Files
lancedb/nodejs/lancedb/embedding/embedding_function.ts
Cory Grinstead bc139000bd feat(nodejs): add compatibility across arrow versions (#1337)
while adding some more docs & examples for the new js sdk, i ran across
a few compatibility issues when using different arrow versions. This
should fix those issues.
2024-05-29 17:36:34 -05:00

163 lines
4.7 KiB
TypeScript

// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import "reflect-metadata";
import {
DataType,
Field,
FixedSizeList,
Float,
Float32,
isDataType,
isFixedSizeList,
isFloat,
newVectorType,
} from "../arrow";
import { sanitizeType } from "../sanitize";
/**
* Options for a given embedding function
*/
export interface FunctionOptions {
// biome-ignore lint/suspicious/noExplicitAny: options can be anything
[key: string]: any;
}
/**
* An embedding function that automatically creates vector representation for a given column.
*/
export abstract class EmbeddingFunction<
// biome-ignore lint/suspicious/noExplicitAny: we don't know what the implementor will do
T = any,
M extends FunctionOptions = FunctionOptions,
> {
/**
* Convert the embedding function to a JSON object
* It is used to serialize the embedding function to the schema
* It's important that any object returned by this method contains all the necessary
* information to recreate the embedding function
*
* It should return the same object that was passed to the constructor
* If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
*
* @example
* ```ts
* class MyEmbeddingFunction extends EmbeddingFunction {
* constructor(options: {model: string, timeout: number}) {
* super();
* this.model = options.model;
* this.timeout = options.timeout;
* }
* toJSON() {
* return {
* model: this.model,
* timeout: this.timeout,
* };
* }
* ```
*/
abstract toJSON(): Partial<M>;
/**
* sourceField is used in combination with `LanceSchema` to provide a declarative data model
*
* @param optionsOrDatatype - The options for the field or the datatype
*
* @see {@link lancedb.LanceSchema}
*/
sourceField(
optionsOrDatatype: Partial<FieldOptions> | DataType,
): [DataType, Map<string, EmbeddingFunction>] {
let datatype = isDataType(optionsOrDatatype)
? optionsOrDatatype
: optionsOrDatatype?.datatype;
if (!datatype) {
throw new Error("Datatype is required");
}
datatype = sanitizeType(datatype);
const metadata = new Map<string, EmbeddingFunction>();
metadata.set("source_column_for", this);
return [datatype, metadata];
}
/**
* vectorField is used in combination with `LanceSchema` to provide a declarative data model
*
* @param options - The options for the field
*
* @see {@link lancedb.LanceSchema}
*/
vectorField(
options?: Partial<FieldOptions>,
): [DataType, Map<string, EmbeddingFunction>] {
let dtype: DataType;
const dims = this.ndims() ?? options?.dims;
if (!options?.datatype) {
if (dims === undefined) {
throw new Error("ndims is required for vector field");
}
dtype = new FixedSizeList(dims, new Field("item", new Float32(), true));
} else {
if (isFixedSizeList(options.datatype)) {
dtype = options.datatype;
} else if (isFloat(options.datatype)) {
if (dims === undefined) {
throw new Error("ndims is required for vector field");
}
dtype = newVectorType(dims, options.datatype);
} else {
throw new Error(
"Expected FixedSizeList or Float as datatype for vector field",
);
}
}
const metadata = new Map<string, EmbeddingFunction>();
metadata.set("vector_column_for", this);
return [dtype, metadata];
}
/** The number of dimensions of the embeddings */
ndims(): number | undefined {
return undefined;
}
/** The datatype of the embeddings */
abstract embeddingDataType(): Float;
/**
* Creates a vector representation for the given values.
*/
abstract computeSourceEmbeddings(
data: T[],
): Promise<number[][] | Float32Array[] | Float64Array[]>;
/**
Compute the embeddings for a single query
*/
async computeQueryEmbeddings(
data: T,
): Promise<number[] | Float32Array | Float64Array> {
return this.computeSourceEmbeddings([data]).then(
(embeddings) => embeddings[0],
);
}
}
export interface FieldOptions<T extends DataType = DataType> {
datatype: T;
dims?: number;
}