mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-24 22:09:58 +00:00
BREAKING CHANGE: For a field "vector", list of integers will now be converted to binary (uint8) vectors instead of f32 vectors. Use float values instead for f32 vectors. * Adds proper support for inserting and upserting subsets of the full schema. I thought I had previously implemented this in #1827, but it turns out I had not tested carefully enough. * Refactors `_santize_data` and other utility functions to be simpler and not require `numpy` or `combine_chunks()`. * Added a new suite of unit tests to validate sanitization utilities. ## Examples ```python import pandas as pd import lancedb db = lancedb.connect("memory://demo") intial_data = pd.DataFrame({ "a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9] }) table = db.create_table("demo", intial_data) # Insert a subschema new_data = pd.DataFrame({"a": [10, 11]}) table.add(new_data) table.to_pandas() ``` ``` a b c 0 1 4.0 7.0 1 2 5.0 8.0 2 3 6.0 9.0 3 10 NaN NaN 4 11 NaN NaN ``` ```python # Upsert a subschema upsert_data = pd.DataFrame({ "a": [3, 10, 15], "b": [6, 7, 8], }) table.merge_insert(on="a").when_matched_update_all().when_not_matched_insert_all().execute(upsert_data) table.to_pandas() ``` ``` a b c 0 1 4.0 7.0 1 2 5.0 8.0 2 3 6.0 9.0 3 10 7.0 NaN 4 11 NaN NaN 5 15 8.0 NaN ```
1477 lines
44 KiB
Python
1477 lines
44 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright The Lance Authors
|
|
|
|
import os
|
|
from datetime import date, datetime, timedelta
|
|
from time import sleep
|
|
from typing import List
|
|
from unittest.mock import patch
|
|
|
|
import lance
|
|
import lancedb
|
|
from lancedb.index import HnswPq, HnswSq, IvfPq
|
|
import numpy as np
|
|
import pandas as pd
|
|
import polars as pl
|
|
import pyarrow as pa
|
|
import pytest
|
|
from lancedb.conftest import MockTextEmbeddingFunction
|
|
from lancedb.db import AsyncConnection, DBConnection
|
|
from lancedb.embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
|
from lancedb.pydantic import LanceModel, Vector
|
|
from lancedb.table import LanceTable
|
|
from pydantic import BaseModel
|
|
|
|
|
|
def test_basic(mem_db: DBConnection):
|
|
data = [
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
]
|
|
table = mem_db.create_table("test", data=data)
|
|
|
|
assert table.name == "test"
|
|
assert "LanceTable(name='test', version=1, _conn=LanceDBConnection(" in repr(table)
|
|
expected_schema = pa.schema(
|
|
{
|
|
"vector": pa.list_(pa.float32(), 2),
|
|
"item": pa.string(),
|
|
"price": pa.float64(),
|
|
}
|
|
)
|
|
assert table.schema == expected_schema
|
|
|
|
expected_data = pa.Table.from_pylist(data, schema=expected_schema)
|
|
assert table.to_arrow() == expected_data
|
|
|
|
|
|
def test_input_data_type(mem_db: DBConnection, tmp_path):
|
|
schema = pa.schema(
|
|
{
|
|
"id": pa.int64(),
|
|
"name": pa.string(),
|
|
"age": pa.int32(),
|
|
}
|
|
)
|
|
|
|
data = {
|
|
"id": [1, 2, 3, 4, 5],
|
|
"name": ["Alice", "Bob", "Charlie", "David", "Eve"],
|
|
"age": [25, 30, 35, 40, 45],
|
|
}
|
|
record_batch = pa.RecordBatch.from_pydict(data, schema=schema)
|
|
pa_reader = pa.RecordBatchReader.from_batches(record_batch.schema, [record_batch])
|
|
pa_table = pa.Table.from_batches([record_batch])
|
|
|
|
def create_dataset(tmp_path):
|
|
path = os.path.join(tmp_path, "test_source_dataset")
|
|
pa.dataset.write_dataset(pa_table, path, format="parquet")
|
|
return pa.dataset.dataset(path, format="parquet")
|
|
|
|
pa_dataset = create_dataset(tmp_path)
|
|
pa_scanner = pa_dataset.scanner()
|
|
|
|
input_types = [
|
|
("RecordBatchReader", pa_reader),
|
|
("RecordBatch", record_batch),
|
|
("Table", pa_table),
|
|
("Dataset", pa_dataset),
|
|
("Scanner", pa_scanner),
|
|
]
|
|
for input_type, input_data in input_types:
|
|
table_name = f"test_{input_type.lower()}"
|
|
table = mem_db.create_table(table_name, data=input_data)
|
|
assert table.schema == schema
|
|
assert table.count_rows() == 5
|
|
|
|
assert table.schema == schema
|
|
assert table.to_arrow() == pa_table
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_close(mem_db_async: AsyncConnection):
|
|
table = await mem_db_async.create_table("some_table", data=[{"id": 0}])
|
|
assert table.is_open()
|
|
table.close()
|
|
assert not table.is_open()
|
|
|
|
with pytest.raises(Exception, match="Table some_table is closed"):
|
|
await table.count_rows()
|
|
assert str(table) == "ClosedTable(some_table)"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_update_async(mem_db_async: AsyncConnection):
|
|
table = await mem_db_async.create_table("some_table", data=[{"id": 0}])
|
|
assert await table.count_rows("id == 0") == 1
|
|
assert await table.count_rows("id == 7") == 0
|
|
await table.update({"id": 7})
|
|
assert await table.count_rows("id == 7") == 1
|
|
assert await table.count_rows("id == 0") == 0
|
|
await table.add([{"id": 2}])
|
|
await table.update(where="id % 2 == 0", updates_sql={"id": "5"})
|
|
assert await table.count_rows("id == 7") == 1
|
|
assert await table.count_rows("id == 2") == 0
|
|
assert await table.count_rows("id == 5") == 1
|
|
await table.update({"id": 10}, where="id == 5")
|
|
assert await table.count_rows("id == 10") == 1
|
|
|
|
|
|
def test_create_table(mem_db: DBConnection):
|
|
schema = pa.schema(
|
|
{
|
|
"vector": pa.list_(pa.float32(), 2),
|
|
"item": pa.string(),
|
|
"price": pa.float64(),
|
|
}
|
|
)
|
|
expected = pa.table(
|
|
{
|
|
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
|
"item": ["foo", "bar"],
|
|
"price": [10.0, 20.0],
|
|
},
|
|
schema=schema,
|
|
)
|
|
rows = [
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
]
|
|
df = pd.DataFrame(rows)
|
|
pa_table = pa.Table.from_pandas(df, schema=schema)
|
|
data = [
|
|
("Rows", rows),
|
|
("pd_DataFrame", df),
|
|
("pa_Table", pa_table),
|
|
]
|
|
|
|
for name, d in data:
|
|
tbl = mem_db.create_table(name, data=d, schema=schema).to_arrow()
|
|
assert expected == tbl
|
|
|
|
|
|
def test_empty_table(mem_db: DBConnection):
|
|
schema = pa.schema(
|
|
[
|
|
pa.field("vector", pa.list_(pa.float32(), 2)),
|
|
pa.field("item", pa.string()),
|
|
pa.field("price", pa.float32()),
|
|
]
|
|
)
|
|
tbl = mem_db.create_table("test", schema=schema)
|
|
data = [
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
]
|
|
tbl.add(data=data)
|
|
|
|
|
|
def test_add_dictionary(mem_db: DBConnection):
|
|
schema = pa.schema(
|
|
[
|
|
pa.field("vector", pa.list_(pa.float32(), 2)),
|
|
pa.field("item", pa.string()),
|
|
pa.field("price", pa.float32()),
|
|
]
|
|
)
|
|
tbl = mem_db.create_table("test", schema=schema)
|
|
data = {"vector": [3.1, 4.1], "item": "foo", "price": 10.0}
|
|
with pytest.raises(ValueError) as excep_info:
|
|
tbl.add(data=data)
|
|
assert (
|
|
str(excep_info.value)
|
|
== "Cannot add a single dictionary to a table. Use a list."
