mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-26 06:39:57 +00:00
Support FTS feature parity in SQL to match current Python API capability. Add `.to_json()` method to FTS query classes to enable usage with SQL `fts()` UDTF. Related: https://github.com/lancedb/blog-lancedb/pull/147 query = MatchQuery("puppy", "text", fuzziness=2) result = client.execute(f"SELECT * FROM fts('table', '{query.to_json()}')") --------- Co-authored-by: Claude <noreply@anthropic.com>
998 lines
34 KiB
Rust
998 lines
34 KiB
Rust
// SPDX-License-Identifier: Apache-2.0
|
|
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
|
|
|
use std::sync::Arc;
|
|
use std::time::Duration;
|
|
|
|
use arrow::array::make_array;
|
|
use arrow::array::Array;
|
|
use arrow::array::ArrayData;
|
|
use arrow::pyarrow::FromPyArrow;
|
|
use arrow::pyarrow::IntoPyArrow;
|
|
use arrow::pyarrow::ToPyArrow;
|
|
use lancedb::index::scalar::{
|
|
BooleanQuery, BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, Occur,
|
|
Operator, PhraseQuery,
|
|
};
|
|
use lancedb::query::QueryBase;
|
|
use lancedb::query::QueryExecutionOptions;
|
|
use lancedb::query::QueryFilter;
|
|
use lancedb::query::{
|
|
ExecutableQuery, Query as LanceDbQuery, Select, TakeQuery as LanceDbTakeQuery,
|
|
VectorQuery as LanceDbVectorQuery,
|
|
};
|
|
use lancedb::table::AnyQuery;
|
|
use pyo3::prelude::{PyAnyMethods, PyDictMethods};
|
|
use pyo3::pyfunction;
|
|
use pyo3::pymethods;
|
|
use pyo3::types::PyList;
|
|
use pyo3::types::{PyDict, PyString};
|
|
use pyo3::Bound;
|
|
use pyo3::IntoPyObject;
|
|
use pyo3::PyAny;
|
|
use pyo3::PyRef;
|
|
use pyo3::PyResult;
|
|
use pyo3::Python;
|
|
use pyo3::{exceptions::PyRuntimeError, FromPyObject};
|
|
use pyo3::{
|
|
exceptions::{PyNotImplementedError, PyValueError},
|
|
intern,
|
|
};
|
|
use pyo3::{pyclass, PyErr};
|
|
use pyo3_async_runtimes::tokio::future_into_py;
|
|
|
|
use crate::util::parse_distance_type;
|
|
use crate::{arrow::RecordBatchStream, util::PyLanceDB};
|
|
use crate::{error::PythonErrorExt, index::class_name};
|
|
|
|
impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
|
|
fn extract_bound(ob: &Bound<'_, PyAny>) -> PyResult<Self> {
|
|
match class_name(ob)?.as_str() {
|
|
"MatchQuery" => {
|
|
let query = ob.getattr("query")?.extract()?;
|
|
let column = ob.getattr("column")?.extract()?;
|
|
let boost = ob.getattr("boost")?.extract()?;
|
|
let fuzziness = ob.getattr("fuzziness")?.extract()?;
|
|
let max_expansions = ob.getattr("max_expansions")?.extract()?;
|
|
let operator = ob.getattr("operator")?.extract::<String>()?;
|
|
let prefix_length = ob.getattr("prefix_length")?.extract()?;
|
|
|
|
Ok(Self(
|
|
MatchQuery::new(query)
|
|
.with_column(Some(column))
|
|
.with_boost(boost)
|
|
.with_fuzziness(fuzziness)
|
|
.with_max_expansions(max_expansions)
|
|
.with_operator(Operator::try_from(operator.as_str()).map_err(|e| {
|
|
PyValueError::new_err(format!("Invalid operator: {}", e))
|
|
})?)
|
|
.with_prefix_length(prefix_length)
|
|
.into(),
|
|
))
|
|
}
|
|
"PhraseQuery" => {
|
|
let query = ob.getattr("query")?.extract()?;
|
|
let column = ob.getattr("column")?.extract()?;
|
|
let slop = ob.getattr("slop")?.extract()?;
|
|
|
|
Ok(Self(
|
|
PhraseQuery::new(query)
|
|
.with_column(Some(column))
|
|
.with_slop(slop)
|
|
.into(),
|
|
))
|
|
}
|
|
"BoostQuery" => {
|
|
let positive: Self = ob.getattr("positive")?.extract()?;
|
|
let negative: Self = ob.getattr("negative")?.extract()?;
|
|
let negative_boost = ob.getattr("negative_boost")?.extract()?;
|
|
Ok(Self(
|
|
BoostQuery::new(positive.0, negative.0, negative_boost).into(),
|
|
))
|
|
}
|
|
"MultiMatchQuery" => {
|
|
let query = ob.getattr("query")?.extract()?;
|
|
let columns = ob.getattr("columns")?.extract()?;
|
|
let boosts: Option<Vec<f32>> = ob.getattr("boosts")?.extract()?;
|
|
let operator: String = ob.getattr("operator")?.extract()?;
|
|
|
|
let q = MultiMatchQuery::try_new(query, columns)
|
|
.map_err(|e| PyValueError::new_err(format!("Invalid query: {}", e)))?;
|
|
let q = if let Some(boosts) = boosts {
|
|
q.try_with_boosts(boosts)
|
|
.map_err(|e| PyValueError::new_err(format!("Invalid boosts: {}", e)))?
