Files
lancedb/python/python/tests/test_table.py
2024-10-01 10:06:52 -07:00

1236 lines
36 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The Lance Authors
import functools
import os
from copy import copy
from datetime import date, datetime, timedelta
from pathlib import Path
from time import sleep
from typing import List
from unittest.mock import PropertyMock, patch
import lance
import lancedb
import numpy as np
import pandas as pd
import polars as pl
import pyarrow as pa
import pytest
import pytest_asyncio
from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.db import AsyncConnection, LanceDBConnection
from lancedb.embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from lancedb.pydantic import LanceModel, Vector
from lancedb.table import LanceTable
from pydantic import BaseModel
class MockDB:
def __init__(self, uri: Path):
self.uri = str(uri)
self.read_consistency_interval = None
@functools.cached_property
def is_managed_remote(self) -> bool:
return False
@pytest.fixture
def db(tmp_path) -> MockDB:
return MockDB(tmp_path)
@pytest_asyncio.fixture
async def db_async(tmp_path) -> AsyncConnection:
return await lancedb.connect_async(
tmp_path, read_consistency_interval=timedelta(seconds=0)
)
def test_basic(db):
ds = LanceTable.create(
db,
"test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
).to_lance()
table = LanceTable(db, "test")
assert table.name == "test"
assert table.schema == ds.schema
assert table.to_lance().to_table() == ds.to_table()
def test_input_data_type(db, tmp_path):
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("name", pa.string()),
pa.field("age", pa.int32()),
]
)
data = {
"id": [1, 2, 3, 4, 5],
"name": ["Alice", "Bob", "Charlie", "David", "Eve"],
"age": [25, 30, 35, 40, 45],
}
record_batch = pa.RecordBatch.from_pydict(data, schema=schema)
pa_reader = pa.RecordBatchReader.from_batches(record_batch.schema, [record_batch])
pa_table = pa.Table.from_batches([record_batch])
def create_dataset(tmp_path):
path = os.path.join(tmp_path, "test_source_dataset")
pa.dataset.write_dataset(pa_table, path, format="parquet")
return pa.dataset.dataset(path, format="parquet")
pa_dataset = create_dataset(tmp_path)
pa_scanner = pa_dataset.scanner()
input_types = [
("RecordBatchReader", pa_reader),
("RecordBatch", record_batch),
("Table", pa_table),
("Dataset", pa_dataset),
("Scanner", pa_scanner),
]
for input_type, input_data in input_types:
table_name = f"test_{input_type.lower()}"
ds = LanceTable.create(db, table_name, data=input_data).to_lance()
assert ds.schema == schema
assert ds.count_rows() == 5
assert ds.schema.field("id").type == pa.int64()
assert ds.schema.field("name").type == pa.string()
assert ds.schema.field("age").type == pa.int32()
result_table = ds.to_table()
assert result_table.column("id").to_pylist() == data["id"]
assert result_table.column("name").to_pylist() == data["name"]
assert result_table.column("age").to_pylist() == data["age"]
@pytest.mark.asyncio
async def test_close(db_async: AsyncConnection):
table = await db_async.create_table("some_table", data=[{"id": 0}])
assert table.is_open()
table.close()
assert not table.is_open()
with pytest.raises(Exception, match="Table some_table is closed"):
await table.count_rows()
assert str(table) == "ClosedTable(some_table)"
@pytest.mark.asyncio
async def test_update_async(db_async: AsyncConnection):
table = await db_async.create_table("some_table", data=[{"id": 0}])
assert await table.count_rows("id == 0") == 1
assert await table.count_rows("id == 7") == 0
await table.update({"id": 7})
assert await table.count_rows("id == 7") == 1
assert await table.count_rows("id == 0") == 0
await table.add([{"id": 2}])
await table.update(where="id % 2 == 0", updates_sql={"id": "5"})
