Files
lancedb/node/src/index.ts
2023-05-30 21:32:17 -07:00

351 lines
9.2 KiB
TypeScript

// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import {
RecordBatchFileWriter,
type Table as ArrowTable,
tableFromIPC,
Vector
} from 'apache-arrow'
import { fromRecordsToBuffer } from './arrow'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex } = require('../native.js')
/**
* Connect to a LanceDB instance at the given URI
* @param uri The uri of the database.
*/
export async function connect (uri: string): Promise<Connection> {
const db = await databaseNew(uri)
return new Connection(db, uri)
}
/**
* A connection to a LanceDB database.
*/
export class Connection {
private readonly _uri: string
private readonly _db: any
constructor (db: any, uri: string) {
this._uri = uri
this._db = db
}
get uri (): string {
return this._uri
}
/**
* Get the names of all tables in the database.
*/
async tableNames (): Promise<string[]> {
return databaseTableNames.call(this._db)
}
/**
* Open a table in the database.
*
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table>
/**
* Open a table in the database.
*
* @param name The name of the table.
* @param embeddings An embedding function to use on this Table
*/
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await databaseOpenTable.call(this._db, name)
if (embeddings !== undefined) {
return new Table(tbl, name, embeddings)
} else {
return new Table(tbl, name)
}
}
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
*/
async createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param embeddings An embedding function to use on this Table
*/
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await tableCreate.call(this._db, name, await fromRecordsToBuffer(data, embeddings))
if (embeddings !== undefined) {
return new Table(tbl, name, embeddings)
} else {
return new Table(tbl, name)
}
}
async createTableArrow (name: string, table: ArrowTable): Promise<Table> {
const writer = RecordBatchFileWriter.writeAll(table)
await tableCreate.call(this._db, name, Buffer.from(await writer.toUint8Array()))
return await this.openTable(name)
}
}
export class Table<T = number[]> {
private readonly _tbl: any
private readonly _name: string
private readonly _embeddings?: EmbeddingFunction<T>
constructor (tbl: any, name: string)
/**
* @param tbl
* @param name
* @param embeddings An embedding function to use when interacting with this table
*/
constructor (tbl: any, name: string, embeddings: EmbeddingFunction<T>)
constructor (tbl: any, name: string, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._name = name
this._embeddings = embeddings
}
get name (): string {
return this._name
}
/**
* Creates a search query to find the nearest neighbors of the given search term
* @param query The query search term
*/
search (query: T): Query {
let queryVector: number[]
if (this._embeddings !== undefined) {
queryVector = this._embeddings.embed([query])[0]
} else {
queryVector = query as number[]
}
return new Query(this._tbl, queryVector)
}
/**
* Insert records into this Table.
*
* @param data Records to be inserted into the Table
* @return The number of rows added to the table
*/
async add (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString())
}
/**
* Insert records into this Table, replacing its contents.
*
* @param data Records to be inserted into the Table
* @return The number of rows added to the table
*/
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString())
}
/**
* Create an ANN index on this Table vector index.
*
* @param indexParams The parameters of this Index, @see VectorIndexParams.
*/
async create_index (indexParams: VectorIndexParams): Promise<any> {
return tableCreateVectorIndex.call(this._tbl, indexParams)
}
}
interface IvfPQIndexConfig {
/**
* The column to be indexed
*/
column?: string
/**
* A unique name for the index
*/
index_name?: string
/**
* Metric type, L2 or Cosine
*/
metric_type?: MetricType
/**
* The number of partitions this index
*/
num_partitions?: number
/**
* The max number of iterations for kmeans training.
*/
max_iters?: number
/**
* Train as optimized product quantization.
*/
use_opq?: boolean
/**
* Number of subvectors to build PQ code
*/
num_sub_vectors?: number
/**
* The number of bits to present one PQ centroid.
*/
num_bits?: number
/**
* Max number of iterations to train OPQ, if `use_opq` is true.
*/
max_opq_iters?: number
type: 'ivf_pq'
}
export type VectorIndexParams = IvfPQIndexConfig
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query {
private readonly _tbl: any
private readonly _queryVector: number[]
private _limit: number
private _refineFactor?: number
private _nprobes: number
private readonly _columns?: string[]
private _filter?: string
private _metricType?: MetricType
constructor (tbl: any, queryVector: number[]) {
this._tbl = tbl
this._queryVector = queryVector
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._columns = undefined
this._filter = undefined
this._metricType = undefined
}
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query {
this._limit = value
return this
}
/**
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query {
this._refineFactor = value
return this
}
/**
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query {
this._nprobes = value
return this
}
/**
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query {
this._filter = value
return this
}
/**
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query {
this._metricType = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
const buffer = await tableSearch.call(this._tbl, this)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
}
export enum WriteMode {
Overwrite = 'overwrite',
Append = 'append'
}
/**
* An embedding function that automatically creates vector representation for a given column.
*/
export interface EmbeddingFunction<T> {
/**
* The name of the column that will be used as input for the Embedding Function.
*/
sourceColumn: string
/**
* Creates a vector representation for the given values.
*/
embed: (data: T[]) => number[][]
}
/**
* Distance metrics type.
*/
export enum MetricType {
/**
* Euclidean distance
*/
L2 = 'l2',
/**
* Cosine distance
*/
Cosine = 'cosine'
}