mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-10 22:02:58 +00:00
716 lines
23 KiB
Python
716 lines
23 KiB
Python
# Copyright 2023 LanceDB Developers
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
import os
|
|
from abc import ABC, abstractmethod
|
|
from functools import cached_property
|
|
from typing import Iterable, List, Union
|
|
|
|
import lance
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pyarrow as pa
|
|
import pyarrow.compute as pc
|
|
import pyarrow.fs
|
|
from lance import LanceDataset
|
|
from lance.vector import vec_to_table
|
|
|
|
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
|
from .query import LanceFtsQueryBuilder, LanceQueryBuilder, Query
|
|
|
|
|
|
def _sanitize_data(data, schema, on_bad_vectors, fill_value):
|
|
if isinstance(data, list):
|
|
data = pa.Table.from_pylist(data)
|
|
data = _sanitize_schema(
|
|
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
|
)
|
|
if isinstance(data, dict):
|
|
data = vec_to_table(data)
|
|
if isinstance(data, pd.DataFrame):
|
|
data = pa.Table.from_pandas(data)
|
|
data = _sanitize_schema(
|
|
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
|
)
|
|
if not isinstance(data, (pa.Table, Iterable)):
|
|
raise TypeError(f"Unsupported data type: {type(data)}")
|
|
return data
|
|
|
|
|
|
class Table(ABC):
|
|
"""
|
|
A [Table](Table) is a collection of Records in a LanceDB [Database](Database).
|
|
|
|
Examples
|
|
--------
|
|
|
|
Create using [DBConnection.create_table][lancedb.DBConnection.create_table]
|
|
(more examples in that method's documentation).
|
|
|
|
>>> import lancedb
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2}])
|
|
>>> table.head()
|
|
pyarrow.Table
|
|
vector: fixed_size_list<item: float>[2]
|
|
child 0, item: float
|
|
b: int64
|
|
----
|
|
vector: [[[1.1,1.2]]]
|
|
b: [[2]]
|
|
|
|
Can append new data with [Table.add()][lancedb.table.Table.add].
|
|
|
|
>>> table.add([{"vector": [0.5, 1.3], "b": 4}])
|
|
|
|
Can query the table with [Table.search][lancedb.table.Table.search].
|
|
|
|
>>> table.search([0.4, 0.4]).select(["b"]).to_df()
|
|
b vector score
|
|
0 4 [0.5, 1.3] 0.82
|
|
1 2 [1.1, 1.2] 1.13
|
|
|
|
Search queries are much faster when an index is created. See
|
|
[Table.create_index][lancedb.table.Table.create_index].
|
|
"""
|
|
|
|
@abstractmethod
|
|
def schema(self) -> pa.Schema:
|
|
"""Return the [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of
|
|
this [Table](Table)
|
|
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def to_pandas(self) -> pd.DataFrame:
|
|
"""Return the table as a pandas DataFrame.
|
|
|
|
Returns
|
|
-------
|
|
pd.DataFrame
|
|
"""
|
|
return self.to_arrow().to_pandas()
|
|
|
|
@abstractmethod
|
|
def to_arrow(self) -> pa.Table:
|
|
"""Return the table as a pyarrow Table.
|
|
|
|
Returns
|
|
-------
|
|
pa.Table
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def create_index(
|
|
self,
|
|
metric="L2",
|
|
num_partitions=256,
|
|
num_sub_vectors=96,
|
|
vector_column_name: str = VECTOR_COLUMN_NAME,
|
|
replace: bool = True,
|
|
):
|
|
"""Create an index on the table.
|
|
|
|
Parameters
|
|
----------
|
|
metric: str, default "L2"
|
|
The distance metric to use when creating the index.
|
|
Valid values are "L2", "cosine", or "dot".
|
|
L2 is euclidean distance.
|
|
num_partitions: int
|
|
The number of IVF partitions to use when creating the index.
|
|
Default is 256.
|
|
num_sub_vectors: int
|
|
The number of PQ sub-vectors to use when creating the index.