assert await table.count_rows("id == 7") == 1
assert await table.count_rows("id == 2") == 0
assert await table.count_rows("id == 5") == 1
await table.update({"id": 10}, where="id == 5")
assert await table.count_rows("id == 10") == 1
def test_create_table(db):
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float32()),
]
)
expected = pa.Table.from_arrays(
[
pa.FixedSizeListArray.from_arrays(pa.array([3.1, 4.1, 5.9, 26.5]), 2),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
schema=schema,
)
data = [
[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
]
]
df = pd.DataFrame(data[0])
data.append(df)
data.append(pa.Table.from_pandas(df, schema=schema))
for i, d in enumerate(data):
tbl = (
LanceTable.create(db, f"test_{i}", data=d, schema=schema)
.to_lance()
.to_table()
)
assert expected == tbl
def test_empty_table(db):
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float32()),
]
)
tbl = LanceTable.create(db, "test", schema=schema)
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
]
tbl.add(data=data)
def test_add(db):
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float64()),
]
)
table = LanceTable.create(
db,
"test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
)
_add(table, schema)
table = LanceTable.create(db, "test2", schema=schema)
table.add(
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
)
_add(table, schema)
def test_add_pydantic_model(db):
# https://github.com/lancedb/lancedb/issues/562
class Metadata(BaseModel):
source: str
timestamp: datetime
class Document(BaseModel):
content: str
meta: Metadata
class LanceSchema(LanceModel):
id: str
vector: Vector(2)
li: List[int]
payload: Document
tbl = LanceTable.create(db, "mytable", schema=LanceSchema, mode="overwrite")
assert tbl.schema == LanceSchema.to_arrow_schema()
# add works
expected = LanceSchema(
id="id",
vector=[0.0, 0.0],
li=[1, 2, 3],
payload=Document(
content="foo", meta=Metadata(source="bar", timestamp=datetime.now())
),
)
tbl.add([expected])
result = tbl.search([0.0, 0.0]).limit(1).to_pydantic(LanceSchema)[0]
assert result == expected
flattened = tbl.search([0.0, 0.0]).limit(1).to_pandas(flatten=1)
assert len(flattened.columns) == 6 # _distance is automatically added
really_flattened = tbl.search([0.0, 0.0]).limit(1).to_pandas(flatten=True)
assert len(really_flattened.columns) == 7
@pytest.mark.asyncio
async def test_add_async(db_async: AsyncConnection):
table = await db_async.create_table(
"test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
)
assert await table.count_rows() == 2
await table.add(
data=[
{"vector": [10.0, 11.0], "item": "baz", "price": 30.0},
],
)
table = await db_async.open_table("test")
assert await table.count_rows() == 3
def test_polars(db):
data = {
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
# Ingest polars dataframe
table = LanceTable.create(db, "test", data=pl.DataFrame(data))
assert len(table) == 2
result = table.to_pandas()
assert np.allclose(result["vector"].tolist(), data["vector"])
assert result["item"].tolist() == data["item"]
assert np.allclose(result["price"].tolist(), data["price"])
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.large_string()),
pa.field("price", pa.float64()),
]
)
assert table.schema == schema
# search results to polars dataframe
q = [3.1, 4.1]
result = table.search(q).limit(1).to_polars()
assert np.allclose(result["vector"][0], q)
assert result["item"][0] == "foo"
assert np.allclose(result["price"][0], 10.0)
# enter table to polars dataframe
result = table.to_polars()
assert np.allclose(result.collect()["vector"].to_list(), data["vector"])
# make sure filtering isn't broken
filtered_result = result.filter(pl.col("item").is_in(["foo", "bar"])).collect()