|
|
} else {
|
|
q
|
|
};
|
|
|
|
let op = Operator::try_from(operator.as_str())
|
|
.map_err(|e| PyValueError::new_err(format!("Invalid operator: {}", e)))?;
|
|
|
|
Ok(Self(q.with_operator(op).into()))
|
|
}
|
|
"BooleanQuery" => {
|
|
let queries: Vec<(String, Self)> = ob.getattr("queries")?.extract()?;
|
|
let mut sub_queries = Vec::with_capacity(queries.len());
|
|
for (occur, q) in queries {
|
|
let occur = Occur::try_from(occur.as_str())
|
|
.map_err(|e| PyValueError::new_err(e.to_string()))?;
|
|
sub_queries.push((occur, q.0));
|
|
}
|
|
Ok(Self(BooleanQuery::new(sub_queries).into()))
|
|
}
|
|
name => Err(PyValueError::new_err(format!(
|
|
"Unsupported FTS query type: {}",
|
|
name
|
|
))),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
|
|
type Target = PyAny;
|
|
type Output = Bound<'py, Self::Target>;
|
|
type Error = PyErr;
|
|
|
|
fn into_pyobject(self, py: pyo3::Python<'py>) -> PyResult<Self::Output> {
|
|
let namespace = py
|
|
.import(intern!(py, "lancedb"))
|
|
.and_then(|m| m.getattr(intern!(py, "query")))
|
|
.expect("Failed to import namespace");
|
|
|
|
match self.0 {
|
|
FtsQuery::Match(query) => {
|
|
let kwargs = PyDict::new(py);
|
|
kwargs.set_item("boost", query.boost)?;
|
|
kwargs.set_item("fuzziness", query.fuzziness)?;
|
|
kwargs.set_item("max_expansions", query.max_expansions)?;
|
|
kwargs.set_item::<_, &str>("operator", query.operator.into())?;
|
|
kwargs.set_item("prefix_length", query.prefix_length)?;
|
|
namespace
|
|
.getattr(intern!(py, "MatchQuery"))?
|
|
.call((query.terms, query.column.unwrap()), Some(&kwargs))
|
|
}
|
|
FtsQuery::Phrase(query) => {
|
|
let kwargs = PyDict::new(py);
|
|
kwargs.set_item("slop", query.slop)?;
|
|
namespace
|
|
.getattr(intern!(py, "PhraseQuery"))?
|
|
.call((query.terms, query.column.unwrap()), Some(&kwargs))
|
|
}
|
|
FtsQuery::Boost(query) => {
|
|
let positive = Self(query.positive.as_ref().clone()).into_pyobject(py)?;
|
|
let negative = Self(query.negative.as_ref().clone()).into_pyobject(py)?;
|
|
let kwargs = PyDict::new(py);
|
|
kwargs.set_item("negative_boost", query.negative_boost)?;
|
|
namespace
|
|
.getattr(intern!(py, "BoostQuery"))?
|
|
.call((positive, negative), Some(&kwargs))
|
|
}
|
|
FtsQuery::MultiMatch(query) => {
|
|
let first = &query.match_queries[0];
|
|
let (columns, boosts): (Vec<_>, Vec<_>) = query
|
|
.match_queries
|
|
.iter()
|
|
.map(|q| (q.column.as_ref().unwrap().clone(), q.boost))
|
|
.unzip();
|
|
let kwargs = PyDict::new(py);
|
|
kwargs.set_item("boosts", boosts)?;
|
|
kwargs.set_item::<_, &str>("operator", first.operator.into())?;
|
|
namespace
|
|
.getattr(intern!(py, "MultiMatchQuery"))?
|
|
.call((first.terms.clone(), columns), Some(&kwargs))
|
|
}
|
|
FtsQuery::Boolean(query) => {
|
|
let mut queries: Vec<(&str, Bound<'py, PyAny>)> = Vec::with_capacity(
|
|
query.should.len() + query.must.len() + query.must_not.len(),
|
|
);
|
|
for q in query.should {
|
|
queries.push((Occur::Should.into(), Self(q).into_pyobject(py)?));
|
|
}
|
|
for q in query.must {
|
|
queries.push((Occur::Must.into(), Self(q).into_pyobject(py)?));
|
|
}
|
|
for q in query.must_not {
|
|
queries.push((Occur::MustNot.into(), Self(q).into_pyobject(py)?));
|
|
}
|
|
|
|
namespace
|
|
.getattr(intern!(py, "BooleanQuery"))?