|
|
Default is 96.
|
|
vector_column_name: str, default "vector"
|
|
The vector column name to create the index.
|
|
replace: bool, default True
|
|
If True, replace the existing index if it exists.
|
|
If False, raise an error if duplicate index exists.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def add(
|
|
self,
|
|
data: DATA,
|
|
mode: str = "append",
|
|
on_bad_vectors: str = "error",
|
|
fill_value: float = 0.0,
|
|
):
|
|
"""Add more data to the [Table](Table).
|
|
|
|
Parameters
|
|
----------
|
|
data: list-of-dict, dict, pd.DataFrame
|
|
The data to insert into the table.
|
|
mode: str
|
|
The mode to use when writing the data. Valid values are
|
|
"append" and "overwrite".
|
|
on_bad_vectors: str, default "error"
|
|
What to do if any of the vectors are not the same size or contains NaNs.
|
|
One of "error", "drop", "fill".
|
|
fill_value: float, default 0.
|
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
|
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def search(
|
|
self, query: Union[VEC, str], vector_column: str = VECTOR_COLUMN_NAME
|
|
) -> LanceQueryBuilder:
|
|
"""Create a search query to find the nearest neighbors
|
|
of the given query vector.
|
|
|
|
Parameters
|
|
----------
|
|
query: list, np.ndarray
|
|
The query vector.
|
|
vector_column: str, default "vector"
|
|
The name of the vector column to search.
|
|
|
|
Returns
|
|
-------
|
|
LanceQueryBuilder
|
|
A query builder object representing the query.
|
|
Once executed, the query returns selected columns, the vector,
|
|
and also the "score" column which is the distance between the query
|
|
vector and the returned vector.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def _execute_query(self, query: Query) -> pa.Table:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def delete(self, where: str):
|
|
"""Delete rows from the table.
|
|
|
|
This can be used to delete a single row, many rows, all rows, or
|
|
sometimes no rows (if your predicate matches nothing).
|
|
|
|
Parameters
|
|
----------
|
|
where: str
|
|
The SQL where clause to use when deleting rows. For example, 'x = 2'
|
|
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> import pandas as pd
|
|
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", data)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 1 [1.0, 2.0]
|
|
1 2 [3.0, 4.0]
|
|
2 3 [5.0, 6.0]
|
|
>>> table.delete("x = 2")
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 1 [1.0, 2.0]
|
|
1 3 [5.0, 6.0]
|
|
|
|
If you have a list of values to delete, you can combine them into a
|
|
stringified list and use the `IN` operator:
|
|
|
|
>>> to_remove = [1, 5]
|
|
>>> to_remove = ", ".join([str(v) for v in to_remove])
|
|
>>> to_remove
|
|
'1, 5'
|
|
>>> table.delete(f"x IN ({to_remove})")
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 3 [5.0, 6.0]
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
|
|
class LanceTable(Table):
|
|
"""
|
|
A table in a LanceDB database.
|
|
"""
|
|
|
|
def __init__(
|
|
self, connection: "lancedb.db.LanceDBConnection", name: str, version: int = None
|
|
):
|
|
self._conn = connection
|
|
self.name = name
|
|
self._version = version
|
|
|
|
def _reset_dataset(self):
|
|
try:
|
|
if "_dataset" in self.__dict__:
|
|
del self.__dict__["_dataset"]
|
|
except AttributeError:
|
|
pass
|
|
|
|
@property
|
|
def schema(self) -> pa.Schema:
|
|
"""Return the schema of the table.
|
|
|
|
Returns
|
|
-------
|
|
pa.Schema
|
|
A PyArrow schema object."""
|
|
return self._dataset.schema
|
|
|
|
def list_versions(self):
|
|
"""List all versions of the table"""
|
|
return self._dataset.versions()
|
|
|
|
@property
|
|
def version(self) -> int:
|
|
"""Get the current version of the table"""
|
|
return self._dataset.version
|
|
|
|
def checkout(self, version: int):
|
|
"""Checkout a version of the table. This is an in-place operation.
|
|
|
|
This allows viewing previous versions of the table.
|
|
|
|
Parameters
|
|
----------
|
|
version : int
|
|
The version to checkout.