assert len(filtered_result) == 2
def _add(table, schema):
assert len(table) == 2
table.add([{"vector": [6.3, 100.5], "item": "new", "price": 30.0}])
assert len(table) == 3
expected = pa.Table.from_arrays(
[
pa.FixedSizeListArray.from_arrays(
pa.array([3.1, 4.1, 5.9, 26.5, 6.3, 100.5]), 2
),
pa.array(["foo", "bar", "new"]),
pa.array([10.0, 20.0, 30.0]),
],
schema=schema,
)
assert expected == table.to_arrow()
def test_versioning(db):
table = LanceTable.create(
db,
"test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
)
assert len(table.list_versions()) == 2
assert table.version == 2
table.add([{"vector": [6.3, 100.5], "item": "new", "price": 30.0}])
assert len(table.list_versions()) == 3
assert table.version == 3
assert len(table) == 3
table.checkout(2)
assert table.version == 2
assert len(table) == 2
def test_create_index_method():
with patch.object(
LanceTable, "_dataset_mut", new_callable=PropertyMock
) as mock_dataset:
# Setup mock responses
mock_dataset.return_value.create_index.return_value = None
# Create a LanceTable object
connection = LanceDBConnection(uri="mock.uri")
table = LanceTable(connection, "test_table")
# Call the create_index method
table.create_index(
metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name="vector",
replace=True,
index_cache_size=256,
)
# Check that the _dataset.create_index method was called
# with the right parameters
mock_dataset.return_value.create_index.assert_called_once_with(
column="vector",
index_type="IVF_PQ",
metric="L2",
num_partitions=256,
num_sub_vectors=96,
replace=True,
accelerator=None,
index_cache_size=256,
)
def test_add_with_nans(db):
# by default we raise an error on bad input vectors
bad_data = [
{"vector": [np.nan], "item": "bar", "price": 20.0},
{"vector": [5], "item": "bar", "price": 20.0},
{"vector": [np.nan, np.nan], "item": "bar", "price": 20.0},
{"vector": [np.nan, 5.0], "item": "bar", "price": 20.0},
]
for row in bad_data:
with pytest.raises(ValueError):
LanceTable.create(
db,
"error_test",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, row],
)
table = LanceTable.create(
db,
"drop_test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [np.nan], "item": "bar", "price": 20.0},
{"vector": [5], "item": "bar", "price": 20.0},
{"vector": [np.nan, np.nan], "item": "bar", "price": 20.0},
],
on_bad_vectors="drop",
)
assert len(table) == 1
# We can fill bad input with some value
table = LanceTable.create(
db,
"fill_test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [np.nan], "item": "bar", "price": 20.0},
{"vector": [np.nan, np.nan], "item": "bar", "price": 20.0},
],
on_bad_vectors="fill",
fill_value=0.0,
)
assert len(table) == 3
arrow_tbl = table.to_lance().to_table(filter="item == 'bar'")
v = arrow_tbl["vector"].to_pylist()[0]
assert np.allclose(v, np.array([0.0, 0.0]))
def test_restore(db):
table = LanceTable.create(
db,
"my_table",
data=[{"vector": [1.1, 0.9], "type": "vector"}],
)
table.add([{"vector": [0.5, 0.2], "type": "vector"}])
table.restore(2)
assert len(table.list_versions()) == 4
assert len(table) == 1
expected = table.to_arrow()
table.checkout(2)
table.restore()
assert len(table.list_versions()) == 5
assert table.to_arrow() == expected
table.restore(5) # latest version should be no-op
assert len(table.list_versions()) == 5
with pytest.raises(ValueError):
table.restore(6)
with pytest.raises(ValueError):
table.restore(0)
def test_merge(db, tmp_path):
table = LanceTable.create(
db,
"my_table",
data=[{"vector": [1.1, 0.9], "id": 0}, {"vector": [1.2, 1.9], "id": 1}],
)
other_table = pa.table({"document": ["foo", "bar"], "id": [0, 1]})
table.merge(other_table, left_on="id")
assert len(table.list_versions()) == 3
expected = pa.table(