|
|
.call1((queries,))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Python representation of query vector(s)
|
|
#[derive(Clone)]
|
|
pub struct PyQueryVectors(Vec<Arc<dyn Array>>);
|
|
|
|
impl<'py> IntoPyObject<'py> for PyQueryVectors {
|
|
type Target = PyList;
|
|
type Output = Bound<'py, Self::Target>;
|
|
type Error = PyErr;
|
|
|
|
fn into_pyobject(self, py: pyo3::Python<'py>) -> PyResult<Self::Output> {
|
|
let py_objs = self
|
|
.0
|
|
.into_iter()
|
|
.map(|v| v.to_data().into_pyarrow(py))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
PyList::new(py, py_objs)
|
|
}
|
|
}
|
|
|
|
// Python representation of a query
|
|
#[pyclass(get_all)]
|
|
pub struct PyQueryRequest {
|
|
pub limit: Option<usize>,
|
|
pub offset: Option<usize>,
|
|
pub filter: Option<PyQueryFilter>,
|
|
pub full_text_search: Option<PyLanceDB<FtsQuery>>,
|
|
pub select: PySelect,
|
|
pub fast_search: Option<bool>,
|
|
pub with_row_id: Option<bool>,
|
|
pub column: Option<String>,
|
|
pub query_vector: Option<PyQueryVectors>,
|
|
pub minimum_nprobes: Option<usize>,
|
|
// None means user did not set it and default shoud be used (currenty 20)
|
|
// Some(0) means user set it to None and there is no limit
|
|
pub maximum_nprobes: Option<usize>,
|
|
pub lower_bound: Option<f32>,
|
|
pub upper_bound: Option<f32>,
|
|
pub ef: Option<usize>,
|
|
pub refine_factor: Option<u32>,
|
|
pub distance_type: Option<String>,
|
|
pub bypass_vector_index: Option<bool>,
|
|
pub postfilter: Option<bool>,
|
|
pub norm: Option<String>,
|
|
}
|
|
|
|
impl From<AnyQuery> for PyQueryRequest {
|
|
fn from(query: AnyQuery) -> Self {
|
|
match query {
|
|
AnyQuery::Query(query_request) => Self {
|
|
limit: query_request.limit,
|
|
offset: query_request.offset,
|
|
filter: query_request.filter.map(PyQueryFilter),
|
|
full_text_search: query_request
|
|
.full_text_search
|
|
.map(|fts| PyLanceDB(fts.query)),
|
|
select: PySelect(query_request.select),
|
|
fast_search: Some(query_request.fast_search),
|
|
with_row_id: Some(query_request.with_row_id),
|
|
column: None,
|
|
query_vector: None,
|
|
minimum_nprobes: None,
|
|
maximum_nprobes: None,
|
|
lower_bound: None,
|
|
upper_bound: None,
|
|
ef: None,
|
|
refine_factor: None,
|
|
distance_type: None,
|
|
bypass_vector_index: None,
|
|
postfilter: None,
|
|
norm: None,
|
|
},
|
|
AnyQuery::VectorQuery(vector_query) => Self {
|
|
limit: vector_query.base.limit,
|
|
offset: vector_query.base.offset,
|
|
filter: vector_query.base.filter.map(PyQueryFilter),
|
|
full_text_search: None,
|
|
select: PySelect(vector_query.base.select),
|
|
fast_search: Some(vector_query.base.fast_search),
|
|
with_row_id: Some(vector_query.base.with_row_id),
|
|
column: vector_query.column,
|
|
query_vector: Some(PyQueryVectors(vector_query.query_vector)),
|
|
minimum_nprobes: Some(vector_query.minimum_nprobes),
|
|
maximum_nprobes: match vector_query.maximum_nprobes {
|
|
None => Some(0),
|
|
Some(value) => Some(value),
|
|
},
|
|
lower_bound: vector_query.lower_bound,
|
|
upper_bound: vector_query.upper_bound,
|
|
ef: vector_query.ef,
|
|
refine_factor: vector_query.refine_factor,
|
|
distance_type: vector_query.distance_type.map(|d| d.to_string()),
|
|
bypass_vector_index: Some(!vector_query.use_index),
|
|