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}])
|
|
>>> table.version
|
|
1
|
|
>>> table.to_pandas()
|
|
vector type
|
|
0 [1.1, 0.9] vector
|
|
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
|
|
>>> table.version
|
|
2
|
|
>>> table.checkout(1)
|
|
>>> table.to_pandas()
|
|
vector type
|
|
0 [1.1, 0.9] vector
|
|
"""
|
|
max_ver = max([v["version"] for v in self._dataset.versions()])
|
|
if version < 1 or version > max_ver:
|
|
raise ValueError(f"Invalid version {version}")
|
|
self._version = version
|
|
self._reset_dataset()
|
|
|
|
def __len__(self):
|
|
return self._dataset.count_rows()
|
|
|
|
def __repr__(self) -> str:
|
|
return f"LanceTable({self.name})"
|
|
|
|
def __str__(self) -> str:
|
|
return self.__repr__()
|
|
|
|
def head(self, n=5) -> pa.Table:
|
|
"""Return the first n rows of the table."""
|
|
return self._dataset.head(n)
|
|
|
|
def to_pandas(self) -> pd.DataFrame:
|
|
"""Return the table as a pandas DataFrame.
|
|
|
|
Returns
|
|
-------
|
|
pd.DataFrame
|
|
"""
|
|
return self.to_arrow().to_pandas()
|
|
|
|
def to_arrow(self) -> pa.Table:
|
|
"""Return the table as a pyarrow Table.
|
|
|
|
Returns
|
|
-------
|
|
pa.Table"""
|
|
return self._dataset.to_table()
|
|
|
|
@property
|
|
def _dataset_uri(self) -> str:
|
|
return os.path.join(self._conn.uri, f"{self.name}.lance")
|
|
|
|
def create_index(
|
|
self,
|
|
metric="L2",
|
|
num_partitions=256,
|
|
num_sub_vectors=96,
|
|
vector_column_name=VECTOR_COLUMN_NAME,
|
|
replace: bool = True,
|
|
):
|
|
"""Create an index on the table."""
|
|
self._dataset.create_index(
|
|
column=vector_column_name,
|
|
index_type="IVF_PQ",
|
|
metric=metric,
|
|
num_partitions=num_partitions,
|
|
num_sub_vectors=num_sub_vectors,
|
|
replace=replace,
|
|
)
|
|
self._reset_dataset()
|
|
|
|
def create_fts_index(self, field_names: Union[str, List[str]]):
|
|
"""Create a full-text search index on the table.
|
|
|
|
Warning - this API is highly experimental and is highly likely to change
|
|
in the future.
|
|
|
|
Parameters
|
|
----------
|
|
field_names: str or list of str
|
|
The name(s) of the field to index.
|
|
"""
|
|
from .fts import create_index, populate_index
|
|
|
|
if isinstance(field_names, str):
|
|
field_names = [field_names]
|
|
index = create_index(self._get_fts_index_path(), field_names)
|
|
populate_index(index, self, field_names)
|
|
|
|
def _get_fts_index_path(self):
|
|
return os.path.join(self._dataset_uri, "_indices", "tantivy")
|
|
|
|
@cached_property
|
|
def _dataset(self) -> LanceDataset:
|
|
return lance.dataset(self._dataset_uri, version=self._version)
|
|
|
|
def to_lance(self) -> LanceDataset:
|
|
"""Return the LanceDataset backing this table."""
|
|
return self._dataset
|
|
|
|
def add(
|
|
self,
|
|
data: DATA,
|
|
mode: str = "append",
|
|
on_bad_vectors: str = "error",
|
|
fill_value: float = 0.0,
|
|
):
|
|
"""Add data to the table.