{"vector": [[1.1, 0.9], [1.2, 1.9]], "id": [0, 1], "document": ["foo", "bar"]},
schema=table.schema,
)
assert table.to_arrow() == expected
other_dataset = lance.write_dataset(other_table, tmp_path / "other_table.lance")
table.restore(1)
table.merge(other_dataset, left_on="id")
def test_delete(db):
table = LanceTable.create(
db,
"my_table",
data=[{"vector": [1.1, 0.9], "id": 0}, {"vector": [1.2, 1.9], "id": 1}],
)
assert len(table) == 2
assert len(table.list_versions()) == 2
table.delete("id=0")
assert len(table.list_versions()) == 3
assert table.version == 3
assert len(table) == 1
assert table.to_pandas()["id"].tolist() == [1]
def test_update(db):
table = LanceTable.create(
db,
"my_table",
data=[{"vector": [1.1, 0.9], "id": 0}, {"vector": [1.2, 1.9], "id": 1}],
)
assert len(table) == 2
assert len(table.list_versions()) == 2
table.update(where="id=0", values={"vector": [1.1, 1.1]})
assert len(table.list_versions()) == 3
assert table.version == 3
assert len(table) == 2
v = table.to_arrow()["vector"].combine_chunks()
v = v.values.to_numpy().reshape(2, 2)
assert np.allclose(v, np.array([[1.2, 1.9], [1.1, 1.1]]))
def test_update_types(db):
table = LanceTable.create(
db,
"my_table",
data=[
{
"id": 0,
"str": "foo",
"float": 1.1,
"timestamp": datetime(2021, 1, 1),
"date": date(2021, 1, 1),
"vector1": [1.0, 0.0],
"vector2": [1.0, 1.0],
"binary": b"abc",
}
],
)
# Update with SQL
table.update(
values_sql=dict(
id="1",
str="'bar'",
float="2.2",
timestamp="TIMESTAMP '2021-01-02 00:00:00'",
date="DATE '2021-01-02'",
vector1="[2.0, 2.0]",
vector2="[3.0, 3.0]",
binary="X'646566'",
)
)
actual = table.to_arrow().to_pylist()[0]
expected = dict(
id=1,
str="bar",
float=2.2,
timestamp=datetime(2021, 1, 2),
date=date(2021, 1, 2),
vector1=[2.0, 2.0],
vector2=[3.0, 3.0],
binary=b"def",
)
assert actual == expected
# Update with values
table.update(
values=dict(
id=2,
str="baz",
float=3.3,
timestamp=datetime(2021, 1, 3),
date=date(2021, 1, 3),
vector1=[3.0, 3.0],
vector2=np.array([4.0, 4.0]),
binary=b"def",
)
)
actual = table.to_arrow().to_pylist()[0]
expected = dict(
id=2,
str="baz",
float=3.3,
timestamp=datetime(2021, 1, 3),
date=date(2021, 1, 3),
vector1=[3.0, 3.0],
vector2=[4.0, 4.0],
binary=b"def",
)
assert actual == expected
def test_merge_insert(db):
table = LanceTable.create(
db,
"my_table",
data=pa.table({"a": [1, 2, 3], "b": ["a", "b", "c"]}),
)
assert len(table) == 3
version = table.version
new_data = pa.table({"a": [2, 3, 4], "b": ["x", "y", "z"]})
# upsert
table.merge_insert(
"a"
).when_matched_update_all().when_not_matched_insert_all().execute(new_data)
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "x", "y", "z"]})
assert table.to_arrow().sort_by("a") == expected
table.restore(version)
# conditional update
table.merge_insert("a").when_matched_update_all(where="target.b = 'b'").execute(
new_data
)
expected = pa.table({"a": [1, 2, 3], "b": ["a", "x", "c"]})
assert table.to_arrow().sort_by("a") == expected
table.restore(version)
# insert-if-not-exists
table.merge_insert("a").when_not_matched_insert_all().execute(new_data)
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "b", "c", "z"]})
assert table.to_arrow().sort_by("a") == expected
table.restore(version)
new_data = pa.table({"a": [2, 4], "b": ["x", "z"]})
# replace-range
(
table.merge_insert("a")
.when_matched_update_all()
.when_not_matched_insert_all()
.when_not_matched_by_source_delete("a > 2")
.execute(new_data)
)
expected = pa.table({"a": [1, 2, 4], "b": ["a", "x", "z"]})
assert table.to_arrow().sort_by("a") == expected
table.restore(version)
# replace-range no condition
table.merge_insert(
"a"
).when_matched_update_all().when_not_matched_insert_all().when_not_matched_by_source_delete().execute(