|
|
)
|
|
|
|
|
|
def test_add(mem_db: DBConnection):
|
|
schema = pa.schema(
|
|
[
|
|
pa.field("vector", pa.list_(pa.float32(), 2)),
|
|
pa.field("item", pa.string()),
|
|
pa.field("price", pa.float64()),
|
|
]
|
|
)
|
|
|
|
def _add(table, schema):
|
|
assert len(table) == 2
|
|
|
|
table.add([{"vector": [6.3, 100.5], "item": "new", "price": 30.0}])
|
|
assert len(table) == 3
|
|
|
|
expected = pa.table(
|
|
{
|
|
"vector": [[3.1, 4.1], [5.9, 26.5], [6.3, 100.5]],
|
|
"item": ["foo", "bar", "new"],
|
|
"price": [10.0, 20.0, 30.0],
|
|
},
|
|
schema=schema,
|
|
)
|
|
assert expected == table.to_arrow()
|
|
|
|
# Append to table created with data
|
|
table = mem_db.create_table(
|
|
"test",
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
],
|
|
)
|
|
_add(table, schema)
|
|
|
|
# Append to table created empty with schema
|
|
table = mem_db.create_table("test2", schema=schema)
|
|
table.add(
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
],
|
|
)
|
|
_add(table, schema)
|
|
|
|
|
|
def test_add_subschema(mem_db: DBConnection):
|
|
schema = pa.schema(
|
|
[
|
|
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
|
pa.field("item", pa.string(), nullable=True),
|
|
pa.field("price", pa.float64(), nullable=False),
|
|
]
|
|
)
|
|
table = mem_db.create_table("test", schema=schema)
|
|
|
|
data = {"price": 10.0, "item": "foo"}
|
|
table.add([data])
|
|
data = pd.DataFrame({"price": [2.0], "vector": [[3.1, 4.1]]})
|
|
table.add(data)
|
|
data = {"price": 3.0, "vector": [5.9, 26.5], "item": "bar"}
|
|
table.add([data])
|
|
|
|
expected = pa.table(
|
|
{
|
|
"vector": [None, [3.1, 4.1], [5.9, 26.5]],
|
|
"item": ["foo", None, "bar"],
|
|
"price": [10.0, 2.0, 3.0],
|
|
},
|
|
schema=schema,
|
|
)
|
|
assert table.to_arrow() == expected
|
|
|
|
data = {"item": "foo"}
|
|
# We can't omit a column if it's not nullable
|
|
with pytest.raises(RuntimeError, match="Append with different schema"):
|
|
table.add([data])
|
|
|
|
# We can add it if we make the column nullable
|
|
table.alter_columns(dict(path="price", nullable=True))
|
|
table.add([data])
|
|
|
|
expected_schema = pa.schema(
|
|
[
|
|
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
|
pa.field("item", pa.string(), nullable=True),
|
|
pa.field("price", pa.float64(), nullable=True),
|
|
]
|
|
)
|
|
expected = pa.table(
|
|
{
|
|
"vector": [None, [3.1, 4.1], [5.9, 26.5], None],
|
|
"item": ["foo", None, "bar", "foo"],
|
|
"price": [10.0, 2.0, 3.0, None],
|
|
},
|
|
schema=expected_schema,
|
|
)
|
|
assert table.to_arrow() == expected
|
|
|
|
|
|
def test_add_nullability(mem_db: DBConnection):
|
|
schema = pa.schema(
|
|
[
|
|
pa.field("vector", pa.list_(pa.float32(), 2), nullable=False),
|
|
pa.field("id", pa.string(), nullable=False),
|
|
]
|
|
)
|
|
table = mem_db.create_table("test", schema=schema)
|
|
assert table.schema.field("vector").nullable is False
|
|
|
|
nullable_schema = pa.schema(
|
|
[
|
|
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
|
pa.field("id", pa.string(), nullable=True),
|
|
]
|
|
)
|
|
data = pa.table(
|
|
{
|
|
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
|
"id": ["foo", "bar"],
|
|
},
|
|
schema=nullable_schema,
|
|
)
|
|
# We can add nullable schema if it doesn't actually contain nulls
|
|
table.add(data)
|
|
|
|
expected = data.cast(schema)
|
|
assert table.to_arrow() == expected
|
|
|
|
data = pa.table(
|
|
{
|
|
"vector": [None],
|
|
"id": ["baz"],
|
|
},
|
|
schema=nullable_schema,
|
|
)
|
|
# We can't add nullable schema if it contains nulls
|
|
with pytest.raises(
|
|
Exception,
|
|
match="Casting field 'vector' with null values to non-nullable",
|
|
):
|
|
table.add(data)
|
|
|
|
# But we can make it nullable
|
|
table.alter_columns(dict(path="vector", nullable=True))
|
|
table.add(data)
|
|
|
|
expected_schema = pa.schema(
|
|
[
|
|
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
|
pa.field("id", pa.string(), nullable=False),
|
|
]
|
|
)
|
|
expected = pa.table(
|
|
{
|
|
"vector": [[3.1, 4.1], [5.9, 26.5], None],
|
|
"id": ["foo", "bar", "baz"],
|
|
},
|
|
schema=expected_schema,
|
|
)
|
|
assert table.to_arrow() == expected
|
|
|
|
|
|
def test_add_pydantic_model(mem_db: DBConnection):
|
|
# https://github.com/lancedb/lancedb/issues/562
|
|
|
|
class Metadata(BaseModel):
|
|
source: str
|
|
timestamp: datetime
|
|
|
|
class Document(BaseModel):
|
|
content: str
|
|
meta: Metadata
|
|
|
|
class LanceSchema(LanceModel):
|
|
id: str
|
|
vector: Vector(2)
|
|
li: List[int]
|
|
payload: Document
|
|
|
|
tbl = mem_db.create_table("mytable", schema=LanceSchema, mode="overwrite")
|
|
assert tbl.schema == LanceSchema.to_arrow_schema()
|
|
|
|
# add works
|
|
expected = LanceSchema(
|
|
id="id",
|
|
vector=[0.0, 0.0],
|
|
li=[1, 2, 3],
|
|
payload=Document(
|
|
content="foo", meta=Metadata(source="bar", timestamp=datetime.now())
|
|
),
|
|
)
|
|
tbl.add([expected])
|
|
|
|
result = tbl.search([0.0, 0.0]).limit(1).to_pydantic(LanceSchema)[0]
|
|
assert result == expected
|
|
|
|
flattened = tbl.search([0.0, 0.0]).limit(1).to_pandas(flatten=1)
|
|
assert len(flattened.columns) == 6 # _distance is automatically added
|
|
|
|
really_flattened = tbl.search([0.0, 0.0]).limit(1).to_pandas(flatten=True)
|
|
assert len(really_flattened.columns) == 7