|
|
|
|
Parameters
|
|
----------
|
|
data: list-of-dict, dict, pd.DataFrame
|
|
The data to insert into the table.
|
|
mode: str
|
|
The mode to use when writing the data. Valid values are
|
|
"append" and "overwrite".
|
|
on_bad_vectors: str, default "error"
|
|
What to do if any of the vectors are not the same size or contains NaNs.
|
|
One of "error", "drop", "fill".
|
|
fill_value: float, default 0.
|
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
|
|
|
Returns
|
|
-------
|
|
int
|
|
The number of vectors in the table.
|
|
"""
|
|
# TODO: manage table listing and metadata separately
|
|
data = _sanitize_data(
|
|
data, self.schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
|
)
|
|
lance.write_dataset(data, self._dataset_uri, mode=mode)
|
|
self._reset_dataset()
|
|
|
|
def search(
|
|
self, query: Union[VEC, str], vector_column_name=VECTOR_COLUMN_NAME
|
|
) -> LanceQueryBuilder:
|
|
"""Create a search query to find the nearest neighbors
|
|
of the given query vector.
|
|
|
|
Parameters
|
|
----------
|
|
query: list, np.ndarray
|
|
The query vector.
|
|
vector_column_name: str, default "vector"
|
|
The name of the vector column to search.
|
|
|
|
Returns
|
|
-------
|
|
LanceQueryBuilder
|
|
A query builder object representing the query.
|
|
Once executed, the query returns selected columns, the vector,
|
|
and also the "score" column which is the distance between the query
|
|
vector and the returned vector.
|
|
"""
|
|
if isinstance(query, str):
|
|
# fts
|
|
return LanceFtsQueryBuilder(self, query, vector_column_name)
|
|
|
|
if isinstance(query, list):
|
|
query = np.array(query)
|
|
if isinstance(query, np.ndarray):
|
|
query = query.astype(np.float32)
|
|
else:
|
|
raise TypeError(f"Unsupported query type: {type(query)}")
|
|
return LanceQueryBuilder(self, query, vector_column_name)
|
|
|
|
@classmethod
|
|
def create(
|
|
cls,
|
|
db,
|
|
name,
|
|
data=None,
|
|
schema=None,
|
|
mode="create",
|
|
on_bad_vectors: str = "error",
|
|
fill_value: float = 0.0,
|
|
):
|
|
"""
|
|
Create a new table.
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> import pandas as pd
|
|
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", data)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 1 [1.0, 2.0]
|
|
1 2 [3.0, 4.0]
|
|
2 3 [5.0, 6.0]
|
|
|
|
Parameters
|
|
----------
|
|
db: LanceDB
|
|
The LanceDB instance to create the table in.
|
|
name: str
|
|
The name of the table to create.
|
|
data: list-of-dict, dict, pd.DataFrame, default None
|
|
The data to insert into the table.
|
|
At least one of `data` or `schema` must be provided.
|
|
schema: dict, optional
|
|
The schema of the table. If not provided, the schema is inferred from the data.
|
|
At least one of `data` or `schema` must be provided.
|
|
mode: str, default "create"
|
|
The mode to use when writing the data. Valid values are
|
|
"create", "overwrite", and "append".
|
|
on_bad_vectors: str, default "error"
|
|
What to do if any of the vectors are not the same size or contains NaNs.
|
|
One of "error", "drop", "fill".
|
|
fill_value: float, default 0.