new_data
)
expected = pa.table({"a": [2, 4], "b": ["x", "z"]})
assert table.to_arrow().sort_by("a") == expected
@pytest.mark.asyncio
async def test_merge_insert_async(db_async: AsyncConnection):
data = pa.table({"a": [1, 2, 3], "b": ["a", "b", "c"]})
table = await db_async.create_table("some_table", data=data)
assert await table.count_rows() == 3
version = await table.version()
new_data = pa.table({"a": [2, 3, 4], "b": ["x", "y", "z"]})
# upsert
await (
table.merge_insert("a")
.when_matched_update_all()
.when_not_matched_insert_all()
.execute(new_data)
)
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "x", "y", "z"]})
assert (await table.to_arrow()).sort_by("a") == expected
await table.checkout(version)
await table.restore()
# conditional update
await (
table.merge_insert("a")
.when_matched_update_all(where="target.b = 'b'")
.execute(new_data)
)
expected = pa.table({"a": [1, 2, 3], "b": ["a", "x", "c"]})
assert (await table.to_arrow()).sort_by("a") == expected
await table.checkout(version)
await table.restore()
# insert-if-not-exists
await table.merge_insert("a").when_not_matched_insert_all().execute(new_data)
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "b", "c", "z"]})
assert (await table.to_arrow()).sort_by("a") == expected
await table.checkout(version)
await table.restore()
# replace-range
new_data = pa.table({"a": [2, 4], "b": ["x", "z"]})
await (
table.merge_insert("a")
.when_matched_update_all()
.when_not_matched_insert_all()
.when_not_matched_by_source_delete("a > 2")
.execute(new_data)
)
expected = pa.table({"a": [1, 2, 4], "b": ["a", "x", "z"]})
assert (await table.to_arrow()).sort_by("a") == expected
await table.checkout(version)
await table.restore()
# replace-range no condition
await (
table.merge_insert("a")
.when_matched_update_all()
.when_not_matched_insert_all()
.when_not_matched_by_source_delete()
.execute(new_data)
)
expected = pa.table({"a": [2, 4], "b": ["x", "z"]})
assert (await table.to_arrow()).sort_by("a") == expected
def test_create_with_embedding_function(db):
class MyTable(LanceModel):
text: str
vector: Vector(10)
func = MockTextEmbeddingFunction()
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
df = pd.DataFrame({"text": texts, "vector": func.compute_source_embeddings(texts)})
conf = EmbeddingFunctionConfig(
source_column="text", vector_column="vector", function=func
)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
embedding_functions=[conf],
)
table.add(df)
query_str = "hi how are you?"
query_vector = func.compute_query_embeddings(query_str)[0]
expected = table.search(query_vector).limit(2).to_arrow()
actual = table.search(query_str).limit(2).to_arrow()
assert actual == expected
def test_create_f16_table(db):
class MyTable(LanceModel):
text: str
vector: Vector(128, value_type=pa.float16())
df = pd.DataFrame(
{
"text": [f"s-{i}" for i in range(10000)],
"vector": [np.random.randn(128).astype(np.float16) for _ in range(10000)],
}
)
table = LanceTable.create(
db,
"f16_tbl",
schema=MyTable,
)
table.add(df)
table.create_index(num_partitions=2, num_sub_vectors=8)
query = df.vector.iloc[2]
expected = table.search(query).limit(2).to_arrow()
assert "s-2" in expected["text"].to_pylist()
def test_add_with_embedding_function(db):
emb = EmbeddingFunctionRegistry.get_instance().get("test")()
class MyTable(LanceModel):
text: str = emb.SourceField()
vector: Vector(emb.ndims()) = emb.VectorField()
table = LanceTable.create(db, "my_table", schema=MyTable)
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
df = pd.DataFrame({"text": texts})
table.add(df)
texts = ["the quick brown fox", "jumped over the lazy dog"]
table.add([{"text": t} for t in texts])
query_str = "hi how are you?"