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_add_async(mem_db_async: AsyncConnection):
|
|
table = await mem_db_async.create_table(
|
|
"test",
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
],
|
|
)
|
|
assert await table.count_rows() == 2
|
|
await table.add(
|
|
data=[
|
|
{"vector": [10.0, 11.0], "item": "baz", "price": 30.0},
|
|
],
|
|
)
|
|
assert await table.count_rows() == 3
|
|
|
|
|
|
def test_polars(mem_db: DBConnection):
|
|
data = {
|
|
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
|
"item": ["foo", "bar"],
|
|
"price": [10.0, 20.0],
|
|
}
|
|
# Ingest polars dataframe
|
|
table = mem_db.create_table("test", data=pl.DataFrame(data))
|
|
assert len(table) == 2
|
|
|
|
result = table.to_pandas()
|
|
assert np.allclose(result["vector"].tolist(), data["vector"])
|
|
assert result["item"].tolist() == data["item"]
|
|
assert np.allclose(result["price"].tolist(), data["price"])
|
|
|
|
schema = pa.schema(
|
|
[
|
|
pa.field("vector", pa.list_(pa.float32(), 2)),
|
|
pa.field("item", pa.large_string()),
|
|
pa.field("price", pa.float64()),
|
|
]
|
|
)
|
|
assert table.schema == schema
|
|
|
|
# search results to polars dataframe
|
|
q = [3.1, 4.1]
|
|
result = table.search(q).limit(1).to_polars()
|
|
assert np.allclose(result["vector"][0], q)
|
|
assert result["item"][0] == "foo"
|
|
assert np.allclose(result["price"][0], 10.0)
|
|
|
|
# enter table to polars dataframe
|
|
result = table.to_polars()
|
|
assert np.allclose(result.collect()["vector"].to_list(), data["vector"])
|
|
|
|
# make sure filtering isn't broken
|
|
filtered_result = result.filter(pl.col("item").is_in(["foo", "bar"])).collect()
|
|
assert len(filtered_result) == 2
|
|
|
|
|
|
def test_versioning(mem_db: DBConnection):
|
|
table = mem_db.create_table(
|
|
"test",
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
],
|
|
)
|
|
|
|
assert len(table.list_versions()) == 1
|
|
assert table.version == 1
|
|
|
|
table.add([{"vector": [6.3, 100.5], "item": "new", "price": 30.0}])
|
|
assert len(table.list_versions()) == 2
|
|
assert table.version == 2
|
|
assert len(table) == 3
|
|
|
|
table.checkout(1)
|
|
assert table.version == 1
|
|
assert len(table) == 2
|
|
|
|
|
|
@patch("lancedb.table.AsyncTable.create_index")
|
|
def test_create_index_method(mock_create_index, mem_db: DBConnection):
|
|
table = mem_db.create_table(
|
|
"test",
|
|
data=[
|
|
{"vector": [3.1, 4.1]},
|
|
{"vector": [5.9, 26.5]},
|
|
],
|
|
)
|
|
|
|
table.create_index(
|
|
metric="L2",
|
|
num_partitions=256,
|
|
num_sub_vectors=96,
|
|
vector_column_name="vector",
|
|
replace=True,
|
|
index_cache_size=256,
|
|
num_bits=4,
|
|
)
|
|
expected_config = IvfPq(
|
|
distance_type="L2",
|
|
num_partitions=256,
|
|
num_sub_vectors=96,
|
|
num_bits=4,
|
|
)
|
|
mock_create_index.assert_called_with("vector", replace=True, config=expected_config)
|
|
|
|
table.create_index(
|
|
vector_column_name="my_vector",
|
|
metric="dot",
|
|
index_type="IVF_HNSW_PQ",
|
|
replace=False,
|
|
)
|
|
expected_config = HnswPq(distance_type="dot")
|
|
mock_create_index.assert_called_with(
|
|
"my_vector", replace=False, config=expected_config
|
|
)
|
|
|
|
table.create_index(
|
|
vector_column_name="my_vector",
|
|
metric="cosine",
|
|
index_type="IVF_HNSW_SQ",
|
|
sample_rate=0.1,
|
|
m=29,
|
|
ef_construction=10,
|
|
)
|
|
expected_config = HnswSq(
|
|
distance_type="cosine", sample_rate=0.1, m=29, ef_construction=10
|
|
)
|
|
mock_create_index.assert_called_with(
|
|
"my_vector", replace=True, config=expected_config
|
|
)
|
|
|
|
|
|
def test_add_with_nans(mem_db: DBConnection):
|
|
# by default we raise an error on bad input vectors
|
|
bad_data = [
|
|
{"vector": [np.nan], "item": "bar", "price": 20.0},
|
|
{"vector": [5], "item": "bar", "price": 20.0},
|
|
{"vector": [np.nan, np.nan], "item": "bar", "price": 20.0},
|
|
{"vector": [np.nan, 5.0], "item": "bar", "price": 20.0},
|
|
]
|
|
for row in bad_data:
|
|
with pytest.raises(ValueError):
|
|
mem_db.create_table(
|
|
"error_test",
|
|
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, row],
|
|
)
|
|
|
|
table = mem_db.create_table(
|
|
"drop_test",
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [np.nan], "item": "bar", "price": 20.0},
|
|
{"vector": [5], "item": "bar", "price": 20.0},
|
|
{"vector": [np.nan, np.nan], "item": "bar", "price": 20.0},
|
|
],
|
|
on_bad_vectors="drop",
|
|
)
|
|
assert len(table) == 1
|
|
|
|
# We can fill bad input with some value
|
|
table = mem_db.create_table(
|
|
"fill_test",
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [np.nan], "item": "bar", "price": 20.0},
|
|
{"vector": [np.nan, np.nan], "item": "bar", "price": 20.0},
|
|
],
|
|
on_bad_vectors="fill",
|
|
fill_value=0.0,
|
|
)
|
|
assert len(table) == 3
|
|
arrow_tbl = table.search().where("item == 'bar'").to_arrow()
|
|
v = arrow_tbl["vector"].to_pylist()[0]
|
|
assert np.allclose(v, np.array([0.0, 0.0]))
|
|
|
|
|
|
def test_restore(mem_db: DBConnection):
|
|
table = mem_db.create_table(
|
|
"my_table",
|
|
data=[{"vector": [1.1, 0.9], "type": "vector"}],
|
|
)
|
|
table.add([{"vector": [0.5, 0.2], "type": "vector"}])
|
|
table.restore(1)
|
|
assert len(table.list_versions()) == 3
|
|
assert len(table) == 1
|
|
|
|
expected = table.to_arrow()
|
|
table.checkout(1)
|
|
table.restore()