postfilter: Some(!vector_query.base.prefilter),
|
|
norm: vector_query.base.norm.map(|n| n.to_string()),
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
// Python representation of query selection
|
|
#[derive(Clone)]
|
|
pub struct PySelect(Select);
|
|
|
|
impl<'py> IntoPyObject<'py> for PySelect {
|
|
type Target = PyAny;
|
|
type Output = Bound<'py, Self::Target>;
|
|
type Error = PyErr;
|
|
|
|
fn into_pyobject(self, py: pyo3::Python<'py>) -> PyResult<Self::Output> {
|
|
match self.0 {
|
|
Select::All => Ok(py.None().into_bound(py).into_any()),
|
|
Select::Columns(columns) => Ok(columns.into_pyobject(py)?.into_any()),
|
|
Select::Dynamic(columns) => Ok(columns.into_pyobject(py)?.into_any()),
|
|
}
|
|
}
|
|
}
|
|
|
|
// Python representation of query filter
|
|
#[derive(Clone)]
|
|
pub struct PyQueryFilter(QueryFilter);
|
|
|
|
impl<'py> IntoPyObject<'py> for PyQueryFilter {
|
|
type Target = PyAny;
|
|
type Output = Bound<'py, Self::Target>;
|
|
type Error = PyErr;
|
|
|
|
fn into_pyobject(self, py: pyo3::Python<'py>) -> PyResult<Self::Output> {
|
|
match self.0 {
|
|
QueryFilter::Datafusion(_) => Err(PyNotImplementedError::new_err(
|
|
"Datafusion filter has no conversion to Python",
|
|
)),
|
|
QueryFilter::Sql(sql) => Ok(sql.into_pyobject(py)?.into_any()),
|
|
QueryFilter::Substrait(substrait) => Ok(substrait.into_pyobject(py)?.into_any()),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[pyclass]
|
|
pub struct Query {
|
|
inner: LanceDbQuery,
|
|
}
|
|
|
|
impl Query {
|
|
pub fn new(query: LanceDbQuery) -> Self {
|
|
Self { inner: query }
|
|
}
|
|
}
|
|
|
|
#[pymethods]
|
|
impl Query {
|
|
pub fn r#where(&mut self, predicate: String) {
|
|
self.inner = self.inner.clone().only_if(predicate);
|
|
}
|
|
|
|
pub fn select(&mut self, columns: Vec<(String, String)>) {
|
|
self.inner = self.inner.clone().select(Select::dynamic(&columns));
|
|
}
|
|
|
|
pub fn select_columns(&mut self, columns: Vec<String>) {
|
|
self.inner = self.inner.clone().select(Select::columns(&columns));
|
|
}
|
|
|
|
pub fn limit(&mut self, limit: u32) {
|
|
self.inner = self.inner.clone().limit(limit as usize);
|
|
}
|
|
|
|
pub fn offset(&mut self, offset: u32) {
|
|
self.inner = self.inner.clone().offset(offset as usize);
|
|
}
|
|
|
|
pub fn fast_search(&mut self) {
|
|
self.inner = self.inner.clone().fast_search();
|
|
}
|
|
|
|
pub fn with_row_id(&mut self) {
|
|
self.inner = self.inner.clone().with_row_id();
|
|
}
|
|
|
|
pub fn postfilter(&mut self) {
|
|
self.inner = self.inner.clone().postfilter();
|
|
}
|
|
|
|
pub fn nearest_to(&mut self, vector: Bound<'_, PyAny>) -> PyResult<VectorQuery> {
|
|
let data: ArrayData = ArrayData::from_pyarrow_bound(&vector)?;
|
|
let array = make_array(data);
|
|
let inner = self.inner.clone().nearest_to(array).infer_error()?;
|
|
Ok(VectorQuery { inner })
|
|
}
|
|
|
|
pub fn nearest_to_text(&mut self, query: Bound<'_, PyDict>) -> PyResult<FTSQuery> {
|
|
let fts_query = query
|
|
.get_item("query")?
|
|
.ok_or(PyErr::new::<PyRuntimeError, _>(
|
|
"Query text is required for nearest_to_text",
|
|
))?;
|
|
|
|
let query = if let Ok(query_text) = fts_query.downcast::<PyString>() {
|
|
let mut query_text = query_text.to_string();
|
|
let columns = query
|
|
.get_item("columns")?