query_vector = emb.compute_query_embeddings(query_str)[0]
expected = table.search(query_vector).limit(2).to_arrow()
actual = table.search(query_str).limit(2).to_arrow()
assert actual == expected
def test_multiple_vector_columns(db):
class MyTable(LanceModel):
text: str
vector1: Vector(10)
vector2: Vector(10)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
)
v1 = np.random.randn(10)
v2 = np.random.randn(10)
data = [
{"vector1": v1, "vector2": v2, "text": "foo"},
{"vector1": v2, "vector2": v1, "text": "bar"},
]
df = pd.DataFrame(data)
table.add(df)
q = np.random.randn(10)
result1 = table.search(q, vector_column_name="vector1").limit(1).to_pandas()
result2 = table.search(q, vector_column_name="vector2").limit(1).to_pandas()
assert result1["text"].iloc[0] != result2["text"].iloc[0]
def test_create_scalar_index(db):
vec_array = pa.array(
[[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], pa.list_(pa.float32(), 2)
)
test_data = pa.Table.from_pydict(
{"x": ["c", "b", "a", "e", "b"], "y": [1, 2, 3, 4, 5], "vector": vec_array}
)
table = LanceTable.create(
db,
"my_table",
data=test_data,
)
table.create_scalar_index("x")
indices = table.to_lance().list_indices()
assert len(indices) == 1
scalar_index = indices[0]
assert scalar_index["type"] == "BTree"
# Confirm that prefiltering still works with the scalar index column
results = table.search().where("x = 'c'").to_arrow()
assert results == test_data.slice(0, 1)
results = table.search([5, 5]).to_arrow()
assert results["_distance"][0].as_py() == 0
results = table.search([5, 5]).where("x != 'b'").to_arrow()
assert results["_distance"][0].as_py() > 0
def test_empty_query(db):
table = LanceTable.create(
db,
"my_table",
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
)
df = table.search().select(["id"]).where("text='bar'").limit(1).to_pandas()
val = df.id.iloc[0]
assert val == 1
table = LanceTable.create(db, "my_table2", data=[{"id": i} for i in range(100)])
df = table.search().select(["id"]).to_pandas()
assert len(df) == 10
df = table.search().select(["id"]).limit(None).to_pandas()
assert len(df) == 100
df = table.search().select(["id"]).limit(-1).to_pandas()
assert len(df) == 100
def test_search_with_schema_inf_single_vector(db):
class MyTable(LanceModel):
text: str
vector_col: Vector(10)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
)
v1 = np.random.randn(10)
v2 = np.random.randn(10)
data = [
{"vector_col": v1, "text": "foo"},
{"vector_col": v2, "text": "bar"},
]
df = pd.DataFrame(data)
table.add(df)
q = np.random.randn(10)
result1 = table.search(q, vector_column_name="vector_col").limit(1).to_pandas()
result2 = table.search(q).limit(1).to_pandas()
assert result1["text"].iloc[0] == result2["text"].iloc[0]
def test_search_with_schema_inf_multiple_vector(db):
class MyTable(LanceModel):
text: str
vector1: Vector(10)
vector2: Vector(10)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
)
v1 = np.random.randn(10)
v2 = np.random.randn(10)
data = [
{"vector1": v1, "vector2": v2, "text": "foo"},
{"vector1": v2, "vector2": v1, "text": "bar"},
]
df = pd.DataFrame(data)
table.add(df)
q = np.random.randn(10)
with pytest.raises(ValueError):
table.search(q).limit(1).to_pandas()
def test_compact_cleanup(db):
table = LanceTable.create(
db,
"my_table",
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
)
table.add([{"text": "baz", "id": 2}])
assert len(table) == 3
assert table.version == 3
stats = table.compact_files()
