mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-10 22:02:58 +00:00
- Rename safe_import -> attempt_import_or_raise (closes https://github.com/lancedb/lancedb/pull/923) - Update docs - Add Notebook example (@changhiskhan you can use it for the talk. Comes with "open in colab" button) - Latency benchmark & results comparison, sanity check on real-world data - Updates the default openai model to gpt-4
82 lines
2.7 KiB
Python
82 lines
2.7 KiB
Python
import os
|
|
from functools import cached_property
|
|
from typing import Union
|
|
|
|
import pyarrow as pa
|
|
|
|
from ..util import attempt_import_or_raise
|
|
from .base import Reranker
|
|
|
|
|
|
class CohereReranker(Reranker):
|
|
"""
|
|
Reranks the results using the Cohere Rerank API.
|
|
https://docs.cohere.com/docs/rerank-guide
|
|
|
|
Parameters
|
|
----------
|
|
model_name : str, default "rerank-english-v2.0"
|
|
The name of the cross encoder model to use. Available cohere models are:
|
|
- rerank-english-v2.0
|
|
- rerank-multilingual-v2.0
|
|
column : str, default "text"
|
|
The name of the column to use as input to the cross encoder model.
|
|
top_n : str, default None
|
|
The number of results to return. If None, will return all results.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_name: str = "rerank-english-v2.0",
|
|
column: str = "text",
|
|
top_n: Union[int, None] = None,
|
|
return_score="relevance",
|
|
api_key: Union[str, None] = None,
|
|
):
|
|
super().__init__(return_score)
|
|
self.model_name = model_name
|
|
self.column = column
|
|
self.top_n = top_n
|
|
self.api_key = api_key
|
|
|
|
@cached_property
|
|
def _client(self):
|
|
cohere = attempt_import_or_raise("cohere")
|
|
if os.environ.get("COHERE_API_KEY") is None and self.api_key is None:
|
|
raise ValueError(
|
|
"COHERE_API_KEY not set. Either set it in your environment or \
|
|
pass it as `api_key` argument to the CohereReranker."
|
|
)
|
|
return cohere.Client(os.environ.get("COHERE_API_KEY") or self.api_key)
|
|
|
|
def rerank_hybrid(
|
|
self,
|
|
query: str,
|
|
vector_results: pa.Table,
|
|
fts_results: pa.Table,
|
|
):
|
|
combined_results = self.merge_results(vector_results, fts_results)
|
|
docs = combined_results[self.column].to_pylist()
|
|
results = self._client.rerank(
|
|
query=query,
|
|
documents=docs,
|
|
top_n=self.top_n,
|
|
model=self.model_name,
|
|
) # returns list (text, idx, relevance) attributes sorted descending by score
|
|
indices, scores = list(
|
|
zip(*[(result.index, result.relevance_score) for result in results])
|
|
) # tuples
|
|
combined_results = combined_results.take(list(indices))
|
|
# add the scores
|
|
combined_results = combined_results.append_column(
|
|
"_relevance_score", pa.array(scores, type=pa.float32())
|
|
)
|
|
|
|
if self.score == "relevance":
|
|
combined_results = combined_results.drop_columns(["score", "_distance"])
|
|
elif self.score == "all":
|
|
raise NotImplementedError(
|
|
"return_score='all' not implemented for cohere reranker"
|
|
)
|
|
return combined_results
|