|
|
.map(|columns| columns.extract::<Vec<String>>())
|
|
.transpose()?;
|
|
|
|
let is_phrase =
|
|
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
|
|
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
|
|
|
|
if is_phrase {
|
|
// Remove the surrounding quotes for phrase queries
|
|
query_text = query_text[1..query_text.len() - 1].to_string();
|
|
}
|
|
|
|
let query: FtsQuery = match (is_phrase, is_multi_match) {
|
|
(false, _) => MatchQuery::new(query_text).into(),
|
|
(true, false) => PhraseQuery::new(query_text).into(),
|
|
(true, true) => {
|
|
return Err(PyValueError::new_err(
|
|
"Phrase queries cannot be used with multiple columns.",
|
|
));
|
|
}
|
|
};
|
|
let mut query = FullTextSearchQuery::new_query(query);
|
|
match columns {
|
|
Some(cols) if !cols.is_empty() => {
|
|
query = query.with_columns(&cols).map_err(|e| {
|
|
PyValueError::new_err(format!(
|
|
"Failed to set full text search columns: {}",
|
|
e
|
|
))
|
|
})?;
|
|
}
|
|
_ => {}
|
|
}
|
|
query
|
|
} else {
|
|
let query = fts_query.extract::<PyLanceDB<FtsQuery>>()?;
|
|
FullTextSearchQuery::new_query(query.0)
|
|
};
|
|
|
|
Ok(FTSQuery {
|
|
inner: self.inner.clone(),
|
|
fts_query: query,
|
|
})
|
|
}
|
|
|
|
#[pyo3(signature = ())]
|
|
pub fn output_schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
let schema = inner.output_schema().await.infer_error()?;
|
|
Python::with_gil(|py| schema.to_pyarrow(py))
|
|
})
|
|
}
|
|
|
|
#[pyo3(signature = (max_batch_length=None, timeout=None))]
|
|
pub fn execute(
|
|
self_: PyRef<'_, Self>,
|
|
max_batch_length: Option<u32>,
|
|
timeout: Option<Duration>,
|
|
) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
let mut opts = QueryExecutionOptions::default();
|
|
if let Some(max_batch_length) = max_batch_length {
|
|
opts.max_batch_length = max_batch_length;
|
|
}
|
|
if let Some(timeout) = timeout {
|
|
opts.timeout = Some(timeout);
|
|
}
|
|
let inner_stream = inner.execute_with_options(opts).await.infer_error()?;
|
|
Ok(RecordBatchStream::new(inner_stream))
|
|
})
|
|
}
|
|
|
|
pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
inner
|
|
.explain_plan(verbose)
|
|
.await
|
|
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
|
|
})
|
|
}
|
|
|
|
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
inner
|
|
.analyze_plan()
|
|
.await
|
|
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
|
|
})
|
|
}
|
|
|
|
pub fn to_query_request(&self) -> PyQueryRequest {
|
|
PyQueryRequest::from(AnyQuery::Query(self.inner.clone().into_request()))
|
|
}
|
|
}
|
|
|
|
#[pyclass]
|
|
pub struct TakeQuery {
|
|
inner: LanceDbTakeQuery,
|
|
}
|
|
|
|
impl TakeQuery {
|
|
pub fn new(query: LanceDbTakeQuery) -> Self {
|
|
Self { inner: query }
|
|
}
|
|
}
|
|
|
|
#[pymethods]
|
|
impl TakeQuery {
|
|
pub fn select(&mut self, columns: Vec<(String, String)>) {
|
|
self.inner = self.inner.clone().select(Select::dynamic(&columns));
|
|
}
|
|
|
|
pub fn select_columns(&mut self, columns: Vec<String>) {
|
|
self.inner = self.inner.clone().select(Select::columns(&columns));
|
|
}
|
|
|
|
pub fn with_row_id(&mut self) {
|
|
self.inner = self.inner.clone().with_row_id();
|
|
}
|
|
|
|
#[pyo3(signature = ())]
|
|
pub fn output_schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
let schema = inner.output_schema().await.infer_error()?;
|
|
Python::with_gil(|py| schema.to_pyarrow(py))
|
|
})
|
|
}
|
|
|
|
#[pyo3(signature = (max_batch_length=None, timeout=None))]
|
|
pub fn execute(
|
|
self_: PyRef<'_, Self>,
|
|
max_batch_length: Option<u32>,
|
|
timeout: Option<Duration>,
|
|
) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
let mut opts = QueryExecutionOptions::default();
|
|
if let Some(max_batch_length) = max_batch_length {
|
|
opts.max_batch_length = max_batch_length;
|
|
}
|
|
if let Some(timeout) = timeout {
|
|
opts.timeout = Some(timeout);
|
|
}
|
|
let inner_stream = inner.execute_with_options(opts).await.infer_error()?;
|
|
Ok(RecordBatchStream::new(inner_stream))
|
|
})
|
|
}
|
|
|
|
pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
inner
|
|
.explain_plan(verbose)
|
|
.await
|
|
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
|
|
})
|
|
}
|
|
|
|
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
inner
|
|
.analyze_plan()
|
|
.await
|
|
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
|
|
})
|
|
}
|
|
|
|
pub fn to_query_request(&self) -> PyQueryRequest {
|
|
PyQueryRequest::from(AnyQuery::Query(self.inner.clone().into_request()))
|
|
}
|
|
}
|
|
|
|
#[pyclass]
|
|
#[derive(Clone)]
|
|
pub struct FTSQuery {
|
|
inner: LanceDbQuery,
|
|
fts_query: FullTextSearchQuery,
|
|
}
|
|
|
|
#[pymethods]
|
|
impl FTSQuery {
|
|
pub fn r#where(&mut self, predicate: String) {
|
|
self.inner = self.inner.clone().only_if(predicate);
|
|
}
|
|
|
|
pub fn select(&mut self, columns: Vec<(String, String)>) {
|
|
self.inner = self.inner.clone().select(Select::dynamic(&columns));
|
|
}
|
|
|
|
pub fn select_columns(&mut self, columns: Vec<String>) {
|
|
self.inner = self.inner.clone().select(Select::columns(&columns));
|
|
}
|
|
|
|
pub fn limit(&mut self, limit: u32) {
|
|
self.inner = self.inner.clone().limit(limit as usize);
|
|
}
|
|
|
|
pub fn offset(&mut self, offset: u32) {
|
|
self.inner = self.inner.clone().offset(offset as usize);
|
|
}
|
|
|
|
pub fn fast_search(&mut self) {
|
|
self.inner = self.inner.clone().fast_search();
|
|
}
|
|
|
|
pub fn with_row_id(&mut self) {
|
|
self.inner = self.inner.clone().with_row_id();
|
|
}
|
|
|
|
pub fn postfilter(&mut self) {
|
|
self.inner = self.inner.clone().postfilter();
|
|
}
|
|
|
|
#[pyo3(signature = ())]
|
|
pub fn output_schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
let schema = inner.output_schema().await.infer_error()?;
|
|
Python::with_gil(|py| schema.to_pyarrow(py))
|
|
})
|
|
}
|
|
|
|
#[pyo3(signature = (max_batch_length=None, timeout=None))]
|
|
pub fn execute(
|
|
self_: PyRef<'_, Self>,
|
|
max_batch_length: Option<u32>,
|
|
timeout: Option<Duration>,
|
|
) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_
|
|
.inner
|
|
.clone()
|
|
.full_text_search(self_.fts_query.clone());
|
|
|
|
future_into_py(self_.py(), async move {
|
|
let mut opts = QueryExecutionOptions::default();
|
|
if let Some(max_batch_length) = max_batch_length {
|
|
opts.max_batch_length = max_batch_length;
|
|
}
|
|
if let Some(timeout) = timeout {
|
|
opts.timeout = Some(timeout);
|
|
}
|
|
let inner_stream = inner.execute_with_options(opts).await.infer_error()?;
|
|
Ok(RecordBatchStream::new(inner_stream))
|
|
})
|
|
}
|
|
|
|
pub fn nearest_to(&mut self, vector: Bound<'_, PyAny>) -> PyResult<HybridQuery> {
|
|
let vector_query = Query::new(self.inner.clone()).nearest_to(vector)?;
|
|
Ok(HybridQuery {
|
|
inner_fts: self.clone(),
|
|
inner_vec: vector_query,
|
|
})
|
|
}
|
|
|
|
pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_
|
|
.inner
|
|
.clone()
|
|
.full_text_search(self_.fts_query.clone());
|
|
future_into_py(self_.py(), async move {
|
|
inner
|
|
.explain_plan(verbose)
|
|
.await
|
|
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
|
|
})
|
|
}
|
|
|
|
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_
|
|
.inner
|
|
.clone()
|
|
.full_text_search(self_.fts_query.clone());
|
|
future_into_py(self_.py(), async move {
|
|
inner
|
|
.analyze_plan()
|
|
.await
|
|
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
|
|
})
|
|
}
|
|
|
|
pub fn get_query(&self) -> String {
|
|
self.fts_query.query.query().to_owned()
|
|
}
|
|
|
|
pub fn to_query_request(&self) -> PyQueryRequest {
|
|
let mut req = self.inner.clone().into_request();
|
|
req.full_text_search = Some(self.fts_query.clone());
|
|
PyQueryRequest::from(AnyQuery::Query(req))
|
|
}
|
|
}
|
|
|
|
#[pyclass]
|
|
#[derive(Clone)]
|
|
pub struct VectorQuery {
|
|
inner: LanceDbVectorQuery,
|
|
}
|
|
|
|
#[pymethods]
|
|
impl VectorQuery {
|
|
pub fn r#where(&mut self, predicate: String) {
|
|
self.inner = self.inner.clone().only_if(predicate);
|
|
}
|
|
|
|
