Files
lancedb/python/tests/test_pydantic.py
Will Jones 5f6d13e958 ci: lint and enforce linting (#829)
@eddyxu added instructions for linting here:

7af213801a/python/README.md (L45-L50)

However, we had a lot of failures and weren't checking this in CI. This
PR fixes all lints and adds a check to CI to keep us in compliance with
the lints.
2024-04-05 16:27:31 -07:00

247 lines
7.2 KiB
Python

# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
from datetime import date, datetime
from typing import List, Optional, Tuple
import pyarrow as pa
import pydantic
import pytest
from pydantic import Field
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, Vector, pydantic_to_schema
@pytest.mark.skipif(
sys.version_info < (3, 9),
reason="using native type alias requires python3.9 or higher",
)
def test_pydantic_to_arrow():
class StructModel(pydantic.BaseModel):
a: str
b: Optional[float]
class TestModel(pydantic.BaseModel):
id: int
s: str
vec: list[float]
li: list[int]
lili: list[list[float]]
litu: list[tuple[float, float]]
opt: Optional[str] = None
st: StructModel
dt: date
dtt: datetime
dt_with_tz: datetime = Field(json_schema_extra={"tz": "Asia/Shanghai"})
# d: dict
# TODO: test we can actually convert the model into data.
# m = TestModel(
# id=1,
# s="hello",
# vec=[1.0, 2.0, 3.0],
# li=[2, 3, 4],
# lili=[[2.5, 1.5], [3.5, 4.5], [5.5, 6.5]],
# litu=[(2.5, 1.5), (3.5, 4.5), (5.5, 6.5)],
# st=StructModel(a="a", b=1.0),
# dt=date.today(),
# dtt=datetime.now(),
# dt_with_tz=datetime.now(pytz.timezone("Asia/Shanghai")),
# )
schema = pydantic_to_schema(TestModel)
expect_schema = pa.schema(
[
pa.field("id", pa.int64(), False),
pa.field("s", pa.utf8(), False),
pa.field("vec", pa.list_(pa.float64()), False),
pa.field("li", pa.list_(pa.int64()), False),
pa.field("lili", pa.list_(pa.list_(pa.float64())), False),
pa.field("litu", pa.list_(pa.list_(pa.float64())), False),
pa.field("opt", pa.utf8(), True),
pa.field(
"st",
pa.struct(
[pa.field("a", pa.utf8(), False), pa.field("b", pa.float64(), True)]
),
False,
),
pa.field("dt", pa.date32(), False),
pa.field("dtt", pa.timestamp("us"), False),
pa.field("dt_with_tz", pa.timestamp("us", tz="Asia/Shanghai"), False),
]
)
assert schema == expect_schema
@pytest.mark.skipif(
sys.version_info < (3, 10),
reason="using | type syntax requires python3.10 or higher",
)
def test_optional_types_py310():
class TestModel(pydantic.BaseModel):
a: str | None
b: None | str
c: Optional[str]
schema = pydantic_to_schema(TestModel)
expect_schema = pa.schema(
[
pa.field("a", pa.utf8(), True),
pa.field("b", pa.utf8(), True),
pa.field("c", pa.utf8(), True),
]
)
assert schema == expect_schema
@pytest.mark.skipif(
sys.version_info > (3, 8),
reason="using native type alias requires python3.9 or higher",
)
def test_pydantic_to_arrow_py38():
class StructModel(pydantic.BaseModel):
a: str
b: Optional[float]
class TestModel(pydantic.BaseModel):
id: int
s: str
vec: List[float]
li: List[int]
lili: List[List[float]]
litu: List[Tuple[float, float]]
opt: Optional[str] = None
st: StructModel
dt: date
dtt: datetime
dt_with_tz: datetime = Field(json_schema_extra={"tz": "Asia/Shanghai"})
# d: dict
# TODO: test we can actually convert the model to Arrow data.
# m = TestModel(
# id=1,
# s="hello",
# vec=[1.0, 2.0, 3.0],
# li=[2, 3, 4],
# lili=[[2.5, 1.5], [3.5, 4.5], [5.5, 6.5]],
# litu=[(2.5, 1.5), (3.5, 4.5), (5.5, 6.5)],
# st=StructModel(a="a", b=1.0),
# dt=date.today(),
# dtt=datetime.now(),
# dt_with_tz=datetime.now(pytz.timezone("Asia/Shanghai")),
# )
schema = pydantic_to_schema(TestModel)
expect_schema = pa.schema(
[
pa.field("id", pa.int64(), False),
pa.field("s", pa.utf8(), False),
pa.field("vec", pa.list_(pa.float64()), False),
pa.field("li", pa.list_(pa.int64()), False),
pa.field("lili", pa.list_(pa.list_(pa.float64())), False),
pa.field("litu", pa.list_(pa.list_(pa.float64())), False),
pa.field("opt", pa.utf8(), True),
pa.field(
"st",
pa.struct(
[pa.field("a", pa.utf8(), False), pa.field("b", pa.float64(), True)]
),
False,
),
pa.field("dt", pa.date32(), False),
pa.field("dtt", pa.timestamp("us"), False),
pa.field("dt_with_tz", pa.timestamp("us", tz="Asia/Shanghai"), False),
]
)
assert schema == expect_schema
def test_fixed_size_list_field():
class TestModel(pydantic.BaseModel):
vec: Vector(16)
li: List[int]
data = TestModel(vec=list(range(16)), li=[1, 2, 3])
if PYDANTIC_VERSION >= (2,):
assert json.loads(data.model_dump_json()) == {
"vec": list(range(16)),
"li": [1, 2, 3],
}
else:
assert data.dict() == {
"vec": list(range(16)),
"li": [1, 2, 3],
}
schema = pydantic_to_schema(TestModel)
assert schema == pa.schema(
[
pa.field("vec", pa.list_(pa.float32(), 16), False),
pa.field("li", pa.list_(pa.int64()), False),
]
)
if PYDANTIC_VERSION >= (2,):
json_schema = TestModel.model_json_schema()
else:
json_schema = TestModel.schema()
assert json_schema == {
"properties": {
"vec": {
"items": {"type": "number"},
"maxItems": 16,
"minItems": 16,
"title": "Vec",
"type": "array",
},
"li": {"items": {"type": "integer"}, "title": "Li", "type": "array"},
},
"required": ["vec", "li"],
"title": "TestModel",
"type": "object",
}
def test_fixed_size_list_validation():
class TestModel(pydantic.BaseModel):
vec: Vector(8)
with pytest.raises(pydantic.ValidationError):
TestModel(vec=range(9))
with pytest.raises(pydantic.ValidationError):
TestModel(vec=range(7))
TestModel(vec=range(8))
def test_lance_model():
class TestModel(LanceModel):
vector: Vector(16) = Field(default=[0.0] * 16)
li: List[int] = Field(default=[1, 2, 3])
schema = pydantic_to_schema(TestModel)
assert schema == TestModel.to_arrow_schema()
assert TestModel.field_names() == ["vector", "li"]
t = TestModel()
assert t == TestModel(vec=[0.0] * 16, li=[1, 2, 3])