assert len(table) == 3
# Compact_files bump 2 versions.
assert table.version == 5
assert stats.fragments_removed > 0
assert stats.fragments_added == 1
stats = table.cleanup_old_versions()
assert stats.bytes_removed == 0
stats = table.cleanup_old_versions(older_than=timedelta(0), delete_unverified=True)
assert stats.bytes_removed > 0
assert table.version == 5
with pytest.raises(Exception, match="Version 3 no longer exists"):
table.checkout(3)
def test_count_rows(db):
table = LanceTable.create(
db,
"my_table",
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
)
assert len(table) == 2
assert table.count_rows() == 2
assert table.count_rows(filter="text='bar'") == 1
def test_hybrid_search(db, tmp_path):
# This test uses an FTS index
pytest.importorskip("lancedb.fts")
db = MockDB(str(tmp_path))
# Create a LanceDB table schema with a vector and a text column
emb = EmbeddingFunctionRegistry.get_instance().get("test")()
class MyTable(LanceModel):
text: str = emb.SourceField()
vector: Vector(emb.ndims()) = emb.VectorField()
# Initialize the table using the schema
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
)
# Create a list of 10 unique english phrases
phrases = [
"great kid don't get cocky",
"now that's a name I haven't heard in a long time",
"if you strike me down I shall become more powerful than you imagine",
"I find your lack of faith disturbing",
"I've got a bad feeling about this",
"never tell me the odds",
"I am your father",
"somebody has to save our skins",
"New strategy R2 let the wookiee win",
"Arrrrggghhhhhhh",
]
# Add the phrases and vectors to the table
table.add([{"text": p} for p in phrases])
# Create a fts index
table.create_fts_index("text")
result1 = (
table.search("Our father who art in heaven", query_type="hybrid")
.rerank(normalize="score")
.to_pydantic(MyTable)
)
result2 = ( # noqa
table.search("Our father who art in heaven", query_type="hybrid")
.rerank(normalize="rank")
.to_pydantic(MyTable)
)
result3 = table.search(
"Our father who art in heaven", query_type="hybrid"
).to_pydantic(MyTable)
# Test that double and single quote characters are handled with phrase_query()
(
table.search(
'"Aren\'t you a little short for a stormtrooper?" -- Leia',
query_type="hybrid",
)
.phrase_query(True)
.to_pydantic(MyTable)
)
assert result1 == result3
# with post filters
result = (
table.search("Arrrrggghhhhhhh", query_type="hybrid")
.where("text='Arrrrggghhhhhhh'")
.to_list()
)
assert len(result) == 1
# with explicit query type
vector_query = list(range(emb.ndims()))
result = (
table.search(query_type="hybrid")
.vector(vector_query)
.text("Arrrrggghhhhhhh")
.to_arrow()
)
assert len(result) > 0
assert "_relevance_score" in result.column_names
# with vector_column_name
result = (
table.search(query_type="hybrid", vector_column_name="vector")
.vector(vector_query)
.text("Arrrrggghhhhhhh")
.to_arrow()
)
assert len(result) > 0
assert "_relevance_score" in result.column_names
# fail if only text or vector is provided
with pytest.raises(ValueError):
table.search(query_type="hybrid").to_list()
with pytest.raises(ValueError):
table.search(query_type="hybrid").vector(vector_query).to_list()
with pytest.raises(ValueError):
table.search(query_type="hybrid").text("Arrrrggghhhhhhh").to_list()
@pytest.mark.parametrize(
"consistency_interval", [None, timedelta(seconds=0), timedelta(seconds=0.1)]
)
def test_consistency(tmp_path, consistency_interval):
db = lancedb.connect(tmp_path)
table = LanceTable.create(db, "my_table", data=[{"id": 0}])
db2 = lancedb.connect(tmp_path, read_consistency_interval=consistency_interval)
table2 = db2.open_table("my_table")
assert table2.version == table.version
table.add([{"id": 1}])
if consistency_interval is None:
assert table2.version == table.version - 1
table2.checkout_latest()
assert table2.version == table.version
elif consistency_interval == timedelta(seconds=0):
assert table2.version == table.version
else:
# (consistency_interval == timedelta(seconds=0.1)
assert table2.version == table.version - 1
sleep(0.1)
assert table2.version == table.version
