override: Optional[str],
read_consistency_interval: Optional[float],
) -> Connection: ...
class RecordBatchStream:
def schema(self) -> pa.Schema: ...
async def next(self) -> Optional[pa.RecordBatch]: ...
class Query:
def where(self, filter: str): ...
def select(self, columns: Tuple[str, str]): ...
def select_columns(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def nearest_to(self, query_vec: pa.Array) -> VectorQuery: ...
def nearest_to_text(self, query: dict) -> FTSQuery: ...
async def execute(self, max_batch_length: Optional[int]) -> RecordBatchStream: ...
class FTSQuery:
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def get_query(self) -> str: ...
def add_query_vector(self, query_vec: pa.Array) -> None: ...
def nearest_to(self, query_vec: pa.Array) -> HybridQuery: ...
async def execute(self, max_batch_length: Optional[int]) -> RecordBatchStream: ...
async def explain_plan(self) -> str: ...
class VectorQuery:
async def execute(self) -> RecordBatchStream: ...
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def select_with_projection(self, columns: Tuple[str, str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def column(self, column: str): ...
def distance_type(self, distance_type: str): ...
def postfilter(self): ...
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def bypass_vector_index(self): ...
def nearest_to_text(self, query: dict) -> HybridQuery: ...
class HybridQuery:
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def distance_type(self, distance_type: str): ...
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def bypass_vector_index(self): ...
def to_vector_query(self) -> VectorQuery: ...
def to_fts_query(self) -> FTSQuery: ...
def get_limit(self) -> int: ...
def get_with_row_id(self) -> bool: ...
class CompactionStats:
fragments_removed: int
fragments_added: int
files_removed: int
files_added: int
class RemovalStats:
bytes_removed: int
old_versions_removed: int
class OptimizeStats:
compaction: CompactionStats
prune: RemovalStats