mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-26 22:59:57 +00:00
173 lines
4.8 KiB
Python
173 lines
4.8 KiB
Python
# Copyright 2023 LanceDB Developers
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import annotations
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pyarrow as pa
|
|
|
|
from .common import VECTOR_COLUMN_NAME
|
|
|
|
|
|
class LanceQueryBuilder:
|
|
"""
|
|
A builder for nearest neighbor queries for LanceDB.
|
|
"""
|
|
|
|
def __init__(self, table: "lancedb.table.LanceTable", query: np.ndarray):
|
|
self._metric = "L2"
|
|
self._nprobes = 20
|
|
self._refine_factor = None
|
|
self._table = table
|
|
self._query = query
|
|
self._limit = 10
|
|
self._columns = None
|
|
self._where = None
|
|
|
|
def limit(self, limit: int) -> LanceQueryBuilder:
|
|
"""Set the maximum number of results to return.
|
|
|
|
Parameters
|
|
----------
|
|
limit: int
|
|
The maximum number of results to return.
|
|
|
|
Returns
|
|
-------
|
|
The LanceQueryBuilder object.
|
|
"""
|
|
self._limit = limit
|
|
return self
|
|
|
|
def select(self, columns: list) -> LanceQueryBuilder:
|
|
"""Set the columns to return.
|
|
|
|
Parameters
|
|
----------
|
|
columns: list
|
|
The columns to return.
|
|
|
|
Returns
|
|
-------
|
|
The LanceQueryBuilder object.
|
|
"""
|
|
self._columns = columns
|
|
return self
|
|
|
|
def where(self, where: str) -> LanceQueryBuilder:
|
|
"""Set the where clause.
|
|
|
|
Parameters
|
|
----------
|
|
where: str
|
|
The where clause.
|
|
|
|
Returns
|
|
-------
|
|
The LanceQueryBuilder object.
|
|
"""
|
|
self._where = where
|
|
return self
|
|
|
|
def metric(self, metric: str) -> LanceQueryBuilder:
|
|
"""Set the distance metric to use.
|
|
|
|
Parameters
|
|
----------
|
|
metric: str
|
|
The distance metric to use. By default "l2" is used.
|
|
|
|
Returns
|
|
-------
|
|
The LanceQueryBuilder object.
|
|
"""
|
|
self._metric = metric
|
|
return self
|
|
|
|
def nprobes(self, nprobes: int) -> LanceQueryBuilder:
|
|
"""Set the number of probes to use.
|
|
|
|
Parameters
|
|
----------
|
|
nprobes: int
|
|
The number of probes to use.
|
|
|
|
Returns
|
|
-------
|
|
The LanceQueryBuilder object.
|
|
"""
|
|
self._nprobes = nprobes
|
|
return self
|
|
|
|
def refine_factor(self, refine_factor: int) -> LanceQueryBuilder:
|
|
"""Set the refine factor to use.
|
|
|
|
Parameters
|
|
----------
|
|
refine_factor: int
|
|
The refine factor to use.
|
|
|
|
Returns
|
|
-------
|
|
The LanceQueryBuilder object.
|
|
"""
|
|
self._refine_factor = refine_factor
|
|
return self
|
|
|
|
def to_df(self) -> pd.DataFrame:
|
|
"""
|
|
Execute the query and return the results as a pandas DataFrame.
|
|
In addition to the selected columns, LanceDB also returns a vector
|
|
and also the "score" column which is the distance between the query
|
|
vector and the returned vector.
|
|
"""
|
|
ds = self._table.to_lance()
|
|
tbl = ds.to_table(
|
|
columns=self._columns,
|
|
filter=self._where,
|
|
nearest={
|
|
"column": VECTOR_COLUMN_NAME,
|
|
"q": self._query,
|
|
"k": self._limit,
|
|
"metric": self._metric,
|
|
"nprobes": self._nprobes,
|
|
"refine_factor": self._refine_factor,
|
|
},
|
|
)
|
|
return tbl.to_pandas()
|
|
|
|
|
|
class LanceFtsQueryBuilder(LanceQueryBuilder):
|
|
def to_df(self) -> pd.DataFrame:
|
|
try:
|
|
import tantivy
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Please install tantivy-py `pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985` to use the full text search feature."
|
|
)
|
|
|
|
from .fts import search_index
|
|
|
|
# get the index path
|
|
index_path = self._table._get_fts_index_path()
|
|
# open the index
|
|
index = tantivy.Index.open(index_path)
|
|
# get the scores and doc ids
|
|
row_ids, scores = search_index(index, self._query, self._limit)
|
|
if len(row_ids) == 0:
|
|
return pd.DataFrame()
|
|
scores = pa.array(scores)
|
|
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
|
|
output_tbl = output_tbl.append_column("score", scores)
|
|
return output_tbl.to_pandas()
|