mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-25 06:19:57 +00:00
75 lines
2.2 KiB
Python
75 lines
2.2 KiB
Python
# Copyright 2023 LanceDB Developers
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import lance
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pandas.testing as tm
|
|
import pyarrow as pa
|
|
import pytest
|
|
from lancedb.query import LanceQueryBuilder
|
|
|
|
|
|
class MockTable:
|
|
def __init__(self, tmp_path):
|
|
self.uri = tmp_path
|
|
|
|
def to_lance(self):
|
|
return lance.dataset(self.uri)
|
|
|
|
|
|
@pytest.fixture
|
|
def table(tmp_path) -> MockTable:
|
|
df = pa.table(
|
|
{
|
|
"vector": pa.array(
|
|
[[1, 2], [3, 4]], type=pa.list_(pa.float32(), list_size=2)
|
|
),
|
|
"id": pa.array([1, 2]),
|
|
"str_field": pa.array(["a", "b"]),
|
|
"float_field": pa.array([1.0, 2.0]),
|
|
}
|
|
)
|
|
lance.write_dataset(df, tmp_path)
|
|
return MockTable(tmp_path)
|
|
|
|
|
|
def test_query_builder(table):
|
|
df = LanceQueryBuilder(table, [0, 0]).limit(1).select(["id"]).to_df()
|
|
assert df["id"].values[0] == 1
|
|
assert all(df["vector"].values[0] == [1, 2])
|
|
|
|
|
|
def test_query_builder_with_filter(table):
|
|
df = LanceQueryBuilder(table, [0, 0]).where("id = 2").to_df()
|
|
assert df["id"].values[0] == 2
|
|
assert all(df["vector"].values[0] == [3, 4])
|
|
|
|
|
|
def test_query_builder_with_metric(table):
|
|
query = [4, 8]
|
|
df_default = LanceQueryBuilder(table, query).to_df()
|
|
df_l2 = LanceQueryBuilder(table, query).metric("L2").to_df()
|
|
tm.assert_frame_equal(df_default, df_l2)
|
|
|
|
df_cosine = LanceQueryBuilder(table, query).metric("cosine").limit(1).to_df()
|
|
assert df_cosine.score[0] == pytest.approx(
|
|
cosine_distance(query, df_cosine.vector[0]),
|
|
abs=1e-6,
|
|
)
|
|
assert 0 <= df_cosine.score[0] <= 1
|
|
|
|
|
|
def cosine_distance(vec1, vec2):
|
|
return 1 - np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
|