|
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
|
"""
|
|
tbl = LanceTable(db, name)
|
|
if data is not None:
|
|
data = _sanitize_data(
|
|
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
|
)
|
|
else:
|
|
if schema is None:
|
|
raise ValueError("Either data or schema must be provided")
|
|
data = pa.Table.from_pylist([], schema=schema)
|
|
lance.write_dataset(data, tbl._dataset_uri, schema=schema, mode=mode)
|
|
return LanceTable(db, name)
|
|
|
|
@classmethod
|
|
def open(cls, db, name):
|
|
tbl = cls(db, name)
|
|
fs, path = pa.fs.FileSystem.from_uri(tbl._dataset_uri)
|
|
file_info = fs.get_file_info(path)
|
|
if file_info.type != pa.fs.FileType.Directory:
|
|
raise FileNotFoundError(
|
|
f"Table {name} does not exist. Please first call db.create_table({name}, data)"
|
|
)
|
|
return tbl
|
|
|
|
def delete(self, where: str):
|
|
self._dataset.delete(where)
|
|
|
|
def _execute_query(self, query: Query) -> pa.Table:
|
|
ds = self.to_lance()
|
|
return ds.to_table(
|
|
columns=query.columns,
|
|
filter=query.filter,
|
|
nearest={
|
|
"column": query.vector_column,
|
|
"q": query.vector,
|
|
"k": query.k,
|
|
"metric": query.metric,
|
|
"nprobes": query.nprobes,
|
|
"refine_factor": query.refine_factor,
|
|
},
|
|
)
|
|
|
|
|
|
def _sanitize_schema(
|
|
data: pa.Table,
|
|
schema: pa.Schema = None,
|
|
on_bad_vectors: str = "error",
|
|
fill_value: float = 0.0,
|
|
) -> pa.Table:
|
|
"""Ensure that the table has the expected schema.
|
|
|
|
Parameters
|
|
----------
|
|
data: pa.Table
|
|
The table to sanitize.
|
|
schema: pa.Schema; optional
|
|
The expected schema. If not provided, this just converts the
|
|
vector column to fixed_size_list(float32) if necessary.
|
|
on_bad_vectors: str, default "error"
|
|
What to do if any of the vectors are not the same size or contains NaNs.
|
|
One of "error", "drop", "fill".
|
|
fill_value: float, default 0.
|
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
|
"""
|
|
if schema is not None:
|
|
if data.schema == schema:
|
|
return data
|
|
# cast the columns to the expected types
|
|
data = data.combine_chunks()
|
|
data = _sanitize_vector_column(
|
|
data,
|
|
vector_column_name=VECTOR_COLUMN_NAME,
|
|
on_bad_vectors=on_bad_vectors,
|
|
fill_value=fill_value,
|
|
)
|
|
return pa.Table.from_arrays(
|
|
[data[name] for name in schema.names], schema=schema
|
|
)
|
|
# just check the vector column
|
|
return _sanitize_vector_column(
|
|
data,
|
|
vector_column_name=VECTOR_COLUMN_NAME,
|
|
on_bad_vectors=on_bad_vectors,
|
|
fill_value=fill_value,
|
|
)
|
|
|
|
|
|
def _sanitize_vector_column(
|
|
data: pa.Table,
|
|
vector_column_name: str,
|
|
on_bad_vectors: str = "error",
|
|
fill_value: float = 0.0,
|
|
) -> pa.Table:
|
|
"""
|
|
Ensure that the vector column exists and has type fixed_size_list(float32)
|
|
|
|
Parameters
|
|
----------
|
|
data: pa.Table
|
|
The table to sanitize.
|
|
vector_column_name: str
|
|
The name of the vector column.
|
|
on_bad_vectors: str, default "error"
|
|
What to do if any of the vectors are not the same size or contains NaNs.
|
|
One of "error", "drop", "fill".