|
|
assert len(table.list_versions()) == 4
|
|
assert table.to_arrow() == expected
|
|
|
|
table.restore(4) # latest version should be no-op
|
|
assert len(table.list_versions()) == 5
|
|
|
|
with pytest.raises(ValueError):
|
|
table.restore(6)
|
|
|
|
with pytest.raises(ValueError):
|
|
table.restore(0)
|
|
|
|
|
|
def test_merge(tmp_db: DBConnection, tmp_path):
|
|
table = tmp_db.create_table(
|
|
"my_table",
|
|
schema=pa.schema(
|
|
{
|
|
"vector": pa.list_(pa.float32(), 2),
|
|
"id": pa.int64(),
|
|
}
|
|
),
|
|
)
|
|
table.add([{"vector": [1.1, 0.9], "id": 0}, {"vector": [1.2, 1.9], "id": 1}])
|
|
other_table = pa.table({"document": ["foo", "bar"], "id": [0, 1]})
|
|
table.merge(other_table, left_on="id")
|
|
assert len(table.list_versions()) == 3
|
|
expected = pa.table(
|
|
{"vector": [[1.1, 0.9], [1.2, 1.9]], "id": [0, 1], "document": ["foo", "bar"]},
|
|
schema=table.schema,
|
|
)
|
|
assert table.to_arrow() == expected
|
|
|
|
other_dataset = lance.write_dataset(other_table, tmp_path / "other_table.lance")
|
|
table.restore(1)
|
|
table.merge(other_dataset, left_on="id")
|
|
|
|
|
|
def test_delete(mem_db: DBConnection):
|
|
table = mem_db.create_table(
|
|
"my_table",
|
|
data=[{"vector": [1.1, 0.9], "id": 0}, {"vector": [1.2, 1.9], "id": 1}],
|
|
)
|
|
assert len(table) == 2
|
|
assert len(table.list_versions()) == 1
|
|
table.delete("id=0")
|
|
assert len(table.list_versions()) == 2
|
|
assert table.version == 2
|
|
assert len(table) == 1
|
|
assert table.to_pandas()["id"].tolist() == [1]
|
|
|
|
|
|
def test_update(mem_db: DBConnection):
|
|
table = mem_db.create_table(
|
|
"my_table",
|
|
data=[{"vector": [1.1, 0.9], "id": 0}, {"vector": [1.2, 1.9], "id": 1}],
|
|
)
|
|
assert len(table) == 2
|
|
assert len(table.list_versions()) == 1
|
|
table.update(where="id=0", values={"vector": [1.1, 1.1]})
|
|
assert len(table.list_versions()) == 2
|
|
assert table.version == 2
|
|
assert len(table) == 2
|
|
v = table.to_arrow()["vector"].combine_chunks()
|
|
v = v.values.to_numpy().reshape(2, 2)
|
|
assert np.allclose(v, np.array([[1.2, 1.9], [1.1, 1.1]]))
|
|
|
|
|
|
def test_update_types(mem_db: DBConnection):
|
|
table = mem_db.create_table(
|
|
"my_table",
|
|
data=[
|
|
{
|
|
"id": 0,
|
|
"str": "foo",
|
|
"float": 1.1,
|
|
"timestamp": datetime(2021, 1, 1),
|
|
"date": date(2021, 1, 1),
|
|
"vector1": [1.0, 0.0],
|
|
"vector2": [1.0, 1.0],
|
|
"binary": b"abc",
|
|
}
|
|
],
|
|
)
|
|
# Update with SQL
|
|
table.update(
|
|
values_sql=dict(
|
|
id="1",
|
|
str="'bar'",
|
|
float="2.2",
|
|
timestamp="TIMESTAMP '2021-01-02 00:00:00'",
|
|
date="DATE '2021-01-02'",
|
|
vector1="[2.0, 2.0]",
|
|
vector2="[3.0, 3.0]",
|
|
binary="X'646566'",
|
|
)
|
|
)
|
|
actual = table.to_arrow().to_pylist()[0]
|
|
expected = dict(
|
|
id=1,
|
|
str="bar",
|
|
float=2.2,
|
|
timestamp=datetime(2021, 1, 2),
|
|
date=date(2021, 1, 2),
|
|
vector1=[2.0, 2.0],
|
|
vector2=[3.0, 3.0],
|
|
binary=b"def",
|
|
)
|
|
assert actual == expected
|
|
|
|
# Update with values
|
|
table.update(
|
|
values=dict(
|
|
id=2,
|
|
str="baz",
|
|
float=3.3,
|
|
timestamp=datetime(2021, 1, 3),
|
|
date=date(2021, 1, 3),
|
|
vector1=[3.0, 3.0],
|
|
vector2=np.array([4.0, 4.0]),
|
|
binary=b"def",
|
|
)
|
|
)
|
|
actual = table.to_arrow().to_pylist()[0]
|
|
expected = dict(
|
|
id=2,
|
|
str="baz",
|
|
float=3.3,
|
|
timestamp=datetime(2021, 1, 3),
|
|
date=date(2021, 1, 3),
|
|
vector1=[3.0, 3.0],
|
|
vector2=[4.0, 4.0],
|
|
binary=b"def",
|
|
)
|
|
assert actual == expected
|
|
|
|
|
|
def test_merge_insert(mem_db: DBConnection):
|
|
table = mem_db.create_table(
|
|
"my_table",
|
|
data=pa.table({"a": [1, 2, 3], "b": ["a", "b", "c"]}),
|
|
)
|
|
assert len(table) == 3
|
|
version = table.version
|
|
|
|
new_data = pa.table({"a": [2, 3, 4], "b": ["x", "y", "z"]})
|
|
|
|
# upsert
|
|
table.merge_insert(
|
|
"a"
|
|
).when_matched_update_all().when_not_matched_insert_all().execute(new_data)
|
|
|
|
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "x", "y", "z"]})
|
|
assert table.to_arrow().sort_by("a") == expected
|
|
|
|
table.restore(version)
|
|
|
|
# conditional update
|
|
table.merge_insert("a").when_matched_update_all(where="target.b = 'b'").execute(
|
|
new_data
|
|
)
|
|
expected = pa.table({"a": [1, 2, 3], "b": ["a", "x", "c"]})
|
|
assert table.to_arrow().sort_by("a") == expected
|
|
|
|
table.restore(version)
|
|
|
|
# insert-if-not-exists
|
|
table.merge_insert("a").when_not_matched_insert_all().execute(new_data)
|
|
|
|
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "b", "c", "z"]})
|
|
assert table.to_arrow().sort_by("a") == expected
|
|
|
|
table.restore(version)
|
|
|
|
new_data = pa.table({"a": [2, 4], "b": ["x", "z"]})
|
|
|
|
# replace-range
|
|
(
|
|
table.merge_insert("a")
|
|
.when_matched_update_all()
|
|
.when_not_matched_insert_all()
|
|
.when_not_matched_by_source_delete("a > 2")
|
|
.execute(new_data)
|
|
)
|
|
|
|
expected = pa.table({"a": [1, 2, 4], "b": ["a", "x", "z"]})
|
|
assert table.to_arrow().sort_by("a") == expected
|
|
|
|
table.restore(version)
|
|
|
|
# replace-range no condition
|
|
table.merge_insert(
|
|
"a"
|
|
).when_matched_update_all().when_not_matched_insert_all().when_not_matched_by_source_delete().execute(
|
|
new_data
|
|
)
|
|
|
|
