Files
lancedb/python/python/lancedb/_lancedb.pyi
Wyatt Alt 386fc9e466 feat: add num_attempts to merge insert result (#2795)
This pipes the num_attempts field from lance's merge insert result
through lancedb. This allows callers of merge_insert to get a better
idea of whether transaction conflicts are occurring.
2025-11-19 09:32:57 -08:00

354 lines
12 KiB
Python

from datetime import timedelta
from typing import Dict, List, Optional, Tuple, Any, TypedDict, Union, Literal
import pyarrow as pa
from .index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
from .io import StorageOptionsProvider
from .remote import ClientConfig
class Session:
def __init__(
self,
index_cache_size_bytes: Optional[int] = None,
metadata_cache_size_bytes: Optional[int] = None,
): ...
@staticmethod
def default() -> "Session": ...
@property
def size_bytes(self) -> int: ...
@property
def approx_num_items(self) -> int: ...
class Connection(object):
uri: str
async def is_open(self): ...
async def close(self): ...
async def list_namespaces(
self,
namespace: List[str],
page_token: Optional[str],
limit: Optional[int],
) -> List[str]: ...
async def create_namespace(self, namespace: List[str]) -> None: ...
async def drop_namespace(self, namespace: List[str]) -> None: ...
async def table_names(
self,
namespace: List[str],
start_after: Optional[str],
limit: Optional[int],
) -> list[str]: ...
async def create_table(
self,
name: str,
mode: str,
data: pa.RecordBatchReader,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
storage_options_provider: Optional[StorageOptionsProvider] = None,
location: Optional[str] = None,
) -> Table: ...
async def create_empty_table(
self,
name: str,
mode: str,
schema: pa.Schema,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
storage_options_provider: Optional[StorageOptionsProvider] = None,
location: Optional[str] = None,
) -> Table: ...
async def open_table(
self,
name: str,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
storage_options_provider: Optional[StorageOptionsProvider] = None,
index_cache_size: Optional[int] = None,
location: Optional[str] = None,
) -> Table: ...
async def clone_table(
self,
target_table_name: str,
source_uri: str,
target_namespace: List[str] = [],
source_version: Optional[int] = None,
source_tag: Optional[str] = None,
is_shallow: bool = True,
) -> Table: ...
async def rename_table(
self,
cur_name: str,
new_name: str,
cur_namespace: List[str] = [],
new_namespace: List[str] = [],
) -> None: ...
async def drop_table(self, name: str, namespace: List[str] = []) -> None: ...
async def drop_all_tables(self, namespace: List[str] = []) -> None: ...
class Table:
def name(self) -> str: ...
def __repr__(self) -> str: ...
def is_open(self) -> bool: ...
def close(self) -> None: ...
async def schema(self) -> pa.Schema: ...
async def add(
self, data: pa.RecordBatchReader, mode: Literal["append", "overwrite"]
) -> AddResult: ...
async def update(
self, updates: Dict[str, str], where: Optional[str]
) -> UpdateResult: ...
async def count_rows(self, filter: Optional[str]) -> int: ...
async def create_index(
self,
column: str,
index: Union[IvfFlat, IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS],
replace: Optional[bool],
wait_timeout: Optional[object],
*,
name: Optional[str],
train: Optional[bool],
): ...
async def list_versions(self) -> List[Dict[str, Any]]: ...
async def version(self) -> int: ...
async def checkout(self, version: Union[int, str]): ...
async def checkout_latest(self): ...
async def restore(self, version: Optional[Union[int, str]] = None): ...
async def list_indices(self) -> list[IndexConfig]: ...
async def delete(self, filter: str) -> DeleteResult: ...
async def add_columns(self, columns: list[tuple[str, str]]) -> AddColumnsResult: ...
async def add_columns_with_schema(self, schema: pa.Schema) -> AddColumnsResult: ...
async def alter_columns(
self, columns: list[dict[str, Any]]
) -> AlterColumnsResult: ...
async def optimize(
self,
*,
cleanup_since_ms: Optional[int] = None,
delete_unverified: Optional[bool] = None,
) -> OptimizeStats: ...
@property
def tags(self) -> Tags: ...
def query(self) -> Query: ...
def take_offsets(self, offsets: list[int]) -> TakeQuery: ...
def take_row_ids(self, row_ids: list[int]) -> TakeQuery: ...
def vector_search(self) -> VectorQuery: ...
class Tags:
async def list(self) -> Dict[str, Tag]: ...
async def get_version(self, tag: str) -> int: ...
async def create(self, tag: str, version: int): ...
async def delete(self, tag: str): ...
async def update(self, tag: str, version: int): ...
class IndexConfig:
name: str
index_type: str
columns: List[str]
async def connect(
uri: str,
api_key: Optional[str],
region: Optional[str],
host_override: Optional[str],
read_consistency_interval: Optional[float],
client_config: Optional[Union[ClientConfig, Dict[str, Any]]],
storage_options: Optional[Dict[str, str]],
session: Optional[Session],
) -> Connection: ...
class RecordBatchStream:
@property
def schema(self) -> pa.Schema: ...
def __aiter__(self) -> "RecordBatchStream": ...
