Files
lancedb/node/src/test/test.ts

226 lines
7.7 KiB
TypeScript

// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { describe } from 'mocha'
import { assert } from 'chai'
import { track } from 'temp'
import * as lancedb from '../index'
import { type EmbeddingFunction, MetricType, Query } from '../index'
describe('LanceDB client', function () {
describe('when creating a connection to lancedb', function () {
it('should have a valid url', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
assert.equal(con.uri, uri)
})
it('should return the existing table names', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
assert.deepEqual(await con.tableNames(), ['vectors'])
})
})
describe('when querying an existing dataset', function () {
it('should open a table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(table.name, 'vectors')
})
it('execute a query', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 2)
assert.equal(results[0].price, 10)
const vector = results[0].vector as Float32Array
assert.approximately(vector[0], 0.0, 0.2)
assert.approximately(vector[0], 0.1, 0.3)
})
it('limits # of results', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.3]).limit(1).execute()
assert.equal(results.length, 1)
assert.equal(results[0].id, 1)
})
it('uses a filter', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).filter('id == 2').execute()
assert.equal(results.length, 1)
assert.equal(results[0].id, 2)
})
it('select only a subset of columns', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
assert.equal(results.length, 2)
// vector and score are always returned
assert.isDefined(results[0].vector)
assert.isDefined(results[0].score)
assert.isDefined(results[0].is_active)
assert.isUndefined(results[0].id)
assert.isUndefined(results[0].name)
assert.isUndefined(results[0].price)
})
})
describe('when creating a new dataset', function () {
it('creates a new table from javascript objects', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, vector: [0.1, 0.2], price: 10 },
{ id: 2, vector: [1.1, 1.2], price: 50 }
]
const tableName = `vectors_${Math.floor(Math.random() * 100)}`
const table = await con.createTable(tableName, data)
assert.equal(table.name, tableName)
const results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 2)
})
it('appends records to an existing table ', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, vector: [0.1, 0.2], price: 10, name: 'a' },
{ id: 2, vector: [1.1, 1.2], price: 50, name: 'b' }
]
const table = await con.createTable('vectors', data)
const results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 2)
const dataAdd = [
{ id: 3, vector: [2.1, 2.2], price: 10, name: 'c' },
{ id: 4, vector: [3.1, 3.2], price: 50, name: 'd' }
]
await table.add(dataAdd)
const resultsAdd = await table.search([0.1, 0.3]).execute()
assert.equal(resultsAdd.length, 4)
})
it('overwrite all records in a table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 2)
const dataOver = [
{ vector: [2.1, 2.2], price: 10, name: 'foo' },
{ vector: [3.1, 3.2], price: 50, name: 'bar' }
]
await table.overwrite(dataOver)
const resultsAdd = await table.search([0.1, 0.3]).execute()
assert.equal(resultsAdd.length, 2)
})
})
describe('when creating a vector index', function () {
it('overwrite all records in a table', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 })
}).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow
})
describe('when using a custom embedding function', function () {
class TextEmbedding implements EmbeddingFunction<string> {
sourceColumn: string
constructor (targetColumn: string) {
this.sourceColumn = targetColumn
}
_embedding_map = new Map<string, number[]>([
['foo', [2.1, 2.2]],
['bar', [3.1, 3.2]]
])
async embed (data: string[]): Promise<number[][]> {
return data.map(datum => this._embedding_map.get(datum) ?? [0.0, 0.0])
}
}
it('should encode the original data into embeddings', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const embeddings = new TextEmbedding('name')
const data = [
{ price: 10, name: 'foo' },
{ price: 50, name: 'bar' }
]
const table = await con.createTable('vectors', data, embeddings)
const results = await table.search('foo').execute()
assert.equal(results.length, 2)
})
})
})
describe('Query object', function () {
it('sets custom parameters', async function () {
const query = new Query(undefined, [0.1, 0.3])
.limit(1)
.metricType(MetricType.Cosine)
.refineFactor(100)
.select(['a', 'b'])
.nprobes(20) as Record<string, any>
assert.equal(query._limit, 1)
assert.equal(query._metricType, MetricType.Cosine)
assert.equal(query._refineFactor, 100)
assert.equal(query._nprobes, 20)
assert.deepEqual(query._select, ['a', 'b'])
})
})
async function createTestDB (numDimensions: number = 2, numRows: number = 2): Promise<string> {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = []
for (let i = 0; i < numRows; i++) {
const vector = []
for (let j = 0; j < numDimensions; j++) {
vector.push(i + (j * 0.1))
}
data.push({ id: i + 1, name: `name_${i}`, price: i + 10, is_active: (i % 2 === 0), vector })
}
await con.createTable('vectors', data)
return dir
}