expected = pa.table({"a": [2, 4], "b": ["x", "z"]})
|
|
assert table.to_arrow().sort_by("a") == expected
|
|
|
|
|
|
# We vary the data format because there are slight differences in how
|
|
# subschemas are handled in different formats
|
|
@pytest.mark.parametrize(
|
|
"data_format",
|
|
[
|
|
lambda table: table,
|
|
lambda table: table.to_pandas(),
|
|
lambda table: table.to_pylist(),
|
|
],
|
|
ids=["pa.Table", "pd.DataFrame", "rows"],
|
|
)
|
|
def test_merge_insert_subschema(mem_db: DBConnection, data_format):
|
|
initial_data = pa.table(
|
|
{"id": range(3), "a": [1.0, 2.0, 3.0], "c": ["x", "x", "x"]}
|
|
)
|
|
table = mem_db.create_table("my_table", data=initial_data)
|
|
|
|
new_data = pa.table({"id": [2, 3], "c": ["y", "y"]})
|
|
new_data = data_format(new_data)
|
|
(
|
|
table.merge_insert(on="id")
|
|
.when_matched_update_all()
|
|
.when_not_matched_insert_all()
|
|
.execute(new_data)
|
|
)
|
|
|
|
expected = pa.table(
|
|
{"id": [0, 1, 2, 3], "a": [1.0, 2.0, 3.0, None], "c": ["x", "x", "y", "y"]}
|
|
)
|
|
assert table.to_arrow().sort_by("id") == expected
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_merge_insert_async(mem_db_async: AsyncConnection):
|
|
data = pa.table({"a": [1, 2, 3], "b": ["a", "b", "c"]})
|
|
table = await mem_db_async.create_table("some_table", data=data)
|
|
assert await table.count_rows() == 3
|
|
version = await table.version()
|
|
|
|
new_data = pa.table({"a": [2, 3, 4], "b": ["x", "y", "z"]})
|
|
|
|
# upsert
|
|
await (
|
|
table.merge_insert("a")
|
|
.when_matched_update_all()
|
|
.when_not_matched_insert_all()
|
|
.execute(new_data)
|
|
)
|
|
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "x", "y", "z"]})
|
|
assert (await table.to_arrow()).sort_by("a") == expected
|
|
|
|
await table.checkout(version)
|
|
await table.restore()
|
|
|
|
# conditional update
|
|
await (
|
|
table.merge_insert("a")
|
|
.when_matched_update_all(where="target.b = 'b'")
|
|
.execute(new_data)
|
|
)
|
|
expected = pa.table({"a": [1, 2, 3], "b": ["a", "x", "c"]})
|
|
assert (await table.to_arrow()).sort_by("a") == expected
|
|
|
|
await table.checkout(version)
|
|
await table.restore()
|
|
|
|
# insert-if-not-exists
|
|
await table.merge_insert("a").when_not_matched_insert_all().execute(new_data)
|
|
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "b", "c", "z"]})
|
|
assert (await table.to_arrow()).sort_by("a") == expected
|
|
|
|
await table.checkout(version)
|
|
await table.restore()
|
|
|
|
# replace-range
|
|
new_data = pa.table({"a": [2, 4], "b": ["x", "z"]})
|
|
await (
|
|
table.merge_insert("a")
|
|
.when_matched_update_all()
|
|
.when_not_matched_insert_all()
|
|
.when_not_matched_by_source_delete("a > 2")
|
|
.execute(new_data)
|
|
)
|
|
expected = pa.table({"a": [1, 2, 4], "b": ["a", "x", "z"]})
|
|
assert (await table.to_arrow()).sort_by("a") == expected
|
|
|
|
await table.checkout(version)
|
|
await table.restore()
|
|
|
|
# replace-range no condition
|
|
await (
|
|
table.merge_insert("a")
|
|
.when_matched_update_all()
|
|
.when_not_matched_insert_all()
|
|
.when_not_matched_by_source_delete()
|
|
.execute(new_data)
|
|
)
|
|
expected = pa.table({"a": [2, 4], "b": ["x", "z"]})
|
|
assert (await table.to_arrow()).sort_by("a") == expected
|
|
|
|
|
|
def test_create_with_embedding_function(mem_db: DBConnection):
|
|
class MyTable(LanceModel):
|
|
text: str
|
|
vector: Vector(10)
|
|
|
|
func = MockTextEmbeddingFunction()
|
|
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
|
|
df = pd.DataFrame({"text": texts, "vector": func.compute_source_embeddings(texts)})
|
|
|
|
conf = EmbeddingFunctionConfig(
|
|
source_column="text", vector_column="vector", function=func
|
|
)
|
|
table = mem_db.create_table(
|
|
"my_table",
|
|
schema=MyTable,
|
|
embedding_functions=[conf],
|
|
)
|
|
table.add(df)
|
|
|
|
query_str = "hi how are you?"
|
|
query_vector = func.compute_query_embeddings(query_str)[0]
|
|
expected = table.search(query_vector).limit(2).to_arrow()
|
|
|
|
actual = table.search(query_str).limit(2).to_arrow()
|
|
assert actual == expected
|
|
|
|
|
|
def test_create_f16_table(mem_db: DBConnection):
|
|
class MyTable(LanceModel):
|
|
text: str
|
|
vector: Vector(32, value_type=pa.float16())
|
|
|
|
df = pd.DataFrame(
|
|
{
|
|
"text": [f"s-{i}" for i in range(512)],
|
|
"vector": [np.random.randn(32).astype(np.float16) for _ in range(512)],
|
|
}
|
|
)
|
|
table = mem_db.create_table(
|
|
"f16_tbl",
|
|
schema=MyTable,
|
|
)
|
|
table.add(df)
|
|
table.create_index(num_partitions=2, num_sub_vectors=2)
|
|
|
|
query = df.vector.iloc[2]
|
|
expected = table.search(query).limit(2).to_arrow()
|
|
|
|
assert "s-2" in expected["text"].to_pylist()
|
|
|
|
|
|
def test_add_with_embedding_function(mem_db: DBConnection):
|
|
emb = EmbeddingFunctionRegistry.get_instance().get("test")()
|
|
|
|
class MyTable(LanceModel):
|
|
text: str = emb.SourceField()
|
|
vector: Vector(emb.ndims()) = emb.VectorField()
|
|
|
|
table = mem_db.create_table("my_table", schema=MyTable)
|
|
|
|
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
|
|
df = pd.DataFrame({"text": texts})
|
|
table.add(df)
|
|
|
|
texts = ["the quick brown fox", "jumped over the lazy dog"]
|
|
table.add([{"text": t} for t in texts])
|
|
|
|
query_str = "hi how are you?"
