Files
lancedb/python/python/lancedb/conftest.py

82 lines
2.3 KiB
Python

import os
import time
import numpy as np
import pytest
from .embeddings import EmbeddingFunctionRegistry, TextEmbeddingFunction
# import lancedb so we don't have to in every example
@pytest.fixture(autouse=True)
def doctest_setup(monkeypatch, tmpdir):
# disable color for doctests so we don't have to include
# escape codes in docstrings
monkeypatch.setitem(os.environ, "NO_COLOR", "1")
# Explicitly set the column width
monkeypatch.setitem(os.environ, "COLUMNS", "80")
# Work in a temporary directory
monkeypatch.chdir(tmpdir)
registry = EmbeddingFunctionRegistry.get_instance()
@registry.register("test")
class MockTextEmbeddingFunction(TextEmbeddingFunction):
"""
Return the hash of the first 10 characters (normalized)
"""
def generate_embeddings(self, texts):
return [self._compute_one_embedding(row) for row in texts]
def _compute_one_embedding(self, row):
emb = np.array([float(hash(c)) for c in row[:10]])
emb /= np.linalg.norm(emb)
return emb if len(emb) == 10 else [0] * 10
def ndims(self):
return 10
@registry.register("nonnorm")
class MockNonNormTextEmbeddingFunction(TextEmbeddingFunction):
"""
Return the ord of the first 10 characters (not normalized)
"""
def generate_embeddings(self, texts):
return [self._compute_one_embedding(row) for row in texts]
def _compute_one_embedding(self, row):
emb = np.array([float(ord(c)) for c in row[:10]])
return emb if len(emb) == 10 else [0] * 10
def ndims(self):
return 10
class RateLimitedAPI:
rate_limit = 0.1 # 1 request per 0.1 second
last_request_time = 0
@staticmethod
def make_request():
current_time = time.time()
if current_time - RateLimitedAPI.last_request_time < RateLimitedAPI.rate_limit:
raise Exception("Rate limit exceeded. Please try again later.")
# Simulate a successful request
RateLimitedAPI.last_request_time = current_time
return "Request successful"
@registry.register("test-rate-limited")
class MockRateLimitedEmbeddingFunction(MockTextEmbeddingFunction):
def generate_embeddings(self, texts):
RateLimitedAPI.make_request()
return [self._compute_one_embedding(row) for row in texts]