pub fn add_query_vector(&mut self, vector: Bound<'_, PyAny>) -> PyResult<()> {
|
|
let data: ArrayData = ArrayData::from_pyarrow_bound(&vector)?;
|
|
let array = make_array(data);
|
|
self.inner = self.inner.clone().add_query_vector(array).infer_error()?;
|
|
Ok(())
|
|
}
|
|
|
|
pub fn select(&mut self, columns: Vec<(String, String)>) {
|
|
self.inner = self.inner.clone().select(Select::dynamic(&columns));
|
|
}
|
|
|
|
pub fn select_columns(&mut self, columns: Vec<String>) {
|
|
self.inner = self.inner.clone().select(Select::columns(&columns));
|
|
}
|
|
|
|
pub fn limit(&mut self, limit: u32) {
|
|
self.inner = self.inner.clone().limit(limit as usize);
|
|
}
|
|
|
|
pub fn offset(&mut self, offset: u32) {
|
|
self.inner = self.inner.clone().offset(offset as usize);
|
|
}
|
|
|
|
pub fn fast_search(&mut self) {
|
|
self.inner = self.inner.clone().fast_search();
|
|
}
|
|
|
|
pub fn with_row_id(&mut self) {
|
|
self.inner = self.inner.clone().with_row_id();
|
|
}
|
|
|
|
pub fn column(&mut self, column: String) {
|
|
self.inner = self.inner.clone().column(&column);
|
|
}
|
|
|
|
pub fn distance_type(&mut self, distance_type: String) -> PyResult<()> {
|
|
let distance_type = parse_distance_type(distance_type)?;
|
|
self.inner = self.inner.clone().distance_type(distance_type);
|
|
Ok(())
|
|
}
|
|
|
|
pub fn postfilter(&mut self) {
|
|
self.inner = self.inner.clone().postfilter();
|
|
}
|
|
|
|
pub fn refine_factor(&mut self, refine_factor: u32) {
|
|
self.inner = self.inner.clone().refine_factor(refine_factor);
|
|
}
|
|
|
|
pub fn nprobes(&mut self, nprobe: u32) {
|
|
self.inner = self.inner.clone().nprobes(nprobe as usize);
|
|
}
|
|
|
|
pub fn minimum_nprobes(&mut self, minimum_nprobes: u32) -> PyResult<()> {
|
|
self.inner = self
|
|
.inner
|
|
.clone()
|
|
.minimum_nprobes(minimum_nprobes as usize)
|
|
.infer_error()?;
|
|
Ok(())
|
|
}
|
|
|
|
pub fn maximum_nprobes(&mut self, maximum_nprobes: u32) -> PyResult<()> {
|
|
let maximum_nprobes = if maximum_nprobes == 0 {
|
|
None
|
|
} else {
|
|
Some(maximum_nprobes as usize)
|
|
};
|
|
self.inner = self
|
|
.inner
|
|
.clone()
|
|
.maximum_nprobes(maximum_nprobes)
|
|
.infer_error()?;
|
|
Ok(())
|
|
}
|
|
|
|
#[pyo3(signature = (lower_bound=None, upper_bound=None))]
|
|
pub fn distance_range(&mut self, lower_bound: Option<f32>, upper_bound: Option<f32>) {
|
|
self.inner = self.inner.clone().distance_range(lower_bound, upper_bound);
|
|
}
|
|
|
|
pub fn ef(&mut self, ef: u32) {
|
|
self.inner = self.inner.clone().ef(ef as usize);
|
|
}
|
|
|
|
pub fn bypass_vector_index(&mut self) {
|
|
self.inner = self.inner.clone().bypass_vector_index()
|
|
}
|
|
|
|
#[pyo3(signature = ())]
|
|
pub fn output_schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
let schema = inner.output_schema().await.infer_error()?;
|
|
Python::with_gil(|py| schema.to_pyarrow(py))
|
|
})
|
|
}
|
|
|
|
#[pyo3(signature = (max_batch_length=None, timeout=None))]
|
|
pub fn execute(
|
|
self_: PyRef<'_, Self>,
|
|
max_batch_length: Option<u32>,
|
|
timeout: Option<Duration>,
|
|
) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
let mut opts = QueryExecutionOptions::default();
|
|
if let Some(max_batch_length) = max_batch_length {
|
|
opts.max_batch_length = max_batch_length;
|
|
}
|
|
if let Some(timeout) = timeout {
|
|
opts.timeout = Some(timeout);
|
|
}
|
|
let inner_stream = inner.execute_with_options(opts).await.infer_error()?;
|
|
Ok(RecordBatchStream::new(inner_stream))
|
|
})
|
|
}
|
|
|
|
pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
inner
|
|
.explain_plan(verbose)
|
|
.await
|
|
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
|
|
})
|
|
}
|
|
|
|
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
|
let inner = self_.inner.clone();
|
|
future_into_py(self_.py(), async move {
|
|
inner
|
|
.analyze_plan()
|
|
.await
|
|
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
|
|
})
|
|
}
|
|
|
|
pub fn nearest_to_text(&mut self, query: Bound<'_, PyDict>) -> PyResult<HybridQuery> {
|
|