|
|
query_vector = emb.compute_query_embeddings(query_str)[0]
|
|
expected = table.search(query_vector).limit(2).to_arrow()
|
|
|
|
actual = table.search(query_str).limit(2).to_arrow()
|
|
assert actual == expected
|
|
|
|
|
|
def test_multiple_vector_columns(mem_db: DBConnection):
|
|
class MyTable(LanceModel):
|
|
text: str
|
|
vector1: Vector(10)
|
|
vector2: Vector(10)
|
|
|
|
table = mem_db.create_table(
|
|
"my_table",
|
|
schema=MyTable,
|
|
)
|
|
|
|
v1 = np.random.randn(10)
|
|
v2 = np.random.randn(10)
|
|
data = [
|
|
{"vector1": v1, "vector2": v2, "text": "foo"},
|
|
{"vector1": v2, "vector2": v1, "text": "bar"},
|
|
]
|
|
df = pd.DataFrame(data)
|
|
table.add(df)
|
|
|
|
q = np.random.randn(10)
|
|
result1 = table.search(q, vector_column_name="vector1").limit(1).to_pandas()
|
|
result2 = table.search(q, vector_column_name="vector2").limit(1).to_pandas()
|
|
|
|
assert result1["text"].iloc[0] != result2["text"].iloc[0]
|
|
|
|
|
|
def test_create_scalar_index(mem_db: DBConnection):
|
|
vec_array = pa.array(
|
|
[[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], pa.list_(pa.float32(), 2)
|
|
)
|
|
test_data = pa.Table.from_pydict(
|
|
{"x": ["c", "b", "a", "e", "b"], "y": [1, 2, 3, 4, 5], "vector": vec_array}
|
|
)
|
|
table = mem_db.create_table(
|
|
"my_table",
|
|
data=test_data,
|
|
)
|
|
table.create_scalar_index("x")
|
|
indices = table.list_indices()
|
|
assert len(indices) == 1
|
|
scalar_index = indices[0]
|
|
assert scalar_index.index_type == "BTree"
|
|
|
|
# Confirm that prefiltering still works with the scalar index column
|
|
results = table.search().where("x = 'c'").to_arrow()
|
|
assert results == test_data.slice(0, 1)
|
|
results = table.search([5, 5]).to_arrow()
|
|
assert results["_distance"][0].as_py() == 0
|
|
results = table.search([5, 5]).where("x != 'b'").to_arrow()
|
|
assert results["_distance"][0].as_py() > 0
|
|
|
|
|
|
def test_empty_query(mem_db: DBConnection):
|
|
table = mem_db.create_table(
|
|
"my_table",
|
|
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
|
|
)
|
|
df = table.search().select(["id"]).where("text='bar'").limit(1).to_pandas()
|
|
val = df.id.iloc[0]
|
|
assert val == 1
|
|
|
|
table = mem_db.create_table("my_table2", data=[{"id": i} for i in range(100)])
|
|
df = table.search().select(["id"]).to_pandas()
|
|
assert len(df) == 10
|
|
# None is the same as default
|
|
df = table.search().select(["id"]).limit(None).to_pandas()
|
|
assert len(df) == 10
|
|
# invalid limist is the same as None, wihch is the same as default
|
|
df = table.search().select(["id"]).limit(-1).to_pandas()
|
|
assert len(df) == 10
|
|
# valid limit should work
|
|
df = table.search().select(["id"]).limit(42).to_pandas()
|
|
assert len(df) == 42
|
|
|
|
|
|
def test_search_with_schema_inf_single_vector(mem_db: DBConnection):
|
|
class MyTable(LanceModel):
|
|
text: str
|
|
vector_col: Vector(10)
|
|
|
|
table = mem_db.create_table(
|
|
"my_table",
|
|
schema=MyTable,
|
|
)
|
|
|
|
v1 = np.random.randn(10)
|
|
v2 = np.random.randn(10)
|
|
data = [
|
|
{"vector_col": v1, "text": "foo"},
|
|
{"vector_col": v2, "text": "bar"},
|
|
]
|
|
df = pd.DataFrame(data)
|
|
table.add(df)
|
|
|
|
q = np.random.randn(10)
|
|
result1 = table.search(q, vector_column_name="vector_col").limit(1).to_pandas()
|
|
result2 = table.search(q).limit(1).to_pandas()
|
|
|
|
assert result1["text"].iloc[0] == result2["text"].iloc[0]
|
|
|
|
|
|
def test_search_with_schema_inf_multiple_vector(mem_db: DBConnection):
|
|
class MyTable(LanceModel):
|
|
text: str
|
|
vector1: Vector(10)
|
|
vector2: Vector(10)
|
|
|
|
table = mem_db.create_table(
|
|
"my_table",
|
|
schema=MyTable,
|
|
)
|
|
|
|
v1 = np.random.randn(10)
|
|
v2 = np.random.randn(10)
|
|
data = [
|
|
{"vector1": v1, "vector2": v2, "text": "foo"},
|
|
{"vector1": v2, "vector2": v1, "text": "bar"},
|
|
]
|
|
df = pd.DataFrame(data)
|
|
table.add(df)
|
|
|
|
q = np.random.randn(10)
|
|
with pytest.raises(ValueError):
|
|
table.search(q).limit(1).to_pandas()
|
|
|
|
|
|
def test_compact_cleanup(tmp_db: DBConnection):
|
|
table = tmp_db.create_table(
|
|
"my_table",
|
|
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
|
|
)
|
|
|
|
table.add([{"text": "baz", "id": 2}])
|
|
assert len(table) == 3
|
|
assert table.version == 2
|
|
|
|
stats = table.compact_files()