|
|
fill_value: float, default 0.0
|
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
|
"""
|
|
if vector_column_name not in data.column_names:
|
|
raise ValueError(f"Missing vector column: {vector_column_name}")
|
|
# ChunkedArray is annoying to work with, so we combine chunks here
|
|
vec_arr = data[vector_column_name].combine_chunks()
|
|
if pa.types.is_list(data[vector_column_name].type):
|
|
# if it's a variable size list array we make sure the dimensions are all the same
|
|
has_jagged_ndims = len(vec_arr.values) % len(data) != 0
|
|
if has_jagged_ndims:
|
|
data = _sanitize_jagged(
|
|
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
|
|
)
|
|
vec_arr = data[vector_column_name].combine_chunks()
|
|
elif not pa.types.is_fixed_size_list(vec_arr.type):
|
|
raise TypeError(f"Unsupported vector column type: {vec_arr.type}")
|
|
|
|
vec_arr = ensure_fixed_size_list_of_f32(vec_arr)
|
|
data = data.set_column(
|
|
data.column_names.index(vector_column_name), vector_column_name, vec_arr
|
|
)
|
|
|
|
has_nans = pc.any(pc.is_nan(vec_arr.values)).as_py()
|
|
if has_nans:
|
|
data = _sanitize_nans(
|
|
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
|
|
)
|
|
|
|
return data
|
|
|
|
|
|
def ensure_fixed_size_list_of_f32(vec_arr):
|
|
values = vec_arr.values
|
|
if not pa.types.is_float32(values.type):
|
|
values = values.cast(pa.float32())
|
|
if pa.types.is_fixed_size_list(vec_arr.type):
|
|
list_size = vec_arr.type.list_size
|
|
else:
|
|
list_size = len(values) / len(vec_arr)
|
|
vec_arr = pa.FixedSizeListArray.from_arrays(values, list_size)
|
|
return vec_arr
|
|
|
|
|
|
def _sanitize_jagged(data, fill_value, on_bad_vectors, vec_arr, vector_column_name):
|
|
"""Sanitize jagged vectors."""
|
|
if on_bad_vectors == "error":
|
|
raise ValueError(
|
|
f"Vector column {vector_column_name} has variable length vectors "
|
|
"Set on_bad_vectors='drop' to remove them, or "
|
|
"set on_bad_vectors='fill' and fill_value=<value> to replace them."
|
|
)
|
|
|
|
lst_lengths = pc.list_value_length(vec_arr)
|
|
ndims = pc.max(lst_lengths).as_py()
|
|
correct_ndims = pc.equal(lst_lengths, ndims)
|
|
|
|
if on_bad_vectors == "fill":
|
|
if fill_value is None:
|
|
raise ValueError(
|
|
"`fill_value` must not be None if `on_bad_vectors` is 'fill'"
|
|
)
|
|
fill_arr = pa.scalar([float(fill_value)] * ndims)
|
|
vec_arr = pc.if_else(correct_ndims, vec_arr, fill_arr)
|
|
data = data.set_column(
|
|
data.column_names.index(vector_column_name), vector_column_name, vec_arr
|
|
)
|
|
elif on_bad_vectors == "drop":
|
|
data = data.filter(correct_ndims)
|
|
return data
|
|
|
|
|
|
def _sanitize_nans(data, fill_value, on_bad_vectors, vec_arr, vector_column_name):
|
|
"""Sanitize NaNs in vectors"""
|
|
if on_bad_vectors == "error":
|
|
raise ValueError(
|
|
f"Vector column {vector_column_name} has NaNs. "
|
|
"Set on_bad_vectors='drop' to remove them, or "
|
|
"set on_bad_vectors='fill' and fill_value=<value> to replace them."
|
|
)
|
|
elif on_bad_vectors == "fill":
|
|
if fill_value is None:
|
|
raise ValueError(
|
|
"`fill_value` must not be None if `on_bad_vectors` is 'fill'"
|
|
)
|
|
fill_value = float(fill_value)
|
|
values = pc.if_else(pc.is_nan(vec_arr.values), fill_value, vec_arr.values)
|
|
ndims = len(vec_arr[0])
|
|
vec_arr = pa.FixedSizeListArray.from_arrays(values, ndims)
|
|
data = data.set_column(
|
|
data.column_names.index(vector_column_name), vector_column_name, vec_arr
|
|
)
|
|
elif on_bad_vectors == "drop":
|
|
is_value_nan = pc.is_nan(vec_arr.values).to_numpy(zero_copy_only=False)
|
|
is_full = np.any(~is_value_nan.reshape(-1, vec_arr.type.list_size), axis=1)
|
|
data = data.filter(is_full)
|
|
return data
|