async def __anext__(self) -> pa.RecordBatch: ...
class Query:
def where(self, filter: str): ...
def select(self, columns: Tuple[str, str]): ...
def select_columns(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def nearest_to(self, query_vec: pa.Array) -> VectorQuery: ...
def nearest_to_text(self, query: dict) -> FTSQuery: ...
async def output_schema(self) -> pa.Schema: ...
async def execute(
self, max_batch_length: Optional[int], timeout: Optional[timedelta]
) -> RecordBatchStream: ...
async def explain_plan(self, verbose: Optional[bool]) -> str: ...
async def analyze_plan(self) -> str: ...
def to_query_request(self) -> PyQueryRequest: ...
class TakeQuery:
def select(self, columns: List[str]): ...
def with_row_id(self): ...
async def output_schema(self) -> pa.Schema: ...
async def execute(self) -> RecordBatchStream: ...
def to_query_request(self) -> PyQueryRequest: ...
class FTSQuery:
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def get_query(self) -> str: ...
def add_query_vector(self, query_vec: pa.Array) -> None: ...
def nearest_to(self, query_vec: pa.Array) -> HybridQuery: ...
async def output_schema(self) -> pa.Schema: ...
async def execute(
self, max_batch_length: Optional[int], timeout: Optional[timedelta]
) -> RecordBatchStream: ...
def to_query_request(self) -> PyQueryRequest: ...
class VectorQuery:
async def output_schema(self) -> pa.Schema: ...
async def execute(self) -> RecordBatchStream: ...
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def select_with_projection(self, columns: Tuple[str, str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def column(self, column: str): ...
def distance_type(self, distance_type: str): ...
def postfilter(self): ...
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def minimum_nprobes(self, minimum_nprobes: int): ...
def maximum_nprobes(self, maximum_nprobes: int): ...
def bypass_vector_index(self): ...
def nearest_to_text(self, query: dict) -> HybridQuery: ...
def to_query_request(self) -> PyQueryRequest: ...
class HybridQuery:
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def distance_type(self, distance_type: str): ...
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def minimum_nprobes(self, minimum_nprobes: int): ...
def maximum_nprobes(self, maximum_nprobes: int): ...
def bypass_vector_index(self): ...
def to_vector_query(self) -> VectorQuery: ...
def to_fts_query(self) -> FTSQuery: ...
def get_limit(self) -> int: ...
def get_with_row_id(self) -> bool: ...
def to_query_request(self) -> PyQueryRequest: ...
class FullTextQuery:
pass
class PyQueryRequest:
limit: Optional[int]
offset: Optional[int]
filter: Optional[Union[str, bytes]]
full_text_search: Optional[FullTextQuery]
select: Optional[Union[str, List[str]]]
fast_search: Optional[bool]
with_row_id: Optional[bool]
column: Optional[str]
query_vector: Optional[List[pa.Array]]
minimum_nprobes: Optional[int]
maximum_nprobes: Optional[int]
lower_bound: Optional[float]
upper_bound: Optional[float]
ef: Optional[int]
refine_factor: Optional[int]
distance_type: Optional[str]
bypass_vector_index: Optional[bool]
postfilter: Optional[bool]
norm: Optional[str]
class CompactionStats:
fragments_removed: int
fragments_added: int
files_removed: int
files_added: int
class CleanupStats:
bytes_removed: int
old_versions: int
class RemovalStats:
bytes_removed: int
old_versions_removed: int
class OptimizeStats:
compaction: CompactionStats
prune: RemovalStats
class Tag(TypedDict):
version: int
manifest_size: int
class AddResult:
version: int
class DeleteResult:
version: int
class UpdateResult:
rows_updated: int
version: int
class MergeResult:
version: int
num_updated_rows: int
num_inserted_rows: int
num_deleted_rows: int
num_attempts: int
class AddColumnsResult:
version: int
class AlterColumnsResult:
version: int
class DropColumnsResult:
version: int
class AsyncPermutationBuilder:
def select(self, projections: Dict[str, str]) -> "AsyncPermutationBuilder": ...
def split_random(
self,
*,
ratios: Optional[List[float]] = None,
counts: Optional[List[int]] = None,
fixed: Optional[int] = None,
seed: Optional[int] = None,
) -> "AsyncPermutationBuilder": ...
def split_hash(
self, columns: List[str], split_weights: List[int], *, discard_weight: int = 0
) -> "AsyncPermutationBuilder": ...
def split_sequential(
self,
*,
ratios: Optional[List[float]] = None,
counts: Optional[List[int]] = None,
fixed: Optional[int] = None,
) -> "AsyncPermutationBuilder": ...
def split_calculated(self, calculation: str) -> "AsyncPermutationBuilder": ...
def shuffle(
self, seed: Optional[int], clump_size: Optional[int]
) -> "AsyncPermutationBuilder": ...
def filter(self, filter: str) -> "AsyncPermutationBuilder": ...
async def execute(self) -> Table: ...
def async_permutation_builder(
table: Table, dest_table_name: str
) -> AsyncPermutationBuilder: ...
def fts_query_to_json(query: Any) -> str: ...
class PermutationReader:
def __init__(self, base_table: Table, permutation_table: Table): ...