|
|
assert len(table) == 3
|
|
# Compact_files bump 2 versions.
|
|
assert table.version == 4
|
|
assert stats.fragments_removed > 0
|
|
assert stats.fragments_added == 1
|
|
|
|
stats = table.cleanup_old_versions()
|
|
assert stats.bytes_removed == 0
|
|
|
|
stats = table.cleanup_old_versions(older_than=timedelta(0), delete_unverified=True)
|
|
assert stats.bytes_removed > 0
|
|
assert table.version == 4
|
|
|
|
with pytest.raises(Exception, match="Version 3 no longer exists"):
|
|
table.checkout(3)
|
|
|
|
|
|
def test_count_rows(mem_db: DBConnection):
|
|
table = mem_db.create_table(
|
|
"my_table",
|
|
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
|
|
)
|
|
assert len(table) == 2
|
|
assert table.count_rows() == 2
|
|
assert table.count_rows(filter="text='bar'") == 1
|
|
|
|
|
|
def setup_hybrid_search_table(db: DBConnection, embedding_func):
|
|
# Create a LanceDB table schema with a vector and a text column
|
|
emb = EmbeddingFunctionRegistry.get_instance().get(embedding_func)()
|
|
|
|
class MyTable(LanceModel):
|
|
text: str = emb.SourceField()
|
|
vector: Vector(emb.ndims()) = emb.VectorField()
|
|
|
|
# Initialize the table using the schema
|
|
table = db.create_table(
|
|
"my_table",
|
|
schema=MyTable,
|
|
)
|
|
|
|
# Create a list of 10 unique english phrases
|
|
phrases = [
|
|
"great kid don't get cocky",
|
|
"now that's a name I haven't heard in a long time",
|
|
"if you strike me down I shall become more powerful than you imagine",
|
|
"I find your lack of faith disturbing",
|
|
"I've got a bad feeling about this",
|
|
"never tell me the odds",
|
|
"I am your father",
|
|
"somebody has to save our skins",
|
|
"New strategy R2 let the wookiee win",
|
|
"Arrrrggghhhhhhh",
|
|
]
|
|
|
|
# Add the phrases and vectors to the table
|
|
table.add([{"text": p} for p in phrases])
|
|
|
|
# Create a fts index
|
|
table.create_fts_index("text")
|
|
|
|
return table, MyTable, emb
|
|
|
|
|
|
def test_hybrid_search(tmp_db: DBConnection):
|
|
# This test uses an FTS index
|
|
pytest.importorskip("lancedb.fts")
|
|
|
|
table, MyTable, emb = setup_hybrid_search_table(tmp_db, "test")
|
|
|
|
result1 = (
|
|
table.search("Our father who art in heaven", query_type="hybrid")
|
|
.rerank(normalize="score")
|
|
.to_pydantic(MyTable)
|
|
)
|
|
result2 = ( # noqa
|
|
table.search("Our father who art in heaven", query_type="hybrid")
|
|
.rerank(normalize="rank")
|
|
.to_pydantic(MyTable)
|
|
)
|
|
result3 = table.search(
|
|
"Our father who art in heaven", query_type="hybrid"
|
|
).to_pydantic(MyTable)
|
|
|
|
# Test that double and single quote characters are handled with phrase_query()
|
|
(
|
|
table.search(
|
|
'"Aren\'t you a little short for a stormtrooper?" -- Leia',
|
|
query_type="hybrid",
|
|
)
|
|
.phrase_query(True)
|
|
.to_pydantic(MyTable)
|
|
)
|
|
|
|
assert result1 == result3
|
|
|
|
# with post filters
|
|
result = (
|
|
table.search("Arrrrggghhhhhhh", query_type="hybrid")
|
|
.where("text='Arrrrggghhhhhhh'")
|
|
.to_list()
|
|
)
|
|
assert len(result) == 1
|
|
|
|
# with explicit query type
|
|
vector_query = list(range(emb.ndims()))
|
|
result = (
|
|
table.search(query_type="hybrid")
|
|
.vector(vector_query)
|
|
.text("Arrrrggghhhhhhh")
|
|
.to_arrow()
|
|
)
|
|
assert len(result) > 0
|
|
assert "_relevance_score" in result.column_names
|
|
|
|
# with vector_column_name
|
|
result = (
|
|
table.search(query_type="hybrid", vector_column_name="vector")
|
|
.vector(vector_query)
|
|
.text("Arrrrggghhhhhhh")
|
|
.to_arrow()
|
|
)
|
|
assert len(result) > 0
|
|
assert "_relevance_score" in result.column_names
|
|
|
|
# fail if only text or vector is provided
|
|
with pytest.raises(ValueError):
|
|
table.search(query_type="hybrid").to_list()
|
|
with pytest.raises(ValueError):
|
|
table.search(query_type="hybrid").vector(vector_query).to_list()
|
|
with pytest.raises(ValueError):
|
|
table.search(query_type="hybrid").text("Arrrrggghhhhhhh").to_list()
|
|
|
|
|
|
def test_hybrid_search_metric_type(tmp_db: DBConnection):
|
|
# This test uses an FTS index
|
|
pytest.importorskip("lancedb.fts")
|
|
|
|
# Need to use nonnorm as the embedding function so L2 and dot results
|
|
# are different
|
|
table, _, _ = setup_hybrid_search_table(tmp_db, "nonnorm")
|
|
|
|
# with custom metric
|
|
result_dot = (
|
|
table.search("feeling lucky", query_type="hybrid").metric("dot").to_arrow()
|
|
)
|
|
result_l2 = table.search("feeling lucky", query_type="hybrid").to_arrow()
|
|
assert len(result_dot) > 0
|
|
assert len(result_l2) > 0
|
|
assert result_dot["_relevance_score"] != result_l2["_relevance_score"]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"consistency_interval", [None, timedelta(seconds=0), timedelta(seconds=0.1)]
|
|
)
|
|
def test_consistency(tmp_path, consistency_interval):
|
|
db = lancedb.connect(tmp_path)
|
|
table = db.create_table("my_table", data=[{"id": 0}])
|
|
|
|
db2 = lancedb.connect(tmp_path, read_consistency_interval=consistency_interval)
|
|
table2 = db2.open_table("my_table")
|
|
if consistency_interval is not None:
|
|
assert "read_consistency_interval=datetime.timedelta(" in repr(db2)
|
|
assert "read_consistency_interval=datetime.timedelta(" in repr(table2)
|
|
assert table2.version == table.version
|
|
|
|
table.add([{"id": 1}])
|
|
|
|
if consistency_interval is None:
|
|
assert table2.version == table.version - 1
|
|
table2.checkout_latest()
|
|
assert table2.version == table.version
|
|
elif consistency_interval == timedelta(seconds=0):
|
|
assert table2.version == table.version
|
|
else:
|
|
# (consistency_interval == timedelta(seconds=0.1)
|
|
assert table2.version == table.version - 1
|
|
sleep(0.1)
|
|
assert table2.version == table.version
|
|
|
|
|
|
def test_restore_consistency(tmp_path):
|
|
db = lancedb.connect(tmp_path)
|
|
table = db.create_table("my_table", data=[{"id": 0}])
|
|
assert table.version == 1
|
|
|
|
db2 = lancedb.connect(tmp_path, read_consistency_interval=timedelta(seconds=0))
|
|
table2 = db2.open_table("my_table")
|
|
assert table2.version == table.version
|
|
|
|
# If we call checkout, it should lose consistency
|
|
table2.checkout(table.version)
|
|
table.add([{"id": 2}])
|
|
assert table2.version == 1
|
|
# But if we call checkout_latest, it should be consistent again
|
|