let base_query = self.inner.clone().into_plain();
|
|
let fts_query = Query::new(base_query).nearest_to_text(query)?;
|
|
Ok(HybridQuery {
|
|
inner_vec: self.clone(),
|
|
inner_fts: fts_query,
|
|
})
|
|
}
|
|
|
|
pub fn to_query_request(&self) -> PyQueryRequest {
|
|
PyQueryRequest::from(AnyQuery::VectorQuery(self.inner.clone().into_request()))
|
|
}
|
|
}
|
|
|
|
#[pyclass]
|
|
pub struct HybridQuery {
|
|
inner_vec: VectorQuery,
|
|
inner_fts: FTSQuery,
|
|
}
|
|
|
|
#[pymethods]
|
|
impl HybridQuery {
|
|
pub fn r#where(&mut self, predicate: String) {
|
|
self.inner_vec.r#where(predicate.clone());
|
|
self.inner_fts.r#where(predicate);
|
|
}
|
|
|
|
pub fn select(&mut self, columns: Vec<(String, String)>) {
|
|
self.inner_vec.select(columns.clone());
|
|
self.inner_fts.select(columns);
|
|
}
|
|
|
|
pub fn select_columns(&mut self, columns: Vec<String>) {
|
|
self.inner_vec.select_columns(columns.clone());
|
|
self.inner_fts.select_columns(columns);
|
|
}
|
|
|
|
pub fn limit(&mut self, limit: u32) {
|
|
self.inner_vec.limit(limit);
|
|
self.inner_fts.limit(limit);
|
|
}
|
|
|
|
pub fn offset(&mut self, offset: u32) {
|
|
self.inner_vec.offset(offset);
|
|
self.inner_fts.offset(offset);
|
|
}
|
|
|
|
pub fn fast_search(&mut self) {
|
|
self.inner_vec.fast_search();
|
|
self.inner_fts.fast_search();
|
|
}
|
|
|
|
pub fn with_row_id(&mut self) {
|
|
self.inner_fts.with_row_id();
|
|
self.inner_vec.with_row_id();
|
|
}
|
|
|
|
pub fn postfilter(&mut self) {
|
|
self.inner_vec.postfilter();
|
|
self.inner_fts.postfilter();
|
|
}
|
|
|
|
pub fn add_query_vector(&mut self, vector: Bound<'_, PyAny>) -> PyResult<()> {
|
|
self.inner_vec.add_query_vector(vector)
|
|
}
|
|
|
|
pub fn column(&mut self, column: String) {
|
|
self.inner_vec.column(column);
|
|
}
|
|
|
|
pub fn distance_type(&mut self, distance_type: String) -> PyResult<()> {
|
|
self.inner_vec.distance_type(distance_type)
|
|
}
|
|
|
|
pub fn refine_factor(&mut self, refine_factor: u32) {
|
|
self.inner_vec.refine_factor(refine_factor);
|
|
}
|
|
|
|
pub fn nprobes(&mut self, nprobe: u32) {
|
|
self.inner_vec.nprobes(nprobe);
|
|
}
|
|
|
|
pub fn ef(&mut self, ef: u32) {
|
|
self.inner_vec.ef(ef);
|
|
}
|
|
|
|
pub fn bypass_vector_index(&mut self) {
|
|
self.inner_vec.bypass_vector_index();
|
|
}
|
|
|
|
#[pyo3(signature = (lower_bound=None, upper_bound=None))]
|
|
pub fn distance_range(&mut self, lower_bound: Option<f32>, upper_bound: Option<f32>) {
|
|
self.inner_vec.distance_range(lower_bound, upper_bound);
|
|
}
|
|
|
|
pub fn to_vector_query(&mut self) -> PyResult<VectorQuery> {
|
|
Ok(VectorQuery {
|
|
inner: self.inner_vec.inner.clone(),
|
|
})
|
|
}
|
|
|
|
pub fn to_fts_query(&mut self) -> PyResult<FTSQuery> {
|
|
Ok(FTSQuery {
|
|
inner: self.inner_fts.inner.clone(),
|
|
fts_query: self.inner_fts.fts_query.clone(),
|
|
})
|
|
}
|
|
|
|
pub fn get_limit(&mut self) -> Option<u32> {
|
|
self.inner_fts
|
|
.inner
|
|
.current_request()
|
|
.limit
|
|
.map(|i| i as u32)
|
|
}
|
|
|
|
pub fn get_with_row_id(&mut self) -> bool {
|
|
self.inner_fts.inner.current_request().with_row_id
|
|
}
|
|
|
|
pub fn to_query_request(&self) -> PyQueryRequest {
|
|
let mut req = self.inner_fts.to_query_request();
|
|
let vec_req = self.inner_vec.to_query_request();
|
|
req.query_vector = vec_req.query_vector;
|
|
req.column = vec_req.column;
|
|
req.distance_type = vec_req.distance_type;
|
|
req.ef = vec_req.ef;
|
|
req.refine_factor = vec_req.refine_factor;
|
|
req.lower_bound = vec_req.lower_bound;
|
|
req.upper_bound = vec_req.upper_bound;
|
|
req
|
|
}
|
|
}
|
|
|
|
/// Convert a Python FTS query to JSON string
|
|
#[pyfunction]
|
|
pub fn fts_query_to_json(query_obj: &Bound<'_, PyAny>) -> PyResult<String> {
|
|
let wrapped: PyLanceDB<FtsQuery> = query_obj.extract()?;
|
|
lancedb::table::datafusion::udtf::fts::to_json(&wrapped.0).map_err(|e| {
|
|
PyErr::new::<pyo3::exceptions::PyValueError, _>(format!(
|
|
"Failed to serialize FTS query to JSON: {}",
|
|
e
|
|
))
|
|
})
|
|
}
|