def test_restore_consistency(tmp_path):
db = lancedb.connect(tmp_path)
table = LanceTable.create(db, "my_table", data=[{"id": 0}])
db2 = lancedb.connect(tmp_path, read_consistency_interval=timedelta(seconds=0))
table2 = db2.open_table("my_table")
assert table2.version == table.version
# If we call checkout, it should lose consistency
table_fixed = copy(table2)
table_fixed.checkout(table.version)
# But if we call checkout_latest, it should be consistent again
table_ref_latest = copy(table_fixed)
table_ref_latest.checkout_latest()
table.add([{"id": 2}])
assert table_fixed.version == table.version - 1
assert table_ref_latest.version == table.version
# Schema evolution
def test_add_columns(tmp_path):
db = lancedb.connect(tmp_path)
data = pa.table({"id": [0, 1]})
table = LanceTable.create(db, "my_table", data=data)
table.add_columns({"new_col": "id + 2"})
assert table.to_arrow().column_names == ["id", "new_col"]
assert table.to_arrow()["new_col"].to_pylist() == [2, 3]
def test_alter_columns(tmp_path):
db = lancedb.connect(tmp_path)
data = pa.table({"id": [0, 1]})
table = LanceTable.create(db, "my_table", data=data)
table.alter_columns({"path": "id", "rename": "new_id"})
assert table.to_arrow().column_names == ["new_id"]
def test_drop_columns(tmp_path):
db = lancedb.connect(tmp_path)
data = pa.table({"id": [0, 1], "category": ["a", "b"]})
table = LanceTable.create(db, "my_table", data=data)
table.drop_columns(["category"])
assert table.to_arrow().column_names == ["id"]
@pytest.mark.asyncio
async def test_time_travel(db_async: AsyncConnection):
# Setup
table = await db_async.create_table("some_table", data=[{"id": 0}])
version = await table.version()
await table.add([{"id": 1}])
assert await table.count_rows() == 2
# Make sure we can rewind
await table.checkout(version)
assert await table.count_rows() == 1
# Can't add data in time travel mode
with pytest.raises(
ValueError,
match="table cannot be modified when a specific version is checked out",
):
await table.add([{"id": 2}])
# Can go back to normal mode
await table.checkout_latest()
assert await table.count_rows() == 2
# Should be able to add data again
await table.add([{"id": 3}])
assert await table.count_rows() == 3
# Now checkout and restore
await table.checkout(version)
await table.restore()
assert await table.count_rows() == 1
# Should be able to add data
await table.add([{"id": 4}])
assert await table.count_rows() == 2
# Can't use restore if not checked out
with pytest.raises(ValueError, match="checkout before running restore"):
await table.restore()
@pytest.mark.asyncio
async def test_optimize(db_async: AsyncConnection):
table = await db_async.create_table(
"test",
data=[{"x": [1]}],
)
await table.add(
data=[
{"x": [2]},
],
)
stats = await table.optimize()
expected = (
"OptimizeStats(compaction=CompactionStats { fragments_removed: 2, "
"fragments_added: 1, files_removed: 2, files_added: 1 }, "
"prune=RemovalStats { bytes_removed: 0, old_versions_removed: 0 })"
)
assert str(stats) == expected
assert stats.compaction.files_removed == 2
assert stats.compaction.files_added == 1
assert stats.compaction.fragments_added == 1
assert stats.compaction.fragments_removed == 2
assert stats.prune.bytes_removed == 0
assert stats.prune.old_versions_removed == 0
stats = await table.optimize(cleanup_older_than=timedelta(seconds=0))
assert stats.prune.bytes_removed > 0
assert stats.prune.old_versions_removed == 3
assert await table.query().to_arrow() == pa.table({"x": [[1], [2]]})
@pytest.mark.asyncio
async def test_optimize_delete_unverified(db_async: AsyncConnection, tmp_path):
table = await db_async.create_table(
"test",
data=[{"x": [1]}],
)
await table.add(
data=[
{"x": [2]},
],
)
version = await table.version()
path = tmp_path / "test.lance" / "_versions" / f"{version - 1}.manifest"
os.remove(path)
stats = await table.optimize(delete_unverified=False)
assert stats.prune.old_versions_removed == 0
stats = await table.optimize(
cleanup_older_than=timedelta(seconds=0), delete_unverified=True
)
assert stats.prune.old_versions_removed == 2