table2.checkout_latest()
|
|
assert table2.version == table.version
|
|
|
|
|
|
# Schema evolution
|
|
def test_add_columns(mem_db: DBConnection):
|
|
data = pa.table({"id": [0, 1]})
|
|
table = LanceTable.create(mem_db, "my_table", data=data)
|
|
table.add_columns({"new_col": "id + 2"})
|
|
assert table.to_arrow().column_names == ["id", "new_col"]
|
|
assert table.to_arrow()["new_col"].to_pylist() == [2, 3]
|
|
|
|
table.add_columns({"null_int": "cast(null as bigint)"})
|
|
assert table.schema.field("null_int").type == pa.int64()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_add_columns_async(mem_db_async: AsyncConnection):
|
|
data = pa.table({"id": [0, 1]})
|
|
table = await mem_db_async.create_table("my_table", data=data)
|
|
await table.add_columns({"new_col": "id + 2"})
|
|
data = await table.to_arrow()
|
|
assert data.column_names == ["id", "new_col"]
|
|
assert data["new_col"].to_pylist() == [2, 3]
|
|
|
|
|
|
def test_alter_columns(mem_db: DBConnection):
|
|
data = pa.table({"id": [0, 1]})
|
|
table = mem_db.create_table("my_table", data=data)
|
|
table.alter_columns({"path": "id", "rename": "new_id"})
|
|
assert table.to_arrow().column_names == ["new_id"]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_alter_columns_async(mem_db_async: AsyncConnection):
|
|
data = pa.table({"id": [0, 1]})
|
|
table = await mem_db_async.create_table("my_table", data=data)
|
|
await table.alter_columns({"path": "id", "rename": "new_id"})
|
|
assert (await table.to_arrow()).column_names == ["new_id"]
|
|
await table.alter_columns(dict(path="new_id", data_type=pa.int16(), nullable=True))
|
|
data = await table.to_arrow()
|
|
assert data.column(0).type == pa.int16()
|
|
assert data.schema.field(0).nullable
|
|
|
|
|
|
def test_drop_columns(mem_db: DBConnection):
|
|
data = pa.table({"id": [0, 1], "category": ["a", "b"]})
|
|
table = mem_db.create_table("my_table", data=data)
|
|
table.drop_columns(["category"])
|
|
assert table.to_arrow().column_names == ["id"]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_drop_columns_async(mem_db_async: AsyncConnection):
|
|
data = pa.table({"id": [0, 1], "category": ["a", "b"]})
|
|
table = await mem_db_async.create_table("my_table", data=data)
|
|
await table.drop_columns(["category"])
|
|
assert (await table.to_arrow()).column_names == ["id"]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_time_travel(mem_db_async: AsyncConnection):
|
|
# Setup
|
|
table = await mem_db_async.create_table("some_table", data=[{"id": 0}])
|
|
version = await table.version()
|
|
await table.add([{"id": 1}])
|
|
assert await table.count_rows() == 2
|
|
# Make sure we can rewind
|
|
await table.checkout(version)
|
|
assert await table.count_rows() == 1
|
|
# Can't add data in time travel mode
|
|
with pytest.raises(
|
|
ValueError,
|
|
match="table cannot be modified when a specific version is checked out",
|
|
):
|
|
await table.add([{"id": 2}])
|
|
# Can go back to normal mode
|
|
await table.checkout_latest()
|
|
assert await table.count_rows() == 2
|
|
# Should be able to add data again
|
|
await table.add([{"id": 3}])
|
|
assert await table.count_rows() == 3
|
|
# Now checkout and restore
|
|
await table.checkout(version)
|
|
await table.restore()
|
|
assert await table.count_rows() == 1
|
|
# Should be able to add data
|
|
await table.add([{"id": 4}])
|
|
assert await table.count_rows() == 2
|
|
# Can't use restore if not checked out
|
|
with pytest.raises(ValueError, match="checkout before running restore"):
|
|
await table.restore()
|
|
|
|
|
|
def test_sync_optimize(mem_db: DBConnection):
|
|
table = mem_db.create_table(
|
|
"test",
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
],
|
|
)
|
|
|
|
table.create_scalar_index("price", index_type="BTREE")
|
|
stats = table.index_stats("price_idx")
|
|
assert stats["num_indexed_rows"] == 2
|
|
|
|
table.add([{"vector": [2.0, 2.0], "item": "baz", "price": 30.0}])
|
|
assert table.count_rows() == 3
|
|
table.optimize()
|
|
stats = table.index_stats("price_idx")
|
|
assert stats["num_indexed_rows"] == 3
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_sync_optimize_in_async(mem_db: DBConnection):
|
|
table = mem_db.create_table(
|
|
"test",
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
],
|
|
)
|
|
|
|
table.create_scalar_index("price", index_type="BTREE")
|
|
stats = table.index_stats("price_idx")
|
|
assert stats["num_indexed_rows"] == 2
|
|
|
|
table.add([{"vector": [2.0, 2.0], "item": "baz", "price": 30.0}])
|
|
assert table.count_rows() == 3
|
|
table.optimize()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_optimize(mem_db_async: AsyncConnection):
|
|
table = await mem_db_async.create_table(
|
|
"test",
|
|
data=[{"x": [1]}],
|
|
)
|
|
await table.add(
|
|
data=[
|
|
{"x": [2]},
|
|
],
|
|
)
|
|
stats = await table.optimize()
|
|
expected = (
|
|
"OptimizeStats(compaction=CompactionStats { fragments_removed: 2, "
|
|
"fragments_added: 1, files_removed: 2, files_added: 1 }, "
|
|
"prune=RemovalStats { bytes_removed: 0, old_versions_removed: 0 })"
|
|
)
|
|
assert str(stats) == expected
|
|
assert stats.compaction.files_removed == 2
|
|
assert stats.compaction.files_added == 1
|
|
assert stats.compaction.fragments_added == 1
|
|
assert stats.compaction.fragments_removed == 2
|
|
assert stats.prune.bytes_removed == 0
|
|
assert stats.prune.old_versions_removed == 0
|
|
|
|
stats = await table.optimize(cleanup_older_than=timedelta(seconds=0))
|
|
assert stats.prune.bytes_removed > 0
|
|
assert stats.prune.old_versions_removed == 3
|
|
|
|
assert await table.query().to_arrow() == pa.table({"x": [[1], [2]]})
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_optimize_delete_unverified(tmp_db_async: AsyncConnection, tmp_path):
|
|
table = await tmp_db_async.create_table(
|
|
"test",
|
|
data=[{"x": [1]}],
|
|
)
|
|
await table.add(
|
|
data=[
|
|
{"x": [2]},
|
|
],
|
|
)
|
|
version = await table.version()
|
|
path = tmp_path / "test.lance" / "_versions" / f"{version - 1}.manifest"
|
|
os.remove(path)
|
|
stats = await table.optimize(delete_unverified=False)
|
|
assert stats.prune.old_versions_removed == 0
|
|
stats = await table.optimize(
|
|
cleanup_older_than=timedelta(seconds=0), delete_unverified=True
|
|
)
|
|
assert stats.prune.old_versions_removed == 2
|