Files
lancedb/nodejs/lancedb/embedding/openai.ts
Will Jones 7ac5f74c80 feat!: add variable store to embeddings registry (#2112)
BREAKING CHANGE: embedding function implementations in Node need to now
call `resolveVariables()` in their constructors and should **not**
implement `toJSON()`.

This tries to address the handling of secrets. In Node, they are
currently lost. In Python, they are currently leaked into the table
schema metadata.

This PR introduces an in-memory variable store on the function registry.
It also allows embedding function definitions to label certain config
values as "sensitive", and the preprocessing logic will raise an error
if users try to pass in hard-coded values.

Closes #2110
Closes #521

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-02-24 15:52:19 -08:00

103 lines
2.6 KiB
TypeScript

// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import type OpenAI from "openai";
import type { EmbeddingCreateParams } from "openai/resources/index";
import { Float, Float32 } from "../arrow";
import { EmbeddingFunction } from "./embedding_function";
import { register } from "./registry";
export type OpenAIOptions = {
apiKey: string;
model: EmbeddingCreateParams["model"];
};
@register("openai")
export class OpenAIEmbeddingFunction extends EmbeddingFunction<
string,
Partial<OpenAIOptions>
> {
#openai: OpenAI;
#modelName: OpenAIOptions["model"];
constructor(
optionsRaw: Partial<OpenAIOptions> = {
model: "text-embedding-ada-002",
},
) {
super();
const options = this.resolveVariables(optionsRaw);
const openAIKey = options?.apiKey ?? process.env.OPENAI_API_KEY;
if (!openAIKey) {
throw new Error("OpenAI API key is required");
}
const modelName = options?.model ?? "text-embedding-ada-002";
/**
* @type {import("openai").default}
*/
// eslint-disable-next-line @typescript-eslint/naming-convention
let Openai;
try {
// eslint-disable-next-line @typescript-eslint/no-var-requires
Openai = require("openai");
} catch {
throw new Error("please install openai@^4.24.1 using npm install openai");
}
const configuration = {
apiKey: openAIKey,
};
this.#openai = new Openai(configuration);
this.#modelName = modelName;
}
protected getSensitiveKeys(): string[] {
return ["apiKey"];
}
ndims(): number {
switch (this.#modelName) {
case "text-embedding-ada-002":
return 1536;
case "text-embedding-3-large":
return 3072;
case "text-embedding-3-small":
return 1536;
default:
throw new Error(`Unknown model: ${this.#modelName}`);
}
}
embeddingDataType(): Float {
return new Float32();
}
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
const response = await this.#openai.embeddings.create({
model: this.#modelName,
input: data,
});
const embeddings: number[][] = [];
for (let i = 0; i < response.data.length; i++) {
embeddings.push(response.data[i].embedding);
}
return embeddings;
}
async computeQueryEmbeddings(data: string): Promise<number[]> {
if (typeof data !== "string") {
throw new Error("Data must be a string");
}
const response = await this.#openai.embeddings.create({
model: this.#modelName,
input: data,
});
return response.data[0].embedding;
}
}